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We present the derivation and application of an analytical effective potential that is able to describe, in a simple
way, the interaction of many electrons confined in low-dimensional structures of realistic size. The effective
potential takes into account the contribution of both the electron-electron interaction inside the nanostructure
and the quantum confinement by a surrounding material. With this model, we explore the electronic distribution
in quantum wells, wires, and dots in the full range from doped to high-doped concentrations. We also use this
effective potential to explicitly determine the parameters that trigger the formation of the Wigner molecule
in quantum wires. The comparison with experimental data reported in the literature shows the accuracy and
reliability of this potential model.
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I. INTRODUCTION

The strong confinement of electrical carriers, photons,
and/or phonons in nanostructures can trigger unique phys-
ical phenomena that make those structures very attractive
experimental systems with great potential applications in nan-
otechnology [1,2]. Currently, by means of different growth
techniques such as hydride vapor phase epitaxy, metal-
organic chemical-vapor deposition, and molecular-beam epi-
taxy, high-quality nanostructures of a wide range of materials,
geometries, and doping levels can be synthesized [3–5].

Among the most fundamental and interesting questions
observed in nanostructures are those related to the collective
effect of electron-electron (e-e) interactions and quantum
confinement [6–14]. One remarkable example where the com-
petition between many-body forces and spatial restrictions
leads to interesting phenomena is the Wigner crystallization;
under specific conditions electrons spontaneously form a self-
organized lattice in quantum wires (QWRs) [15–19].

When many-body interactions are explicitly included in
the modeling of nanostructures, usually, long computational
times and complex mathematical calculations are required to
deal with realistic electronic densities and the nanometric or
even micrometric size of the structures [10,13,20–24]. For
that reason, in spite of the fundamental importance of the
interaction of many electrons in the collective phenomena, the
contribution of this interaction to the formation of new struc-
tures, such as the Wigner crystal, has remained a relatively
unexplored field.

Recently, we proposed a simple approach to deal with
the problem of many electrons confined in semiconductor
QWRs by numerically solving the Schrödinger equation of
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two nonrelativistic electrons without spin, confined in square
QWRs of infinite barriers and interacting effectively through
a Yukawa-like potential [25]. In that work, the use of the
Yukawa potential allowed us to study the interaction of a large
number of electrons just by selecting a screening parameter κ

[25]. However, one of the main limitations to its application
is the fact that the confinement effects produced by the nano-
metric cross section of the QWRs are not explicitly included
in the model.

In this contribution, we derive an analytical effective poten-
tial that is able to describe the e-e interaction, via a Yukawa-
like potential, as well as the confinement in all three spatial
dimensions. The reliability of this effective potential is inves-
tigated by its comparison with the Yukawa approach [25] and
with experimental observations of the Wigner crystallization
in QWRs reported elsewhere [13,14].

II. EFFECTIVE POTENTIAL: DERIVATION
AND SOME FEATURES

A. Analytical derivation

For the derivation of the effective potential, a system of
electrons confined to a square GaAs structure embedded in a
matrix of AlxGa1−xAs (see Fig. 1) was considered. In such a
system, the two-electron Hamiltonian is given by [25]

H = − h̄2

2m∗
e

∇2
i + Ve-w + VY (r12), (1)

where i = 1, 2 accounts for the two electrons, h̄ ≡ h/2π , h
is the Planck constant, m∗

e is the effective electron mass,
and Ve-w is the electron-wall potential in the x-y plane.
The e-e interaction was considered to have the form of a
Yukawa-like potential VY (r12) [26]. This approach is similar
to the well-known jellium model typically employed in solid-
state physics, but with the difference that we consider two
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FIG. 1. (a) Schematic representation of two electrons separated
by a distance r, located in a rectangular GaAs structure of length
Lz and cross section Lx · Ly and embedded in a matrix of Al-
GaAs, and (b) x-z contour plot, obtained from the effective poten-
tial, Eq. (21), for Lx = Ly = 8 nm, Lz = 1 μm, and n = 1018 e/cm3.
The plot shows the test and screening electron distribution inside
the GaAs matrix. For this small cross-sectional size, a fraction
of the electronic distribution is able to tunnel into the x-y AlGaAs
barrier.

indistinguishable “test” electrons immersed in a homogeneous
electronic density (the “screening” electrons). However, it is
worth noting that there is not a real distinction between the
(test) electrons that interact through the Yukawa-like potential
and the virtual (screening) electrons that take part in the
screening process. So the results do reflect the behavior of
the electronic density inside the heterostructures. Note that
in the literature, the Yukawa-like potential goes by different
names depending on the system under study, for example,
the Debye-Hückel potential [27] in plasma physics and the
Thomas-Fermi potential [28,29] for atomic systems. This
potential is of particular interest because a simple variation of
the screening parameter κ allows one to modify the electronic
density, ranging from the bare Coulomb regimen (just two
electrons) up to high-doped semiconductor structures (of the
order of 1023 e/cm3). Such a potential has the following
mathematical form [25]:

VY (r12) = e2

4πε

exp [−κr12]

r12
, (2)

where ε = ε0εr , ε0 is the vacuum permittivity, εr is the
dielectric constant of the material, r12 is the e-e separation
distance

√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2, and κ is the

Debye-Hückel screening parameter, given by [30]

κ =
√

2e2n

εkBT
, (3)

with n being the electronic density, kB being the Boltzmann
constant, and T being the absolute temperature. It is worth
noting that the Yukawa form assumed here is strictly correct
for three-dimensional screening or if both the longitudinal and
lateral dimensions of the system are significantly larger than

the screening length, defined by κ−1. In this work, we report
only electronic concentrations and geometries where the latest
conditions are fulfilled.

If the contribution to the total energy of the system due
to the x-y quantum confinement becomes significantly larger
than the Yukawa interaction, which is the case for Lx,y �
30 nm in a GaAs nanostructure, the Yukawa contribution can
be considered a small perturbation in the x and y components
[31]. As a consequence, the transversal (⊥) and longitudinal
(‖) contributions of Eq. (1) can be split as follows:

H⊥(x, y) = − h̄2

2m∗
e

(
∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂y2
1

+ ∂2

∂y2
2

)
+ Ve-w(x, y),

(4)

which represents the confinement due to the walls in the
transversal x-y section, and

H‖(z) = − h̄2

2m∗
e

(
∂2

∂z2
1

+ ∂2

∂z2
2

)
+ e2

4πε

e−κr12

r12
, (5)

which considers the confinement along the z axis. The con-
finement along the z direction is included in the calculation of
�‖(z) by means of the boundary conditions at ±Lz/2, which
is equivalent to considering infinite barriers at those Lz edges.

The e-e interaction energy can be written in an integral
representation as

W =
∫

d3r1d3r2

(
e2

4πε

e−κr12

r12

)
|�(�r)|2.

(6)

Then, if the transversal and longitudinal components of the
wave function are separated as

�(�r) = ψ⊥(x1, y1)ψ⊥(x2, y2)ψ‖(z1, z2), (7)

the ground-state wave function ψ⊥(x, y) can be calculated
from the Schrödinger equation for Eq. (4) as

ψ⊥(x, y) = NxNy cos (lx) cos (ly), (8)

with

l =
√

2m∗
e

h̄2 E0- j, (9)

where E0− j ≡ Ex,y is the energy of the ground state in the
x-y plane, with j = x or y, and Nx and Ny are normalization
constants.

In order to derive the effective potential, we consider the
Fourier transform of ψ2

⊥(x, y), denoted by Gψ⊥ (qx, qy) and
given by

ψ2
⊥(x, y) = 1

(2π )2

∫
dqxdqyGψ⊥ (qx, qy )e−i(qxx+qyy),

(10)

where �q is the wave number vector and

Gψ⊥ (qx, qy) = π

2
N2

x [δ(qx ) + δ(qx − l ) + δ(qx + l )]

× N2
y [δ(qy) + δ(qy − l ) + δ(qy + l )]. (11)
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On the other hand, the longitudinal component can be written
for some Gψ‖ (qz ) as

ψ2
‖ (z) = 1

(2π )2

∫
dqzGψ‖ (qz )e−i(qzz), (12)

and the Yukawa potential can be expressed in terms of its
Fourier transform as

e−κr12

r12
= 1

2π2

∫
d3q

e−i(qxx+qyy+qzz)

κ2 + q2
x + q2

y + q2
z

. (13)

Then, by placing Eqs. (7), (10), (12), and (13) into Eq. (6), the
next expression for the e-e interaction energy can be obtained:

W = e2

4πε27π8

∫
d3r

∫
d3q

G2
ψ⊥ (qx, qy)Gψ‖ (qz )

κ2 + q2
x + q2

y + q2
z

× e−i(qxx+qyy+qzz), (14)

where d3q ≡ dqxdqydqz and d3r ≡ dxdydz. Integrating
over r,

W = e2

4πε2π2

∫
d3q

G2
ψ⊥ (qx, qy)Gψ‖ (qz )

κ2 + q2
x + q2

y + q2
z

. (15)

Now, as

Gψ‖ (qz ) =
∫

dzψ2
‖ (z)ei(qzz), (16)

Eq. (15) can thus be expressed as

W = e2

4πε2π2

∫
dzd3q

G2
ψ⊥ (qx, qy)ψ2

‖ (z)ei(qzz)

κ2 + q2
x + q2

y + q2
z

. (17)

Then, by using the equality

∫ ∞

−∞
dqz

eiqzz

q2
x + q2

y + q2
z + κ2

= πe−|z|
√

q2
x +q2

y +κ2√
q2

x + q2
y + κ2

, (18)

Eq. (17) can be rewritten as

W = 1

2π

∫ ∞

−∞
dzψ2

‖ (z1, z2)Veff(z1, z2), (19)

where Veff has been defined as

Veff(z) = e2

4πε

∫ ∞

l
dqxdqyG2

ψ⊥(qx, qy)
e−|z|

√
q2

x +q2
y +κ2√

q2
x + q2

y + κ2
.

(20)

Finally, by placing Eq. (11) into Eq. (20), evaluating the
integral, and defining N = N4

x N4
y π2/82, an analytical and

simple real-space expression for the effective potential can be
obtained:

Veff(z, κ, l ) = N
e2

4πεε0

[
e−|z|√8l2+κ2

√
8l2 + κ2

]
. (21)

Some features of this effective potential are discussed further
below.

B. The x-y plane solution

To deal with the transversal contribution, we have solved
the Schrödinger equation for Eq. (4) by using the well-known
procedure described in Ref. [32]. For the x coordinate, the
Schrödinger equation reads

− h̄2

2m∗
e

dψ⊥x

dx2
+ Ve-wψ⊥x = Eψ⊥x , (22)

with Ve-w being the electron-wall potential, associated with the
GaAs structure embedded in the barriers as

Ve-w = 0.65[Egap(AlxGa1−xAs) − Egap(GaAs)], (23)

where the band gap energy for the barrier, considered to have
infinite length, is given by [33]

Egap(AlxGa1−xAs) = (1.424 + 1.247x) eV, x < 0.45,

(24)

and the band gap of the semiconductor nanostructure, de-
pendent on the temperature T and the Al concentration x, is
calculated from

Egap(GaAs) = 1.519 − 5.405 × 10−4T 2x

T + 207
eV. (25)

We consider a typical Al concentration of x = 0.23 and a
temperature of T = 300K . With these parameters, Ve-w =
187 meV outside and 0 meV inside the GaAs structure.
Thus, for a very small cross-section size, the electrons in-
side the GaAs can tunnel into the AlGaAs matrix. Addi-
tional values that were considered are as follows: εr(GaAs) =
12.9, m∗

e(GaAs) = 0.0665me, with me being the electron mass,
εr(AlGaAs) = 12.247, and m∗

e(AlGaAs) = 0.0857me. As the differ-
ence of the dielectric constants between GaAs and AlGaAs is
very small, the correction due to the dielectric discontinuity
is not considered at this time. By solving Eq. (22), secular
equations for the odd and even solutions are obtained:

l

lv
tan

[
−l

L j

2

]
= M, (26)

−M cot

[
−l

L j

2

]
= lv

l
, (27)

where lv ≡
√

2m∗
e(GaAs)

h̄ (Ve-w − En- j ), M ≡ m∗
e(GaAs)

m∗
e(AlGaAs)

, l is defined

as in Eq. (9), and n = 0, 1, 2, . . . is the quantum number. A
similar procedure was followed for the y coordinate. Then,
the ground-state energy Ex,y can be calculated from the first
interception in the graphical solution of Eq. (26), and once
Ex,y is known, l can be finally calculated and incorporated into
the effective potential, Eq. (21).

C. Remarks on the effective potential

The effective potential described in Eq. (21) is a practical,
real-space representation of the many-body interactions that
govern the available quantum states of electrons under severe
confinement. It implicitly contains the quantum confinement
produced in all three spatial directions. In addition, this poten-
tial is able to incorporate the electronic population via a sim-
ple screening parameter κ for any experimental doping level.
Values for κ used in this study and its corresponding electron
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TABLE I. Nomenclature and equivalences of the screening pa-
rameters κ , electronic densities n, and n-type doping levels used in
the calculations of this work.

κ label κ value nm−1 n label n value (e/cm3) doping level

κ1 0.5 n1 1017 Typical value
used in devices

κ2 1 n2 1018 Typical value
used in devices

κ3 10 n3 1020 High
κ4 500 n4 1023 High
κ5 5000 n5 1025 Experimentally

unachievable

densities (n-type doping level in semiconductor materials) are
presented in Table I.

Some other special characteristics of the effective potential
must be highlighted. First, in clear contrast to the simple
Yukawa model reported in [25], in Eq. (21) the confinement
associated with the transversal x-y cross section is implic-
itly contained in the parameter l via its connection with
the eigenenergies E0- j [see Eq. (9)]. As discussed further
below, the transverse component plays a quite important role
in the electronic distribution of nanometric cross-sectional
structures.

Second, instead of the screening parameter κ of the simple
Yukawa potential in Eq. (2), the effective screening in Eq. (21)
has the more complex form

√
8l2 + κ2, which implies that

the x-y confinement contributes to Veff (via the parameter l)
in a way similar to the electronic density (via the parameter
κ). Even more, the confinement and the electronic density
have roughly similar weights in Veff. That is, if the x-y cross
section is small enough to establish a large Ex,y value, then
its screening contribution will be comparable in magnitude to
a moderated value of κ . The latter can be clearly observed
in Fig. 2(a), where the effective potential Veff is plotted as a
function of the e-e separation for two low electronic densities
(n1 and n2) and three Lx,y cross sections (8, 30, and 60 nm). As
can be observed, when the confinement is strong enough, the
magnitude of its influence on Veff is similar to the screening
effect of a low n value. For example, the magnitude of Veff for
n1 with Lx,y = 60nm is quite similar to n1 with Lx,y = 30 nm.
This is a remarkable quality of Veff that correctly indicates that
the electronic distribution in the nanostructures is determined
by a competition between the spatial confinement and the
electronic density.

Third, in contrast to a Yukawa-like or bare Coulombic
potential, Veff does not present 1/r dependence. Instead, Veff

is proportional to 1/
√

8l2 + κ2. That is, in Veff the usual
dependence of the electrostatic potentials on the charges’
separation has been replaced by an alternative and equivalent
description, which explicitly takes into account the electronic
density and the confinement in all three spatial directions.

To highlight the differences between Veff and VY , in
Fig. 2(b) both potentials are plotted as a function of the
e-e separation. As expected, both potentials go to zero at
large e-e separations. However, for e-e separations shorter
than ∼10 nm considerable differences can be appreciated. In

L 30nm

(a)

(b)L 30L 30

(a)n1
n2
n1
n2
n1
n2

n1
n2Veff

L 30nm

FIG. 2. Effective electron-electron interaction, Eq. (21), as a
function of the electron’s separation for (a) cross sections of sides
Lx,y = 8, 30, and 60 nm and electronic densities n1 (solid lines) and
n2 (dashed lines) and (b) electronic densities n1 and n2 and a cross
section of side Lx,y = 30 nm. In (b), the Yukawa potential [Eq. (2);
solid lines] is also shown.

contrast to the Yukawa or the pure Coulomb potential, Veff

does not diverge as the e-e separation goes to zero. Instead,
the effective potential converges to a finite value of the order
of tens of meV (which is larger for lower values of n). This
effect is, of course, associated with the electronic screening
effect.

III. ELECTRONIC DISTRIBUTION

A. Longitudinal confinement

One of the main features of the system that can be studied
with our model is the electronic distribution inside the nanos-
tructures. Hereafter, we explore this distribution in the various
regimes of confinement imposed by Lx,y and Lz. At first, we
use Lx,y = 1 μm to focus on the confinement in the z direc-
tion. Then, with Lz = 30 nm and Lz = 1 μm, the electronic
distributions in a quantum well (QW) and a bulk material,
respectively, are considered. The charge distributions for the
two test electrons are displayed in Figs. 3 and 4, respectively,
where the results for both the effective and Yukawa potentials
are plotted for comparison purposes.

As observed, at the higher electronic concentration (n5),
due to the strong electrostatic screening, only a central dis-
tribution is formed for both potentials and both systems
[Figs. 3(e) and 4(e)]. For typical electronic concentrations,
clear differences can be observed in the electronic distribu-
tions associated with VY and Veff for the case of the QW, while
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n3

n2

n1

n4

n5

(a)

(b)

(c)

(d)

(e)

0

2

4 Veff
VY

z (nm)
-15 -10 -5 0 5 10 15

FIG. 3. Ground-state probability densities for a quantum well,
Lx,y = 1 μm and Lz = 30 nm. The results for the effective (solid
lines) and the Yukawa (dashed lines) potentials are plotted for
different electronic concentrations (see Table I).

for the bulk both potentials have the same form [Figs. 3(a)–
3(d) and 4(a)–4(d)]. In this case, the mismatching of the
electronic distributions between potentials can be directly
associated with the quantum confinement contribution of the
transversal component (which is contained only in Veff). Even
when the electronic distributions are clearly different for VY

and Veff, the general trend is quite similar. The latter is due to
the very weak x-y confinement (Lx,y = 1 μm). As described
further below, this is no longer the case when a strong x-y
confinement is considered.

B. Transverse and longitudinal confinement

To help clarify the x-y transversal confinement sensibility
of Veff, cross sections of size Lx,y = 1 μm, 30 nm, and 8 nm
are now considered. In Figs. 5 and 6 such distributions are
presented. With the choice of these parameters, the electronic
distribution associated with different low-dimensional struc-
tures can be studied: QWs [Fig. 5(a)], quantum dots (QDs)
[Figs. 5(b) and 5(c)], QWRs [Figs. 6(b) and 6(c)], and a
weakly confined quasibulk material [Fig. 6(a)]. Since the x-y
confinement does not have any influence on VY , in this case
only Veff is discussed. Vertical dashed lines in Figs. 5 and 6
are an aid to the eye to identify the possible formation of a
Wigner molecule, that is, if two independent electronic dis-
tribution peaks become well separated and centered at ±L/4
[15,17–19].

n1

n4

n3

n2

nV
V

5eff

Y

FIG. 4. Ground-state probability densities for a quasibulk ma-
terial, Lx,y = 1 μm and Lz = 1 μm. The results for the effective
(solid lines) and the Yukawa (dashed lines) potentials are plotted for
different electronic concentrations (see Table I).

As is evident in Figs. 5 and 6, the cross-section size greatly
affects the electronic distribution for both Lz = 30 nm and
1 μm. Analogously to Figs. 3 and 4, for the highest (n5)
electronic concentration, a unique central distribution was
obtained in all cases (data not shown). The same effect is
observed for n4 and n3 when Lz = 30 nm (Fig. 5) and for

n3

n1
n2

n4

FIG. 5. Ground-state probability densities, calculated using the
effective potential, Eq. (21), for Lz = 30 nm.
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n1
n2

n4 n3

FIG. 6. Ground-state probability densities, calculated using the
effective potential, Eq. (21), for Lz = 1 μm.

n4 when Lz = 1 μm (Fig. 6). However, for Lz = 1 μm and
n = n3, the electronic screening becomes weak enough to
promote a twofold distribution. For lower n concentrations,
the two-peak distribution becomes the dominant feature.

Interestingly, for typical electronic concentrations in doped
semiconductors (n1 and n2), the electronic distribution pre-
dicted by Veff follows a particular behavior for each kind of
nanostructure. For example, for quantum dots [Figs. 5(b) and
5(c)], even when the distribution is almost identical for n1,
the two peaks become closer for the smallest Lx,y value. In
contrast, for QWRs [see Figs. 6(b) and 6(c)], even when the
electronic distributions are also virtually identical for n1 and
n2, the peaks’ positions stay at ±L/4 for both Lx,y = 8 and
30 nm. The latter behavior, directly related to the formation
of a Wigner molecule, is discussed in Sec. IV. Finally, when
larger Lx,y values of 30 nm and 1 μm are considered, the n1

and n2 distributions no longer perfectly overlap each other
[see Fig. 5(a)]. For the bulk material in Fig. 6(a), one can
observe that the two well-defined equidistant peaks remain.
Thus, for QWRs the model is able to describe the conditions
for the formation of a Wigner molecule.

From the results discussed before, it is clear that by incor-
porating the carrier confinement in all three spatial directions,
Veff allows us to get a more complete description of the elec-
tronic distribution in a variety of nanostructures and doping
levels. In the next section, we contrast Veff with available ex-
perimental data related to the formation of a Wigner molecule
in QWRs, which is especially interesting because it involves
the two main ingredients of this contribution: many-electron
interaction and a specific kind of geometrical restriction. In
particular, the experimental results will allow us to assess the
accuracy of the effective potential in predicting, at low com-
putational cost, the conditions for the Wigner crystallization.

IV. WIGNER CRYSTALLIZATION:
EXPERIMENTAL COMPARISON

In Fig. 7, the relative position of the maximum of the
electronic distribution in one half of the z axis, calculated with

FIG. 7. Peak position, 2zpeak/L, for the ground-state electronic
distribution for Lx,y = 30 nm (black squares), Lx,y = 1 μm (red cir-
cles), and three electronic densities: (a) n3, (b) n2, and (c) n1 (see
Table I). The horizontal dotted lines stand for the condition of the
Wigner crystallization. The vertical dotted lines help to define the
transition between the kinds of structures defined by the combination
of Lx,y and Lz.

VY and Veff for three electronic concentrations, is displayed.
The horizontal dashed line at 0.5 establishes the condition for
the Wigner crystal formation; that is, it helps us to visualize
when two equidistant well-defined peaks at the center of each
half of the distribution are formed.

As noted in Fig. 7, the formation of the Wigner molecule
strongly depends on the dimensionality of the structure and
its electronic concentration. Unlike the Yukawa potential, in
which the Wigner molecule was always found for QWRs at
low electronic concentrations [25], the effective potential pre-
dicts a more intricate behavior: (i) for high electronic concen-
trations (n > 1020 e/cm−3), the Wigner molecule formation is
not promoted at all [Fig. 7(a)], and (ii) for systems with typical
extrinsic n-doping levels (1017 e/cm3 < n < 1020 e/cm3), the
Wigner molecule can be formed for Lz � 40 nm and n = n1

or, alternatively, for a large Lz > 100 nm and n = n2 [see
Fig. 7(b)]. It is worth stressing that all these characteristics
are qualitatively consistent with experimental observations
and early theoretical works on the Wigner crystallization
[13–15,17–19].

Finally, in Fig. 8, the predictions based on the effective
potential are compared with data from experimental reports
that confirm the existence of the Wigner molecule [13,14].
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FIG. 8. Relative peak position, 2zpeak/L, for the ground-state
electronic distribution predicted by the effective potential, Eq. (21).
Results for InSb with Lx,y = 35 nm (circles), InAs with Lx,y = 10 nm
(squares), and GaAs with Lx,y = 30 nm (diamonds). QWRs are pre-
sented as a function of the wire length. The inset lists the n and L
threshold values, predicted by Veff, for the formation of a Wigner
molecule.

Material parameters were modified to match the experimental
InSb and InAs semiconductor QWRs. The systems considered
were an InSb QWR of cross section Lx,y = 35 nm, embedded
in an InAs matrix [13], and an InAs QWR, with Lx,y = 10 nm
and electronic density nInAs = 1017 cm−3, embedded in a Si
matrix [14].

Experimental tunneling spectroscopy measurements of
electronic localized states in the InSb QWRs showed the
onset of a Wigner molecule at Lz = 160 nm and a theoretical
prediction of a complete formation of the Wigner molecule
for a 300-nm-long QWR [13]. The results obtained by using
Veff agree remarkable well with the latter values, considering
an electronic density of 1017 e/cm3, as depicted in Fig. 8.
On the other hand, the local electronic transport by scanning
gate microscopy measurements of the InAs QWRs, reported

in Ref. [14], establish the formation of the Wigner molecule
for Lz values between 500 and 600 nm, which also match
very well with the values predicted by our effective potential
model, as also observed in Fig. 8. The inset shows the n
values predicted by Veff for the critical concentration nth and
the threshold length (Lz = Lth) at which the Wigner molecule
should appear in QWRs of different semiconductor materials.
Experimental measurements in GaAs QWRs are currently in
progress in order to explicitly compare with the theoretical
predictions.

V. CONCLUDING REMARKS

In summary, we have derived an analytical, real-space
representation of an effective potential that is able to describe,
at a low computational cost, the many-body effects on the
electronic distribution in low-dimensional structures. This ef-
fective potential takes into account the electronic confinement
in all three spatial dimensions and the e-e interaction via a
Yukawa-like potential. The derived effective potential allows
one to explore the effects of key parameters, such as size,
chemical composition, and the n-type impurity level, on the
electronic distribution of different kinds of nanostructures. We
found that the effective potential predictions matched remark-
ably well experimental observations related to the Wigner
crystallization in QWRs.

Further use of the effective potential in nanostructures
of more complex geometries would shed light on both the
formation and stability of other unique electronic distributions
involving the many-body electronic interactions.
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