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Giant optical activity and Kerr effect in type-I and type-II Weyl semimetals
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We explore optical activity in thin films and bulk of type-I and type-II Weyl semimetals (WSMs), and
demonstrate the existence of a giant Kerr effect in both. In time reversal symmetry broken WSM thin films,
the polarization rotation is caused by the optical Hall conductivity including the anomalous Hall term. The Kerr
angle is found to be ∝ Q/ω, with Q and ω being the Weyl node separation and the optical frequency, respectively.
In contrast, the optical activity in the bulk WSM is dominated by axion electrodynamics, which persists even in
the Pauli-blocked regime of no optical transitions. In bulk WSMs, Q acts analogously to the magnetization in
magnetic materials, leading to a large polar Kerr effect (linear in Q), when light is incident on the WSM surface
without Fermi arc states, and the Voigt effect (quadratic in Q), when light is incident on surface with Fermi arc
states.
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I. INTRODUCTION

Weyl semimetals host even pairs of linearly dispersing
massless quasiparticles of opposite chirality with novel Fermi
arc surface states [1–7]. Their existence has been recently
demonstrated in several crystalline materials with broken
time-reversal or space-inversion symmetry. Some examples
include topological insulator material [8], pyrochlore iridates
[2,9], WTe2 [10,11], MoTe2 [12–17], MoxW1−xTe2 [18,19],
TaAs [20–23], and TaP [24–26], among others. In contrast to
their high-energy counterparts, Weyl semimetals (WSMs) can
also have a Lorentz symmetry violating tilted energy spec-
trum. This allows their classification into a type-I (partially
tilted) WSM with vanishing density of states (DOS) at the
Weyl point, and a type-II (overtilted) phase with a finite DOS
at the Fermi energy and an electron and a hole pocket on either
side of the Weyl point [3]. The type-II Weyl state has been
experimentally demonstrated in noncentrosymmetric TaIrTe4

[27], MoTe2 [13], WTe2 [17], and LaAlGe [28], among other
materials.

The Weyl nodes in a WSM act as a source or sink of
the Berry curvature, which acts as a magnetic field in the
momentum space [29–32]. This finite Berry phase induces
several very interesting electronic transport and optical phe-
nomena, including the quantum anomalous Hall (QAH) effect
[29,32–53]. Another intriguing aspect of optical activity in
WSMs is its connection to axion electrodynamics [54,55],
which modifies the Maxwell equations. The combined effect
of these has led to the prediction of several interesting effects
in WSMs interacting with light, such as giant polarization
rotation [47], tunable perfect absorption [50], and creation of
novel waveguide modes [51]. Contact-free optical techniques
such as polarization rotation are also regularly used to explore
time reversal symmetry breaking states in ferromagnets [56],
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multiferroics [57], superconductors [58], and the QAH state
in graphene [59] and topological insulators [60].

Here, we demonstrate the existence of giant polarization
rotation in the electrodynamic response in tilted WSMs with
broken time-reversal symmetry. Our results generalize the
study of Ref. [47] to include the impact of the tilt in type-I
and type-II WSMs and a finite chemical potential. To this end,
we analytically calculate the full complex optical conductivity
matrix for tilted type-I and type-II WSMs including finite
chemical potential and the internodal separation. This allows
us to obtain the exact polarization rotation for the thin-film
geometry as well as for bulk WSMs, without using any small-
angle approximation.

In WSM thin films, the giant Kerr rotation (GKR), po-
larization rotation in the reflected beam, originates from the
optical Hall conductivity including the QAH effect. We ana-
lytically calculate the full optical conductivity matrix σi j (ω)
for tilted type-I and type-II WSMs and find that all the di-
agonal components σii ∝ ω, while the off-diagonal Hall term
σxy ∝ Q, where Q denotes the Weyl node separation (in the z
direction) and σxz = σyz = 0. For light incident on the WSM
thin film surface without the Fermi arc states (perpendicular to
the node separation), the Kerr angle �Kerr ∝ σxy/σxx ∝ Q/ω.
For realistic material parameters, the Kerr angle is found to
be of the order of 10−1 radians for optical frequencies below
1014 Hz. This is “giant” compared to the usually observed
values of 10−6 to 10−4 radians in topological insulators and
magnetic and other materials [47,56,58,59]. For light incident
on the surface with Fermi arc states (parallel to the node
separation), we find that �Kerr ∝ σyz/σzz = 0.

In bulk WSM large optical activity is predominantly caused
by the axion electrodynamics induced changes in the Maxwell
equations. The effective dielectric constant of the modified
Maxwell equation can be expressed as ε′

i j = εi j + εi jkQk ×
2iαF c/(πω), where the second term establishes Q/ω to be the
effective “gyrotropy” constant, analogous to magnetization in
magnetic systems. This axion-induced gyrotropy is what leads
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to optical activity in bulk WSMs, even in the Pauli-blocked
regime with forbidden optical transitions. For light incident
parallel to the Weyl node separation (on surfaces without
Fermi arc states), only circular eigenmodes are allowed in
the WSM, leading to large circular birefringence and circular
dichroism, along with the giant Kerr effect, which is odd in Q.
For light incident on surface perpendicular to the Weyl node
separation (on surfaces with Fermi arc states), there is large
linear birefringence and dichroism, along with a polarization
angle dependent giant Kerr effect which is an even function
of Q.

This paper is organized as follows: In Sec. II we discuss the
formalism for calculating optical conductivity for a generic
two-band model, based on the optical Bloch equation. In
Sec. III, we obtain the optical conductivity matrix for tilted
type-I and type-II WSMs, including the QAH contribution.
In Sec. IV we discuss the electromagnetic response in thin
films of tilted WSM, and demonstrate the existence of giant
polarization rotation. This is followed by a discussion of axion
electrodynamics induced large optical activity in bulk WSMs
in Sec. V. Finally, we summarize our findings in Sec. VI.

II. LIGHT-MATTER INTERACTION IN WSMs

The low-energy properties of a generic two-band system
can be described using the following 2 × 2 Hamiltonian,

Ĥ0 =
∑

k

hk · σ. (1)

Here, hk = (h0k, h1k, h2k, h3k ) is a vector composed of real
scalar functions of k, and σ = (12, σx, σy, σz ) is a vector
composed of the identity and the three 2 × 2 Pauli matrices.
The interaction with an electromagnetic field is modeled using
the dipole approximation, Ĥ = Ĥ0 + eE · r̂. Here e is the
electronic charge, and E is the electric field.

Now, physical observables can be calculated using the
optical Bloch equation for the dynamics of the density ma-
trix [61,62]. The corresponding interband contribution to the
current (for a given k) in the linear response regime is given
by

Jk(ω) = − ineq
k

h̄ωk

[(
E · Mvc

k

)
Mcv

k

ω + ωk + iγ
+
(
E · Mcv

k

)
Mvc

k

ω − ωk + iγ

]
. (2)

Here, neq
k = f (εc

k, μ) − f (εv
k, μ) is the equilibrium popula-

tion difference between the conduction and the valance band
and Mvc

k ≡ 〈ψv
k |e∇kĤ0/h̄|ψc

k〉 = (Mcv
k )∗ is the optical matrix

element responsible for vertical transition between valence
and conduction band. The transition energy is denoted by
h̄ωk = εc

k − εv
k and γ is the phenomenological damping term

for the interband coherence (off-diagonal elements of the
density matrix). The interband optical conductivity obtained
from Eq. (2) in the limiting case of γ → 0 is equivalent to the
Kubo formula for a two-band system. It is given by

σαβ (ω) = − lim
γ→0

∑
k

ineq
k

h̄ωk

×
[(

Mvc
k ⊗ Mcv

k

)
αβ

ω + ωk + iγ
+
(
Mcv

k ⊗ Mvc
k

)
αβ

ω − ωk + iγ

]
(3)

with ⊗ denoting the outer product of the optical matrix
element vectors.

Now let us consider a simple continuum model of a WSM
with a pair of oppositely tilted Weyl nodes, with chirality
ξ = ±1 located in the Brillouin zone at k = {0, 0,∓Q}. The
low-energy Hamiltonian of a Weyl node [63–66] of chirality
ξ can be expressed in the form of Eq. (1), with the following
mapping: h0k = h̄ξvt kξ

z , h1k = ξ h̄vF kx, h2k = ξ h̄vF ky, and
h3k = ξ h̄vF kξ

z , to yield

Ĥξ = h̄ξvt k
ξ
z 1 + ξ h̄vF

[
kxσx + kyσy + kξ

z σz
]
, (4)

where kξ
z = kz + ξQ. Here, vt is the tilt velocity of the ξ =

+1 Weyl node and vF is the Fermi velocity. The degree of
tilt of the Weyl nodes is characterized by αt = vt/vF , with
|αt | < 1 being a type-I Weyl node, and |αt | > 1 being a type-II
Weyl node. Eigenvalues of Eq. (4) are given by ελ

k = h̄ξvt kξ
z +

λh̄vF kξ , where λ = 1 (−1) denotes the conduction (valance)
band. Here, we have defined kξ = [k2

x + k2
y + (kξ

z )2]1/2.
The dimensionless optical matrix element corresponding to

Eq. (4) is given by M̃vc
k ≡ Mvc

k /evF

=
(

i sin φk − ξ k̃z cos φk,−i cos φk − ξ k̃z sin φk, ξ
k⊥
kξ

)
. (5)

Here, we have defined k̃z = kξ
z /kξ , φk = tan−1(ky/kx ), and

k⊥ = (k2
x + k2

y )1/2. Note that M̃vc
k does not depend on the tilt

velocity vt at all.
We now calculate the optical conductivity matrix of the

tilted type-I and type-II WSMs, in the next section. These
will be used to calculate the polarization rotation (Kerr angle
and ellipticity) of a linearly polarized optical beam reflected
from WSM thin films, and from bulk WSMs. In both cases,
the polarization rotation (�) and the ellipticity angle (�) can
be expressed in terms of a complex dimensionless quantity
(χ ) via the relation [67]

tan(2�) = 2Re[χ ]

1 − |χ |2 and sin(2�) = 2Im[χ ]

1 + |χ |2 . (6)

In the limiting case of |χ | � 1, Eq. (6) can be simplified
as � ≈ Re[χ ] and � ≈ Im[χ ]. However, unlike the case of
magnetic materials [68] where |χ | � 1, for the case of WSMs
we find that in general |χ | ∼ 1, and the exact Eq. (6) has to be
used.

III. OPTICAL CONDUCTIVITY MATRIX
OF TYPE-I AND TYPE-II WSMs

Calculating the optical conductivity of the tilted type-I and
type-II WSMs described by Eq. (4), we find that σxx = σyy,
σxy = −σyx, and the remaining off-diagonal elements of the
conductivity matrix are zero, σxz = σyz = σzx = σzy = 0. The
vertical transitions responsible for the optical conductivities
of type-I and type-II WSMs are shown in Figs. 1(a) and
1(b), respectively. For simplicity, we will work in the zero-
temperature regime where the Fermi function can be replaced
by the corresponding Heaviside step function.

A. σxx(ω)

The real part of the longitudinal conductivity σxx has been
calculated in Ref. [69], and our calculations (detailed in
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FIG. 1. (a), (b) Schematic of the Pauli-blocking and allowed ver-
tical optical transitions in a type-I and a type-II WSM, respectively.
The region of ω < ωl (region I) is completely Pauli blocked for
vertical transitions while the region II, ωl < ω < ωu, is partially
Pauli blocked, and in region III, ω > ωu, the full phase space is
available for vertical transitions. (c), (d) show the real (solid line)
and the imaginary part (dashed line) of the σxx , in a type-I (αt = 0.2)
and a type-II (αt = 2.0) WSM, respectively. (e), (f) show the real
(solid line) and the imaginary part (dashed line) of σzz, in a type-I
(αt = 0.2) and a type-II (αt = 2.0) WSM, respectively. The vertical
lines mark the boundary values of transition energy, h̄ωl = 2μ/(1 +
|αt |) (green), and h̄ωu = 2μ/(1 − |αt |) (red) or h̄ω′

u = 2μ/(|αt | − 1)
(red) in a type-II WSM. Here, the conductivities are scaled in units
of σQ = e2Q/(πh), and we have chosen μ/(h̄vF Q) = 0.1.

Appendix A) based on Eq. (3) reproduce those results. To start
with, we calculate the real and imaginary part separately by
using the Dirac identity on Eq. (3). For a type-I WSM hosting
a pair of oppositely tilted Weyl nodes with |αt | < 1, we obtain

Re[σxx(ω)] =
⎧⎨
⎩

0, I : ω < ωl ,

σω(1/2 − η1), II : ωl < ω < ωu,

σω, III : ω > ωu.

(7)

Here we have defined a conductivity scale set by the optical
frequency: σω = e2ω/(6hvF ). The photon energy bounds are
h̄ωl = 2μ/(1 + |αt |), h̄ωu = 2μ/(1 − |αt |), and

η1 = 3

8|αt |
(

2μ

h̄ω
− 1

)[
1 + 1

3α2
t

(
2μ

h̄ω
− 1

)2
]
. (8)

Basically, in region I for ω < ωl , the phase space for vertical
transitions is Pauli blocked, as shown in Fig. 1. For region II,
ω ∈ (ωl , ωu), the Pauli blocking gets removed with increas-
ing energy resulting in finite vertical transitions and finite
Re[σxx(ω)]. In the αt → 0 limit we have ωl → ωu = 2μ/h̄,
and we have Re[σxx(ω)] = σω for h̄ω � 2μ. In the other limit
αt → 1, we have ωu → ∞ with region II extending to higher
energies.

For the type-II Weyl node with |αt | > 1, we obtain

Re[σxx(ω)] =
⎧⎨
⎩

0, I : ω < ωl ,

σω(1/2 − η1), II : ωl < ω < ω′
u,

σωη2, III : ω > ω′
u.

(9)

Here we have defined h̄ω′
u = 2μ/(|αt | − 1), and

η2 = 3

4|αt |

[
1 + 1

3α2
t

+
(

2μ

αt h̄ω

)2
]
. (10)

The imaginary part of the longitudinal optical conductivity
σxx(ω), for a type-I WSM, for |αt | < 1 is calculated to be

Im[σxx]

σω

= −1

4π

{
τ (αt ) ln

[ |ω2
u − ω2|

|ω2
l − ω2|

]
+ 8

α2
t

(
μ

h̄ω

)2

−
(

μ

h̄ω

)3

�(ω, αt , μ) ln

[ |ωu − ω|(ωl + ω)

|ωl − ω|(ωu + ω)

]

+ 6

|αt |3
(

μ

h̄ω

)2

ln

[ |ω2
u − ω2|ω2

l

|ω2
l − ω2|ω2

u

]
+ 4 ln

[ |ω2
c − ω2|

|ω2
u − ω2|

]}
. (11)

Here ωc ≡ vF kc is the ultraviolet cutoff frequency (see Appendix A for details). For a type-II WSM, with |αt | > 1, we obtain

Im[σxx]

σω

= −1

4π

{
τ (αt ) ln

[ |ω′2
u − ω2|

|ω2
l − ω2|

]
+ 8

α3
t

(
μ

h̄ω

)2

−
(

μ

h̄ω

)3

�(ω, αt , μ) ln

[ |ω′
u − ω|(ωl + ω)

|ωl − ω|(ω′
u + ω)

]
(12)

+ 6

|αt |3
(

μ

h̄ω

)2

ln

[ |ω′2
u − ω2|ω2

l

|ω2
l − ω2|ω′2

u

]
+
(

3

|αt | + 1

|αt |3
)

ln

[ |ω2
c − ω2|

|ω′2
u − ω2|

]
+ 12

|αt |3
(

μ

h̄ω

)2

ln

[ |ω2
c − ω2|ω′2

u

|ω′2
u − ω2|ω2

c

]}
.

In Eqs. (11) and (12), we have defined the following functions:

τ (αt ) = 1

2

(
4 + 1

|αt |3 + 3

|αt |
)

, (13)

�(μ,ω, αt ) = 4

|αt |3 + 3

(
h̄ω

μ

)2( 1

|αt |3 + 1

|αt |
)

. (14)
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In the limiting case of αt → 0, Eq. (11) reduces to

Im[σxx(ω)] = −σω

π
ln

∣∣∣∣ ω2
c − ω2

ω2 − 4(μ/h̄)2

∣∣∣∣. (15)

In the intrinsic limit of μ → 0, we obtain

lim
μ→0

Im[σxx(ω)] = −σω

π
ln

∣∣∣∣ω2
c − ω2

ω2

∣∣∣∣
{

1, type I,
1+3α2

t

2α3
t

, type II.

(16)

Of these, the type-I result is independent of the tilt, and has
been derived earlier in Refs. [47,49].

The real and the imaginary parts of σxx(ω) are shown in
Figs. 1(c) and 1(d). The tilt forces only selective regions of
the momentum space to be available for vertical transitions in
region II, leading to a discontinuity in the optical response at
the onset of region III.

B. σzz(ω)

We calculate calculate σzz(ω) in a similar manner (see
Appendix A for details of the calculation). For the case of the

type-I WSM with |αt | < 1, the real part is given by

Re[σzz(ω)] =
⎧⎨
⎩

0, I : ω < ωl ,

σωη4, II : ωl < ω < ωu,

σω, III : ω > ωu.

(17)

Here, we have defined

η4 = 1

2
+ (2μ − h̄ω)3

4h̄3ω3|αt |3
+ 1

|αt |
(

3

4
− 3μ

2h̄ω

)
. (18)

For the type-II WSM, with |αt | > 1, we obtain [69]

Re[σzz(ω)] =
⎧⎨
⎩

0, I : ω < ωl ,

σωη4, II : ωl < ω < ω′
u,

σωη5, III : ω > ω′
u.

(19)

Here, we have defined

η5 = −1

2|αt |3
[

1 − 3α2
t + 12μ2

h̄2ω2

]
. (20)

The imaginary part of σzz, for a type-I WSM is calculated
to be

Im[σzz]

σω

= −1

2π

{
τ ′(αt ) ln

[ |ω2
u − ω2|

|ω2
l − ω2|

]
− 8

α2
t

(
μ

h̄ω

)2

+
(

μ

h̄ω

)3

�′(μ,ω, αt ) ln

[ |ωu − ω|(ωl + ω)

|ωl − ω|(ωu + ω)

]

− 6

|αt |3
(

μ

h̄ω

)2

ln

[ |ω2
u − ω2|ω2

l

|ω2
l − ω2|ω2

u

]
+ 2 ln

[ |ω2
c − ω2|

|ω2
u − ω2|

]}
. (21)

For a type-II WSM with |αt | > 1, we obtain

Im[σzz]

σω

= −1

2π

{
τ ′(αt ) ln

[ |ω′2
u − ω2|

|ω2
l − ω2|

]
− 8

α3
t

(
μ

h̄ω

)2

+
(

μ

h̄ω

)3

�′(μ,ω, αt ) ln

[ |ω′
u − ω|(ωl + ω)

|ωl − ω|(ω′
u + ω)

]
(22)

− 6

|αt |3
(

μ

h̄ω

)2

ln

[ |ω′2
u − ω2|ω2

l

|ω2
l − ω2|ω′2

u

]
+
(−1

α3
t

+ 3

αt

)
ln

[ |ω2
c − ω2|

|ω′2
u − ω2|

]
− 12

|αt |3
(

μ

h̄ω

)2

ln

[ |ω2
c − ω2|ω′2

u

|ω′2
u − ω2|ω2

c

]}
.

Here, we have defined

τ ′(αt ) = 1

2

(
2 − 1

|αt |3 + 3

|αt |
)

, (23)

�′(μ,ω, αt ) = 4

|αt |3 + 3

(
h̄ω

μ

)2( 1

|αt |3 − 1

|αt |
)

. (24)

The real and the imaginary parts of σzz(ω) are displayed
in panels (e) and (f) of Fig. 1. We recall that region I is
completely Pauli blocked while region II is partially Pauli
blocked for vertical optical transitions.

C. σxy(ω)

A finite transverse optical conductivity σxy(ω) generally
originates from the breaking of the time-reversal symmetry.
In the case of time reversal symmetry broken WSMs, this
manifests in the separation (in momentum space) of the two
Weyl nodes of opposite chirality. Thus the energy scale of
the transverse optical response is dictated by the internode
separation, εQ = h̄vF Q.

The imaginary part of the dynamical transverse optical
conductivity has already been calculated in Ref. [64], and

our calculations (see Appendix B for details) reproduce their
results. For a type-I WSM hosting a pair of oppositely tilted
Weyl nodes with |αt | < 1, we obtain

Im[σxy(ω)] = sgn(αt )

⎧⎨
⎩

0, I : ω < ωl ,

3σωη3, II : ωl < ω < ωu,

0, III : ω > ωu.

(25)

Here we have defined

η3 = 1

α2
t

(
1

8
− μ

2h̄ω
+ μ2

2h̄2ω2

)
− 1

8
. (26)

For a type-II WSM with a pair of oppositely tilted Dirac
nodes with |αt | > 1, we derive

Im[σxy(ω)] = sgn(αt )

⎧⎨
⎩

0, I : ω < ωl ,

3σωη3, II : ωl < ω < ω′
u,−3μσω

h̄ωα2
t

, III : ω > ω′
u.

(27)

The real part of σxy(ω) can now be obtained by using
Kramers-Kronig relations on Im[σxy(ω)]. In general we find
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that Re[σxy(ω)] = Re[σ dc
xy ] + Re[σ ac

xy ], where Re[σ ac
xy (ω → 0)] → 0 and Re[σ dc

xy (ω = 0)] is finite.
For the case of a type-I WSM, we obtain the anomalous Hall component,

Re
[
σ dc

xy

] = σQ + σμ

[
2

αt
+ 1

α2
t

ln

(
1 − αt

1 + αt

)]
. (28)

Here we have defined a chemical potential based conductivity scale σμ = e2μ/(h2vF ) and a node separation based conductivity
scale σQ = e2Q/(πh). A similar calculation for the type-II WSM for the anomalous Hall component leads to

Re
[
σ dc

xy

] = σQ

|αt | + sgn(αt )σμ

α2
t

ln

[
μ2

h̄2ω2
cα

2
t

(
α2

t − 1
)
]
. (29)

The ac component for a tilted type-I WSM is given by

Re
[
σ ac

xy

] = sgn(αt )σμ

{ −1

2α2
t

ln

[ |ω2
u − ω2|

|ω2
l − ω2|

ω2
l

ω2
u

]
+
(

μ

2h̄ωα2
t

+ h̄ω

8μ

1 − α2
t

α2
t

)
ln

[ |ωu − ω|(ωl + ω)

|ωl − ω|(ωu + ω)

]
− 1

|αt |
}
. (30)

The corresponding ac component for a type-II WSM with a pair of oppositely tilted WSM nodes is given by

Re
[
σ ac

xy

] = sgn(αt )σμ

{
−1

2α2
t

ln

[ (
ω2

c − ω2
)2

|ω2
l − ω2||ω2

u′ − ω2|
ω2

l ω
2
u′

ω4
c

]
+
(

μ

2h̄ωα2
t

+ h̄ω

8μ

1 − α2
t

α2
t

)
ln

[ |ωu′ − ω|(ωl + ω)

(ωu′ + ω)|ωl − ω|
]

− 2

α2
t

}
.

(31)

The first term of the anomalous Hall conductivity in
Eqs. (28) and (29) is ∝ σQ and it denotes the “intrinsic contri-
bution” which survives even if μ → 0. All other terms in the
dc as well as the ac component of the off-diagonal conduc-
tivity (∝ σμ) are “extrinsic contributions” which vanish in the
limit μ → 0. The real and the imaginary parts of σxy(ω) for a
type-I WSM are shown in Fig. 2, as a function of the optical

FIG. 2. (a), (b) The relative orientation of a pair of Weyl nodes
for αt > 0 and for αt < 0, respectively. The sign of αt becomes
important in σxy. (c), (d) Real part of σxy for αt > 0 and αt < 0,
respectively. Note that σxy has a finite dc component, denoting the
presence of quantum anomalous Hall conductivity. (e), (f) Imag-
inary parts of σxy for αt > 0 and αt < 0, respectively. Evidently,
Im[σxy] ∝ sgn(αt ). Here, the conductivities are scaled in units of
σQ = e2Q/(πh), and other parameters are identical to those of Fig. 1.

frequency. The presence of the QAH contribution in the real
part of σxy is evident. The imaginary part of σxy in Fig. 2
reverses sign upon changing the tilt orientation (αt → −αt ).
Similar behavior is also observed in the corresponding plots
for the type-II WSM (not shown here). The tilt dependence
of σxy(ω) is highlighted in Fig. 3. In Fig. 3(a), the dominant
contribution comes from the QAH part and consequently
the curves for different frequencies are very close to each
other. The intrinsic part of the QAH conductivity (∝ σQ)
in turn dominates in the type-I WSM, while in the type-II
WSM the αt -dependent extrinsic part of the QAH (∝ σμ) also
contributes equally.

There are several previous works which calculate bits and
parts of the optical conductivity matrix. However, most of
the works do not discuss the most general situation, i.e., the

(a) (b)

FIG. 3. The tilt (αt ) dependence of the (a) real and (b) imaginary
part of σxy for different optical frequencies. The vertical black
dashed lines simply mark αt = ±1. The vertical blue lines mark the
boundary values for transition frequencies for regions I and II, i.e.,
2h̄−1μ/(|αt | ± 1) for h̄ω/μ = 3.0. The curves for h̄ω/μ = 0.6 lie
completely within the Pauli-blocked region, and thus they show only
the QAH contribution. Clearly the behavior of the QAH term changes
significantly across the Lifshitz transition (|αt | = ±1) line, dividing
the type-I and type-II regions. All other parameters are identical to
those of Fig. 2, and the conductivities are in units of σQ.
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effect of tilt and finite μ for all frequency ranges. In contrast,
we present the analytical results for the full complex opti-
cal conductivity matrix for tilted type-I and type-II WSMs.
Having obtained the full conductivity matrix, we now discuss
the polarization rotation of a reflected beam in tilted type-I
and type-II WSMs, starting with the case of thin films in
the next section. The finite off-diagonal components of the
conductivity matrix (σxy) will play an important role in the
polarization rotation of the reflected (and transmitted) light
and the corresponding ellipticity angle in WSM thin films.
Note that we have not explicitly considered the impact of
intraband optical transitions which appear as Drude contribu-
tions (peaked at ω = 0) to the longitudinal components of the
conductivity matrix (σxx, σyy, and σzz). Including these Drude
terms in our calculations will quantitatively change some
results in the ω → 0 regime, while not having a significant
effect in the finite ω (optical) regime.

IV. KERR ROTATION IN THIN FILMS OF WSMs

In this section, we consider an ultrathin film of a Weyl
semimetal such that the thickness of the film (d) is much
larger than the atomic separation (a) while being smaller
than the wavelength (λ) of light, i.e., a � d � λ. In these
conditions the WSM film can be treated as a 2D surface, as
far as its interaction with light is concerned. Thus the polar-
ization angle rotation can be obtained simply by matching the
electromagnetic boundary conditions on either side of the thin
film.

The polarization angle �Kerr and the azimuth of the major
axes of the polarization ellipse �Kerr (ellipticity angle) of the
reflected beam are given by Eq. (6). We need to distinguish
between the two cases of the incident beam being s (polar-
ization ‖ to the plane of incidence) or p (polarization ⊥ to
the plane of incidence) polarized. For the case of a reflected
beam, the corresponding dimensionless complex quantities
[χ of Eq. (6)] are defined as

χ s
Kerr = rps

rss
and χ

p
Kerr = − rsp

rpp
, (32)

where ri j with (i, j) ∈ (s, p) are the corresponding reflection
coefficients [67]. For thin films (d � λ), these reflection coef-
ficients, in turn, depend on the surface conductivity matrix. In
the case of a WSM, the surface conductivity matrix depends
on the incident surface. For example, in a time reversal
symmetry broken WSM, the surface conductivity has finite
off-diagonal terms for the surface without Fermi arc states
(surfaces ⊥ Q) while it is diagonal for the surface hosting
Fermi arcs states (surfaces ‖ Q). We consider these two cases
separately in the following subsections.

A. Incidence on surface without Fermi arc states (⊥ Q)

Let us start with the case where the linearly polarized
incident beam propagates (say in direction n̂) parallel to Q.
In this case, both n̂ and Q are in the z direction and the
electric polarization is in the x-y plane, and thus the transverse
conductivity σxy will come into play.

Let us assume that the interface of air and WSM thin film
is located at the z = 0 plane. The wave vectors for the initial,

reflected, and transmitted beam are

ki = (0, ki sin θi, ki cos θi ),

kr = (0, kr sin θr,−kr cos θr ),

kt = (0, kt sin θt , kt cos θt ).

Similarly the components of electric field E are

Ei = (Es
i , E p

i cos θi,−E p
i sin θi

)
e(ki·r−ωit ),

Er = (Es
r , E p

r cos θr, E p
r sin θr

)
e(kr ·r−ωr t ),

Et = (Es
t , E p

t cos θt ,−E p
t sin θt

)
e(kt ·r−ωt t ).

The magnetic field B components can be simply obtained via
B = (n/c)k̂ × E, with n denoting the refractive index of the
medium. The fields on the two sides of the WSM thin film are
connected by the Maxwell boundary condition:

E||
1 = E||

2 and n̂ ×
(

B||
1

μ1
− B||

2

μ2

)
= J, (33)

where E1 = Ei + Er , E2 = Et , B1 = Bi + Br , B2 = Bt , and J
is the surface current density generated by the incident electric
field. The surface current density can be expressed in terms of
the surface conductivity matrix, Ji = σ s

i jE j . The surface con-
ductivity for a thin film of thickness d can be approximated as
σ s

i j = d σi j , with σi j denoting the bulk conductivity [47].
In general, the reflected electric field in the p and s direc-

tions can be expressed as(
E p

r

Es
r

)
=
(

rpp rps

rsp rss

)(
E p

i
Es

i

)
. (34)

Using this in Eq. (33), we obtain the reflection coefficients as

rsp = Es
r

E p
i

∣∣∣∣
Es

i =0

= 2ni

cμi

σ s
xy cos θi cos θt(

σ s
xyσ

s
yx cos θi cos θt − σ s

1σ
s
2

) , (35)

rss = Es
t

Es
i

∣∣∣∣
E p

i =0

= −1 + 2ni

cμi

[
σ s

2 cos θi

σ s
1σ

s
2 − σ s

xyσ
s
yx cos θi cos θt

]
,

(36)

along with

rpp = E p
t

E p
i

∣∣∣∣
Es

i =0

= −1 + 2ni

cμi

[
σ s

1 cos θt

σ s
1σ

s
2 − σ s

xyσ
s
yx cos θi cos θt

]

(37)

and

rps = E p
r

Es
i

∣∣∣∣
E p

i =0

= 2ni

cμi

σ s
yx cos θi cos θt(

σ s
xyσ

s
yx cos θi cos θt − σ s

1σ
s
2

) . (38)

Here, we have defined σ s
1 ≡ ni cos θi/(cμi ) + nt cos θt/

(cμt ) + σ s
xx and σ s

2 ≡ ni cos θt/(cμi ) + nt cos θi/(cμt ) +
σ s

yy cos θi cos θt .

Clearly, the reflectivity coefficients that rotate the incom-
ing polarization, rsp and rps, are proportional to the optical
Hall conductivity and they vanish in the limit of σ s

xy → 0.
In our case we find that σ s

xy = −σ s
yx and thus rsp = −rps.

Furthermore for normal incidence we have θi = θt = 0 and
thus σ1 = σ2 and rss = rpp. As a consequence, for the case of
normal incidence, we have �s = �p [70].

As a consistency check, we note that for an isotropic
WSM without any tilt, and for the case of normal incidence
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FIG. 4. (a), (b) The relative orientation of a pair of Weyl nodes
for αt > 0 and for αt < 0, respectively. The giant Kerr angle of the
reflected optical beam as a function of the optical frequency for
(c) type-I WSMs with αt > 0, (d) type-II WSMs with αt < 0, (e)
type-II WSMs with αt > 0, (f) type-II WSMs with αt < 0. The scale
of the GKR is fixed by the ratio σxy/σxx ∝ vF Q/ω. Thus in crystalline
systems, GKR of the order of a radian can be observed for ω ≈ 1014

rad/s, and appropriate choice of μ. The dashed vertical lines show
the boundaries of region I and region II for the corresponding αt .
Here we have chosen μ = 0.125 eV and Q = 108 m−1, d = 10 nm;
�Kerr is in radians.

(θi = θt = 0), we recover the results of Ref. [47]. For the
case of normal incidence, using Eq. (35)–(38) in Eq. (32), we
obtain

χ
p
Kerr = −σxy

σxx

[
1 + dσxx

2cε0

(
1 + σ 2

xy

σ 2
xx

)]−1

. (39)

This establishes that χ
p
Kerr ∝ Q, to lowest order in Q, as

σxy ∝ Q, and σxx is independent of Q. The polarization ro-
tation is primarily determined by the ratio of σxy/σxx, and we
get giant polarization rotation for σxy/σxx ≈ 1, or alternately
σQ/σω = 6QvF /(πω) ≈ 1. In a typical WSM, we have Q ≈
108 m−1 (for example, Q = 3.2 × 108 m−1 in WTe2 [11]),
and vF ≈ 106 m/s. Thus ω ≈ 1014 rad/s or smaller is needed
for observing the GKR in WSM thin films. In the other term
in the denominator we have dσxx/(cε0) ≈ αF ωd/(3vF ) =
(2παF c/vF )(d/λ), where αF = e2/4π h̄cε0 ≈ 1/137 is the
fine-structure constant. Since 2παF c/vF is of O(1) and we
are working in d/λ � 1, the d dependence of χ

p
Kerr in WSM

thin films is insignificant. In this limit of d/λ � 1, the d
dependence of Eq. (39) drops out, and the Kerr angle can be
expressed as

tan(2�Kerr ) = −2
Re[σxy]Re[σxx] + Im[σxy]Im[σxx]

|σxx|2 − |σxy|2 . (40)

The dependence of the Kerr angle of rotation for normal
incidence on a freestanding tilted WSM thin film (ni = nt ≈ 1
and θi = θt ) is shown in Fig. 4. As opposed to the typical val-

ues of microradians in ferromagnetic systems and topological
insulators, in WSMs the GKR can be on the order of a radian
for a reasonable choice of parameters. Furthermore, two dis-
tinct kinks in the GKR should be observable upon scanning
the optical frequencies (or the chemical potential/doping)
across the Pauli blocking of region I and region II in tilted
WSMs. A similar behavior will also be seen in the ellipticity
angle measurement (not shown here).

B. Incidence on surface with Fermi arcs states (‖ Q)

In this scenario, light propagates (n̂) perpendicular to the z
axis, and the polarization of the incident electric field is in the
y-z (or x-z) plane. Consequently, the polarization rotating off
diagonal reflection coefficients is

rsp ∝ σzy = 0 or rsp ∝ σzx = 0. (41)

Consequently, in this case there is no polarization rotation.
This offers an optical probe to distinguish the surfaces of a
WSM which host Fermi arc surface states.

V. KERR ROTATION IN SEMI-INFINITE WSMs

Having explored the polarization rotation in thin films of
WSMs, we now focus on the polarization rotation due to a
semi-infinite slab of a WSM. In the bulk of a WSM, the
Maxwell equations are themselves modified by the presence
of an axionic term [47,54,55]. This axionic term, in turn,
has important consequences in the polarization rotation of
the reflected light [47]. It also results in the topological
magnetoelectric effect [71] which has been recently studied
in topological insulators and WSMs. As opposed to the case
of topological insulators, where the axion field is a constant,
the axion field in WSMs has a nontrivial dependence on space
and time owing to the breaking of time-reversal and inversion
symmetries.

The axionic term is added to the Lagrangian of the electro-
magnetic field [54] via the following term, δL = cε0αF ϑE ·
B/π , with αF being the fine-structure constant, and ϑ the
axionic field. In a WSM, we have ϑ (r, t ) = 2Q · r − 2Q0t ,
with Q0 (Q) denoting the separation of the two Weyl nodes
in the energy (momentum) space. For a WSM with inversion
symmetry we have Q0 = 0. In materials exhibiting the axionic
response, the electric polarization and magnetization have
additional contributions arising from the topological terms
[23,54],

D = εE + cε0αF ϑB/π, (42)

H = B/μp − cε0αF ϑE/π. (43)

Here ε is the dielectric matrix and μp is the permeability.
Accordingly, the Maxwell equation for the electric field

propagation in a WSM is modified to be

∇2E − ∇(∇ · E )= 1

c2ε0

∂ (σ · E )

∂t
+ εb

c2

∂2E
∂t2

+ 2αF

πc
Q × ∂E

∂t
.

(44)
Here we have assumed the relative permeability (μp/μp0) to
be unity, and εb is the static relative permittivity arising from
the bound charge polarization. See Appendix C for details
of the derivation of Eq. (44). For the case of a bulk WSM,
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with d � λ, the last term in Eq. (44) plays an important
role in obtaining the Fresnel coefficients. Again, we need to
distinguish between the two cases when the light is incident
on the surface hosting Fermi arc surface states (n̂ ⊥ Q) and on
a surface without the Fermi arc states (n̂ ‖ Q). We show that
these two cases qualitatively correspond to the Faraday and
Voigt geometries discussed in the context of magneto-optic
effects in magnetic systems such as (Ga,Mn)As [56]. In a
time reversal symmetry broken WSM, Q acts analogously
to magnetization in a ferromagnet, whose relative orientation
with respect to n̂ results in different effects described below.

A. Incidence on surface without Fermi arc states

Let us consider a normal incidence of light on a surface
without Fermi arcs, i.e., n̂ ‖ Q = Qẑ. In this case we have
Q · B = 0, and consequently the axion charge density, ρϑ =
−2αF cε0Q · B/π = 0 [see Eq. (C3) in Appendix C for de-
tails]. Here, Q plays the role of effective magnetization, and
light propagates parallel to it. This setting is similar to that of
“Faraday geometry,” which results in the magneto-optic polar
Kerr effect in magnetic materials [72].

The propagation of light inside the WSM along the ẑ direc-
tion can be obtained from Eq. (44), as detailed in Appendix C.
It is described by the following matrix equation,

n2

⎛
⎝Ex

Ey

0

⎞
⎠ =

⎛
⎝ ε′

xx ε′
xy 0

−ε′
xy ε′

yy 0
0 0 ε′

zz

⎞
⎠
⎛
⎝Ex

Ey

Ez

⎞
⎠. (45)

Here, n denotes the complex refractive index, and ε′
i j is the

complex dielectric function including the axion terms. The
elements of ε′

i j are readily expressed in terms of the optical
conductivities and the internode separation as [47,73] ε′

yy =
ε′

xx, where

ε′
xx = εb + i

ωε0
σxx and ε′

zz = εb + i

ωε0
σzz. (46)

The off-diagonal element of ε′
xy is what typically leads to

optical activity, and it is given by

ε′
xy = i

ωε0
σxy + 2iαF c

π

Q

ω
= i

ωε0
(σxy + σQ). (47)

Here, αF is the fine-structure constant, and σi j are the complex
optical conductivities.

Interestingly, Eq. (47) comprises two terms, one resulting
from finite transverse conductivity and the other owing its
origin solely to the axionic term and modified dynamics of the
electromagnetic waves. This “gyrotropic” term is not present
in the conventional definition of the dielectric constant in
metals: εi j (ω) = δi jεb + iσi j (ω)/ε0ω. The dielectric constant
can also be expressed as ε′

i j = εi j + εi jkQk × 2iαF c/(πω),
where εi jk is the antisymmetric Levi-Civita tensor, and Qk

denotes the kth component of the Weyl node separation vector
Q (= Qẑ). Thus, the gyrotropic constant in WSMs ∝ Q/ω,
making its optical response analogous in spirit to that of
magnetic materials. The real and the imaginary parts of the
different components of the modified dielectric tensor are
shown in Fig. 5. The axionic term in Im(ε′

xy) ∝ Q/ω makes
it diverge in the low-frequency regime. This will lead to

(a) (b)

(c) (d)

(e) (f)

FIG. 5. The optical frequency dependence of the real and imag-
inary parts of the effective dielectric matrix ε ′

i j (including the
axion term) for different tilt parameters. (a) Re(ε ′

xx), (b) Im(ε ′
xx),

(c) Re(ε ′
xy), (d) Im(ε ′

xy), (e) Re(ε ′
zz), (f) Im(ε ′

zz). The axion term
appears in Im(ε ′

xy ) ∝ Q/ω, making it diverge in the low-frequency
regime. The vertical dashed lines mark the boundary of regions I
and II for αt = 0.2 in green and αt = 2 in red. Here we have chosen
εb = 1 and other parameters are identical to those of Fig. 4.

anomalous optical activity even in the low-frequency, Pauli-
blocked regime. Notice that in Fig. 5, Im(ε′

xx ) � Re(ε′
xx ),

Im(ε′
zz ) � Re(ε′

zz ), and Re(ε′
xy) � Im(ε′

xy).
Equation (45) permits nontrivial solution for the electro-

magnetic fields only for the following conditions [72]:

n2
+ = ε′

xx + iε′
xy and n2

− = ε′
xx − iε′

xy. (48)

Here, n+ and n− are refractive indices of the left and right
circularly polarized eigenmodes in the WSM. This becomes
immediately clear upon substituting the two solutions ob-
tained in Eq. (48) in (C11), which yield Ex = ±iEy. The
real (imaginary) part of the difference, δn = n+ − n−, leads
to circular birefringence (circular dichroism).

A finite δn solely arises from the ε′
xy ∝ Q term (as σxy ∝

Q), has both real and imaginary terms, and vanishes in the
Q → 0 limit.

Now the Fresnel reflection coefficient corresponding to
these modes can be obtained via the well-known relation,

r± = (1 − n±)/(1 + n±). (49)

Here, the dimensionless constant χPKE is defined as

χPKE = i
r+ − r−
r+ + r−

= i
n+ − n−

n+n− − 1
. (50)
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FIG. 6. (a) The real and (b) imaginary part of χPKE, as a function
of the incident photon energy, for a semi-infinite slab of type-I and
type-II WSMs. The resulting (c) giant polar Kerr effect (�PKE), and
ellipticity angle (�PKE), in radians. In this Faraday geometry, light
propagates along the direction of the Weyl node separation, with
large circular birefringence and dichroism. The solid horizontal line
in both (c) and (d) shows the vanishing small optical activity if the
axion term is neglected. Thus the optical activity is caused predom-
inantly by the axion term. Interestingly, it should be observable also
in the Pauli-blocked region where no optical transitions are allowed.
Here, all the parameters are identical to those of Fig. 5.

This can be further simplified to obtain

χPKE =
i
(
−√ε′

xx − iε′
xy +√ε′

xx + iε′
xy

)
−1 +√ε′

xx − iε′
xy

√
ε′

xx + iε′
xy

. (51)

As opposed to the thin-film WSM geometry, where the
polarization rotation solely arises due to a finite σxy, in bulk
WSM, the axion term appearing in ε′

xy also plays an important
role. Similarly to the magneto-optic polar Kerr effect which is
odd in the magnetization [72], the polarization rotation here
also is an odd function of Q. This can be seen from the exact
Eq. (50), where the numerator is an odd function of Q and the
denominator is an even function of Q. Furthermore, this can
also be seen from the limiting case of |ε′

xy| � |ε′
xx|, for which

Eq. (50) reduces to

χPKE ≈ ε′
xy

(1 − ε′
xx )
√

ε′
xx

. (52)

The exact polarization rotation (�PKE) and ellipticity angle
(�PKE) can be obtained by using Eq. (50) in Eq. (6). The
real and imaginary parts of χPKE and the resulting angles
are shown in Fig. 6. Note the abrupt change in the sign of
�PKE in Fig. 6(c), in the Pauli-blocked regime. This is a
consequence of |χPKE| → 1 at the sign-reversal point, so that
the 1 − |χPKE|2 in the denominator for the expression of �PKE

and �PKE also flips sign. We emphasize that (1) the optical
activity is predominantly caused by the axion term, and (2) it

persists even in the Pauli-blocked frequency regime with no
optical transitions.

In Fig. 6 we have chosen εb = 1 to be of the same order
as the conductivities in the optical regime. However in real
materials εb can be larger. For example, it is 6.2 in type-I
WSM TaAs [51] and has an even larger value of εb = 70 in
type-II WSM [74] WTe2. For such large values of εb, in the
optical regime we have |εxx| � |εxy|, and χPKE becomes small
[see Eq. (52)] and real. Consequently the polarization angle
also becomes vanishingly small for very large εb.

B. Incidence on surface with Fermi arc states

As we have fixed the momentum space separation of the
two Weyl nodes to be in the z direction, the Fermi arc surface
states appear on the surfaces parallel to the x-z or the y-z
plane. For definiteness we consider the light propagating in
the x direction, and incident on the surface parallel to y-z
plane. Thus we have n̂ = x̂ and n̂ ⊥ Q (recall that Q = Qẑ).
This setting is similar to that of the “Voigt” geometry for
polarization rotation in magnetic materials.

In this case, for wave propagation in the x̂ direction,
Eq. (44) leads to (see Appendix C 2 for details of the calcula-
tion)

n2

⎛
⎝ 0

Ey

Ez

⎞
⎠ =

⎛
⎝ ε′

xx ε′
xy 0

−ε′
xy ε′

yy 0
0 0 ε′

zz

⎞
⎠
⎛
⎝Ex

Ey

Ez

⎞
⎠. (53)

Here the effective dielectric constants have been defined in
Eqs. (46) and (47). Similarly to the case of Eq. (45), Eq. (53)
also permits two solutions for specific values of the refractive
index,

n2
‖ = ε′

zz and n2
⊥ = ε′

yy − ε′2
xy

ε′
xx

, (54)

which defines two linearly polarized modes: one traveling
parallel to Q, and another in the plane perpendicular to Q.
Note that n2

⊥ is an even function of Q (of the form a + bQ2,
where both a and b are complex), while n2

‖ is almost indepen-
dent of Q. Consequently, n⊥ is an even function of Q. The
real (imaginary) part of the difference, δn = n‖ − n⊥ leads
to linear birefringence (linear dichroism). The electric field
corresponding to these modes is given by E‖ = E0ẑeiω(t∓n‖x/c)

and E⊥ = E0(ŷ + x̂ε′
xy/ε

′
xx )eiω(t∓n⊥x/c), E0 being the electric

field amplitude. Analogous to the propagation of light in a
Voigt geometry in a magnetic material, here also an electric
field component parallel to the propagation direction (Ex ∝
ε′

xy) is also allowed.
Now let us consider the reflection of a linearly polarized

optical beam from the infinite WSM slab. For an arbitrary
incident polarization making an angle �0 with respect to Q,
the electric field can be decomposed as

E‖ = EI cos(�0), E⊥ = EI sin(�0). (55)

Thus, the initial polarization angle with respect to Q can
be expressed as �0 = tan−1(E⊥/E‖). The beam becomes
elliptically polarized upon reflection from the WSM slab.
The corresponding χVoigt, which determines the ellipticity and
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polarization angle, is given by

χVoigt = r⊥E⊥
r‖E‖

= r⊥
r‖

tan(�0). (56)

Here r‖ and r⊥ are the Fresnel reflection coefficients for the
parallel and perpendicular components, respectively. These
are given by

r‖/⊥ = (1 − n‖/⊥)/(1 + n‖/⊥). (57)

As n⊥ is an even function of Q, r⊥ is also an even function
of Q, while r‖ is almost independent of Q. Consequently
χVoigt and the resulting polarization rotation are also even
functions of Q. This quadratic in Q polarization rotation in
WSM is analogous to the Voigt effect, which is also termed
the quadratic polar Kerr effect, or magnetic linear dichroism.
Equation (56) can be further simplified to obtain

χVoigt =

(
1 +

√
− ε′2

xy

ε′
xx

+ ε′
xx

)(
− 1 +√ε′

zz

)
(

− 1 +
√

− ε′2
xy

ε′
xx

+ ε′
xx

)(
1 +√ε′

zz

) tan(�0). (58)

The polarization (�Voigt) and ellipticity (�Voigt) angle of
the reflected beam are easily calculated by substituting χVoigt

in Eq. (6). For the case of �0 = 0 or π , i.e., the incident
polarization aligned along Q, we have χVoigt = 0, and there
is no polarization rotation. The reflected beam only suffers a
phase change. For the general case, the relative polarization
rotation angle δVoigt = �Voigt − �0 can now calculated via the
relation

tan(2δVoigt ) = tan(2�Voigt ) − tan(2�0)

1 + tan(2�Voigt ) tan(2�0)
. (59)

For the limiting case of �0 = π/4, Eq. (59) reduces to
δVoigt = π/2 + 2�Voigt. In another limiting case of r⊥/r‖
being real (as in the case of magnetic systems [68]), we
obtain tan(�Voigt ) = r⊥ tan(�0)/r‖, and Eq. (59) reduces to
the known result [68]

tan(δVoigt ) = (r‖ − r⊥) tan(�0)

r‖ + r⊥ tan2 �0
. (60)

Furthermore if r‖/r⊥ ≈ 1, Eq. (60) reduces to δVoigt ≈
0.5(r⊥/r‖ − 1) sin(2�).

Figure 7 shows the dependence of the real and imaginary
parts of χVoigt, along with �Voigt and �Voigt, as a function
of the optical frequency. Notice the existence of finite �Voigt

even in the Pauli-blocked regime. However in contrast to the
Faraday geometry, here the ellipticity angle vanishes in the
Pauli-blocked regime. Note that in Fig. 7, we have chosen
εb = 1. For systems with a very large values of εb, we
have |εzz|, |εxx| � |εxy| and Eq. (58) yields χVoigt → tan(�0),
leading to �Voigt → �0 and δVoigt → 0. Thus a type-I WSM
with a relatively small dielectric constant is more suitable
for observing the proposed polarization rotation in the optical
regime.

In all our discussion till now, we have restricted ourselves
to a time reversal symmetry broken WSM, with both the Weyl
nodes being at the same chemical potential. Our results can
easily be generalized to include inversion symmetry broken

FIG. 7. (a) The real and (b) imaginary part of χVoigt, as a function
of the incident photon energy, for a semi-infinite slab of type-I and
type-II WSMs. The resulting (c) polarization rotation (or Voigt effect,
δVoigt = �Voigt − �0), and (d) ellipticity angle (�Voigt), in radians. In
this Voigt geometry, light propagates perpendicular to the Weyl node
separation, with large linear birefringence and dichroism. The solid
lines in both (c) and (d) show the corresponding optical activity if
the axion term is neglected. Notice that unlike the case of Faraday
geometry, here �Voigt vanishes in the low-frequency Pauli-blocked
regime where no optical transitions are allowed. Here we have
chosen �0 = π/4 and all other parameters are identical to those of
Fig. 5.

WSM with different chemical potentials, following an ap-
proach similar to that of Ref. [65]. Qualitatively, this will lead
to additional kinks in the real part of longitudinal and the
imaginary part of Hall conductivity. For a noticeable quan-
titative difference from our calculations of the Kerr angle, the
magnitude of the inversion symmetry breaking term should be
large compared to the chemical potential.

Additionally, we have only considered the case of a WSM
with the node separation being along the tilt axis. However,
there are material examples of WSMs (LaAlGe and RAlGe,
for example), in which the tilt axis can be orthogonal to the
Weyl node separation. We believe that in this case, while
the explicit form of the frequency-dependent σxy may
change, the dc component remains intact (see discussion in
Refs. [37,63]). Thus in this case also, there will be a finite
contribution to the Kerr effect arising from the dc component
of σxy. However, the results will be quantitatively different.

VI. SUMMARY

In this paper, we demonstrate the existence of the giant
Kerr effect in tilted WSMs, which arises from the time re-
versal symmetry breaking in WSM thin films, and from axion
electrodynamics in bulk WSM. The time reversal symmetry
breaking in a WSM is captured by the Weyl node separation
(Q) which explicitly determines the optical Hall conductivity
(σxy ∝ Q). The tilting of the Weyl nodes also plays a signifi-
cant role in σxy, particularly in a type-II WSM. The existence
of a finite σxy in WSMs is what leads to the giant Kerr effect
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in the thin-film geometry of tilted WSMs, as long as we are
away from the Pauli-blocked regime. In contrast to this, in
bulk WSMs, axion electrodynamics plays an important role
giving rise to optical activity and giant Kerr rotation even in
the Pauli-blocked low-frequency regime (h̄ω < 2μ in untilted
WSMs).

A key feature of our paper is the exact analytical results
for the full complex optical conductivity of tilted type-I and
type-II WSMs, including the impact of internode separation
and finite μ. This allows us to calculate the exact polarization
rotation without resorting to approximate formulas.

In the case of WSM thin films (with thickness less than
wavelength of light, d � λ), we find that the reflection and
transmission coefficients are determined completely by the
optical conductivity matrix. The optical Hall conductivity is
finite only for surfaces perpendicular to Q, and it plays an
important role in producing the giant Kerr effect when light
is incident on WSM surfaces without Fermi arc states. We
explicitly show that the polarization rotation in tilted WSM
thin films �Kerr ∝ σxy/σxx ∝ vF Q/ω. This yields the giant
Kerr rotation for light incident parallel to Q with ω ≈ 1014

rad/s or less (frequencies in the optical range and below),
as long as we are not in the Pauli-blocked regime for optical
transitions.

In bulk WSMs with broken time-reversal symmetry, we
show that axion electrodynamics also plays an important role
in the optical activity. This leads to the giant Kerr effect
even in the Pauli-blocked regime for both type-I and type-II
WSMs. The effective dielectric constant including the axion
term can be expressed as ε′

i j = εi j + εi jkQk × 2iαF c/(πω)
(see Sec. V A for details), where the second term establishes
Q/ω to be the effective gyrotropy constant, analogous to mag-
netization in magnetic systems. The case of normal incidence
on surfaces without Fermi arc states is then identical to that
of Faraday geometry with light propagating parallel to the
node separation. Here, we show the existence of large circular
birefringence and circular dichroism, along with that of the
giant Kerr effect, which is odd in Q. The case of normal
incidence on surfaces with Fermi arc states turns out to be
identical to that of Voigt geometry in magnetic systems. This
leads to large linear birefringence and dichroism, along with
a polarization angle dependent giant Kerr effect which is
an even function of Q. In both cases, the axion term leads
to significant optical activity and giant polarization rotation,
even in the Pauli-blocked regime.

APPENDIX A: LONGITUDINAL OPTICAL
CONDUCTIVITY

The Longitudinal optical conductivity can be obtained
from Eq. (3), after converting the momentum sum into an
integral,

σii(ω) = 1

8π3

∫ 2π

0
dφk

∫ ∞

0
k⊥dk⊥

∫ kc

−kc

dkz σ ii
k (ω). (A1)

Here we have defined the kernel

σ ii
k (ω) = −ineq

k |Mi|2
h̄ωk

(
1

ω + ωk + iγ
+ 1

ω − ωk + iγ

)
.

(A2)

The equilibrium population inversion (at T = 0) is given by
neq

k = �(μ − h̄v f k − h̄ξvt kξ
z ) − �(μ + h̄v f k − h̄ξvt kξ

z ) and
h̄ωk = 2h̄vF k is the energy difference between the conduction
and the valance band, which is independent of the tilt velocity.
Here k =

√
k2
⊥ + (kξ

z )2 . The real and the imaginary parts can
be separated in the limit γ → 0, using the Dirac identity

lim
ε→0

1

x + iε
= P

∫ ∞

−∞

(
1

x

)
− iπδ(x). (A3)

Here P denotes the principal value. We find that the longitudi-
nal optical conductivity of the time reversal symmetry broken
Weyl semimetal is the sum of the optical conductivities of the
two Weyl nodes. Thus we just calculate the conductivity of the
ξ = 1 node and multiply it by two. This allows us to substitute
kξ

z → kz and ξvt → vt in the expressions below.

1. Re[σxx(ω)]

Thus, the real part of longitudinal optical conductivity is
given by

Re[σii] = − 1

(2π )3

∫ 2π

0
dφk

∫ ∞

0
k⊥dk⊥

∫ kc

−kc

dkz

× neq
k

h̄ωk
|Mi|2πδ(ω − ωk). (A4)

Here, only the optical matrix is dependent on φk, and the
angular integration leads to∫ 2π

0
|Mx|2dφk = πe2v2

F

(
1 + k2

z

k2

)
. (A5)

Thus we obtain

Re[σxx(ω)] = e2v2
F

8π

∫ ∞

0
k⊥dk⊥

∫ kc

−kc

(
1 + k2

z

k2

)
dkz

× δ(ω − ωk)

h̄vF k
[�(μ − h̄vF k − h̄|vt |kz )

−�(μ + h̄vF k − h̄|vt |kz )]. (A6)

Now, the integration for k⊥ can easily be carried using the
roots (xi) of the argument in the Dirac delta function:

δ( f (x)) =
∑

xi

δ(x − xi )

| f ′(xi )| . (A7)

Substituting the roots in the delta function leads to a much
simpler one-dimensional integral,

Re[σxx(ω)] = e2

16π h̄

∫ ω/2vF

−ω/2vF

dkz

[(
2vF kz

ω

)2

+ 1

]

× [�(μ − h̄vt kz + h̄ω/2)

−�(μ − h̄vt kz − h̄ω/2)]. (A8)

Equation (A8) can be expressed in a dimensionless form:

Re[σxx(ω)] = σωFxx, where σω ≡ e2

6h

ω

vF
, (A9)

and

Fxx = 3

8

∫ 1

−1
dx(1 + x2)(�+ − �−), (A10)
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where we have defined �± = �[ 2μ

h̄ω
− αt x ± 1], and x =

2vF kz/ω. Evaluating the integral in Eq. (A10) for the two
cases of |αt | < 1 and |αt | > 1 leads to Eq. (7) and Eq. (9)
of the main text, respectively.

2. Re[σzz(ω)]

Following the same procedure as above, the angular inte-
gration leads to

∫ 2π

0
|Mz|2dφk = 2πe2v2

F

k2
⊥

k2
. (A11)

Thus the longitudinal optical conductivity in this case is given
by

Re[σzz] = e2v2
F

4π

∫ ∞

0
k⊥dk⊥

∫ kc

−kc

k2
⊥dkz

k2
⊥ + k2

z

δ(ω − ωk)

h̄vF k

× [�(μ− h̄vF k− h̄vt kz ) − �(μ + h̄vF k − h̄vt kz )].

(A12)

Performing the k⊥ integral using the roots of the δ function,
we have

Re[σzz(ω)] = e2

8π h̄

∫ ω/2vF

−ω/2vF

dkz

[(
1 − 2vF kz

ω

)2
]

× [�(μ − h̄|vt |kz + h̄ω/2)

−�(μ − h̄|vt |kz − h̄ω/2)]. (A13)

Equation (A13) can be expressed in a dimensionless form as

Re[σzz(ω)] = 2 σωFzz, (A14)

where we have defined

Fzz = 3

8

∫ 1

−1
dx(1 − x2)(�+ − �−) (A15)

and �± are defined below Eq. (A10). Performing the integral
in Eq. (A15) for the two cases of |αt | < 1 and |αt | > 1 leads
to Eq. (17) and Eq. (19), respectively.

3. Im[σxx(ω)] and Im[σzz(ω)]

Once the real parts are obtained and they converge to a
constant as ω → ∞, the imaginary parts are computed using
the Kramers-Kronig relation for the imaginary part of the
optical conductivity,

Im[σii(ω)] = −2ω

π

∫ ωc

0

Re[σxx(ω′) − σxx(0)]

ω′2 − ω2
dω′. (A16)

Note that since the low-energy Weyl Hamiltonian has an
infinite bandwidth, with an infinite filled sea of quasiparticles
even in the ground state, we are forced to use an upper
frequency cutoff (h̄ωc = h̄vF kc) for the integral. This cutoff
was not needed in the calculation of the real part of the
longitudinal conductivity due to the presence of the delta
function.

APPENDIX B: TRANSVERSE OPTICAL CONDUCTIVITY

The transverse optical Hall conductivity is given by

σi j (ω) = 1

8π3

∫ 2π

0
dφk

∫ ∞

0
k⊥dk⊥

∫ kc

−kc

dkz σ
i j
k (ω), (B1)

where the conductivity kernel is given by

σ
i j
k = −ineq

k

h̄ωk

(
MjM∗

i

ω + ωk + iγ
+ M∗

j Mi

ω − ωk + iγ

)
. (B2)

Writing in terms of real and imaginary parts of Mvc, we have

σxy =
∫

d3k

8π3

neq
k

h̄ωk

(
Mx

RMy
I − Mx

I My
R

)
×
(

1

ω+ + ωk
− 1

ω+ − ωk

)
. (B3)

Here ω+ = ω + iγ . As in the previous cases, performing
the angular integral over the φk-dependent optical matrix
elements yields∫ 2π

0

(
Mx

RMy
I − Mx

I My
R

)
dφk = 2πξkξ

z

k
. (B4)

Again, the real and imaginary parts can now be evaluated sep-
arately in the limit γ → 0 using the Dirac identity. Before pro-
ceeding, we note that Eq. (B3) differs in form from Eq. (A5)
by a factor of i. As a consequence now δ functions appear
in Im[σxy(ω)]. In contrast to the longitudinal conductivity, for
the transverse case, the two nodes have to be treated together
and the internode separation becomes important.

1. Im[σxy]

Using the Dirac identity in Eq. (A3), the imaginary part of
σxy(ω) can be expressed as

Im[σxy] = e2v2
F

4π

∑
ξ=±1

ξ

∫
k⊥dk⊥dkξ

z

kξ
z

k

neq
k

h̄ωk
δ(ω − ωk).

(B5)

Performing the k⊥ integral and using the δ function lead to the
following one-dimensional integral,

Im[σxy(ω)] = e2vF

8π h̄ω

∑
ξ=±1

ξ

∫ ω/2vF

−ω/2vF

kξ
z dkξ

z

×
[
�

(
1 − h̄ω

2μ
− h̄ξvt kξ

z

μ

)

−�

(
1 + h̄ω

2μ
− h̄ξvt kξ

z

μ

)]
. (B6)

Equation (B6) can be expressed as

Im[σxy(ω)] = 3σω

2

μ2

h̄2ω2
Fxy, (B7)

where we have defined

Fxy =
∑
ξ=±1

ξ

∫ h̄ω
2μ

− h̄ω
2μ

xdx
∑
p=±

�

(
1 − ξαt x − p

h̄ω

2μ

)
. (B8)
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Solving Eq. (B8) leads to Eq. (25) [Eq. (27)] for the cases of
|αt | < 1 (|αt | > 1).

2. Re[σxy]

Having obtained the imaginary part of the transverse con-
ductivity, its real part can be obtained from the Kramers-
Kronig relation for conductivity,

Re[σi j (ω) − σi j (0)] = 2ω2

π

∫ ωc

0
dω′ Im[σi j (ω′)]

ω′[ω′2 − ω2]
. (B9)

Here the use of an upper frequency cutoff is forced to cut off
the contribution from the infinite filled Fermi sea in the low-
energy model of Weyl (or Dirac) semimetals. The ac (finite
ω) component of the real part of the transverse conductivity
calculated from Eq. (B9) for type-I and type-II WSMs is
presented in Eq. (30) and Eq. (31), respectively.

It turns out that the dc component of the transverse conduc-
tivity in a WSM is finite, and it has to be calculated separately
as Eq. (B9) only gives the finite-frequency contributions. The
dc component (real part) of the transverse conductivity is
given by

Re
[
σ dc

xy

] = e2vF

4π2

∑
ξ=±1

∫ ∞

0
k⊥dk⊥

∫ kc

−kc

(
neq

k

h̄ωk

)
ξkξ

z

k2
dkξ

z ,

(B10)

where ξkξ
z /k results from the optical matrix element, and 1/k

from 1/ωk . Further change of variable from kξ
z → kz leads to

Re
[
σ dc

xy

] = e2

4πh

∑
ξ=±1

∫ ∞

0
k⊥dk⊥

∫ kc−ξQ

−kc−ξQ

ξneq
k kzdkz(

k2
⊥ + k2

z

)3/2 .

(B11)

It turns out that Eq. (B11) has an intrinsic contribution (finite
for μ → 0) and an extrinsic contribution (which vanishes in
the μ → 0 limit). To evaluate them it is useful to express the
population inversion as a sum of extrinsic (in square brackets)
and intrinsic contributions (independent of μ), neq

k = [�(μ −
h̄vF kξ − h̄ξvt kξ

z ) − �(μ + h̄vF kξ − h̄ξvt kξ
z ) + 1] − 1. Eval-

uating these two terms separately, we obtain the intrinsic
contribution ∝ σQ and the extrinsic contribution ∝ σμ. Their
explicit expressions for the two cases of |αt | < 1 and |αt | > 1
are presented in Eq. (28) and Eq. (29), respectively.

APPENDIX C: AXION ELECTRODYNAMICS

The Maxwell equations inside the bulk of a material are
modified by the presence of an axionic term. This modifica-
tion is derived by adding the additional topological magneto-
electric term in the Lagrangian [54], δL = αF cε0ϑE · B/π ,
with αF being the fine-structure constant, and ϑ is the axion
field. One experimentally demonstrated manifestation of this
axionic term in materials is the topological magnetoelectric
effect. Its impact on the material properties is primarily based
on additional topological contributions to the electric polar-
ization and magnetization [54],

D = εE + cε0αF ϑB/π, (C1)

H = B/μp − cε0αF ϑE/π, (C2)

where ε is the dielectric tensor, and μp is the permeability. The
Maxwell field equations with sources are thus modified as

∇ · (εE + cε0αF ϑB/π ) = ρ ⇒ ∇ · (εE ) = (ρ + ρϑ ),
(C3)

where ρϑ = −cε0αF ∇ϑ · B/(π ) is the axion charge density.
From Eq. (43), we have

∇ × (B/μp − cε0αF ϑE/π ) = J + ∂

∂t
(εE + cε0αF ϑB/π )

⇒ ∇ × B = μpJ + εμp
∂E
∂t

+ Jϑ . (C4)

Here, Jϑ = αF cε0μp(ϑ̇B + ∇ϑ × E )/π is the axion field
dependent current density. The other two sourceless Maxwell
equations remain unchanged as

∇ · B = 0, (C5)

∇ × E + ∂t B = 0. (C6)

In a WSM, the axion field can be expressed in terms of
internodal separation in the momentum (Q) and energy (Q0)
space, ϑ (r, t ) = 2Q · r − 2Q0t . For a WSM which preserves
the inversion symmetry, we have Q0 = 0, and thus ∇ϑ = Q
and ϑ̇ = 0. Now eliminating B from Eq. (C4) using the other
modified Maxwell equations and using J = σ · E, we obtain
the wave propagation equation in a time reversal symmetry
broken WSM,

∇(∇ · E ) − ∇2E = −μpσ
∂E
∂t

− εμp
∂2E
∂t2

− 2αF cε0μp

π
Q × ∂E

∂t
. (C7)

Using Eq. (C7), we now explore the wave propagation in
the two geometries with n ‖ Q (Faraday geometry) and n ⊥ Q
(Voigt geometry) in the next two subsections.

1. The Faraday geometry

For an electric field E = Eoei(k·r−ωt ), with amplitude Eo,
propagating in the ẑ direction (k = kẑ), the left-hand side of
Eq. (44) yields⎛

⎝∂2/∂z2 0 0
0 ∂2/∂z2 0
0 0 0

⎞
⎠E = −k2E. (C8)

The right-hand side of Eq. (44) results in

−εi j
ω2

c2
E − 2iωαF Q · E

cπ
, (C9)

where εi j = εbδi j + iσ
ε0ω

. Substituting k = nω/c, the wave
equation becomes

n2

⎛
⎝Ex

Ey

0

⎞
⎠ = i

ωε0

⎛
⎝ σxx σxy 0

−σxy σyy 0
0 0 σzz

⎞
⎠
⎛
⎝Ex

Ey

Ez

⎞
⎠

+
⎛
⎝ 0 2iαF Qc

πω
0

− 2iαF Qc
πω

0 0
0 0 0

⎞
⎠
⎛
⎝Ex

Ey

Ez

⎞
⎠+ εbI

⎛
⎝Ex

Ey

Ez

⎞
⎠.

(C10)
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Here I denotes the identity matrix. Thus, the effective dielec-
tric tensor inside the WSM becomes

n2

⎛
⎝Ex

Ey

0

⎞
⎠ =

⎛
⎝ ε′

xx ε′
xy 0

−ε′
xy ε′

yy 0
0 0 ε′

zz

⎞
⎠
⎛
⎝Ex

Ey

Ez

⎞
⎠, (C11)

where the diagonal components are given by

ε′
xx(ε′

zz ) = εb + i

ωε0
σxx(σzz ) (C12)

and the off-diagonal elements responsible for optical activity
are given by

ε′
xy = 2i

ω

(
αF Qc

π
+ σxy

ε0

)
. (C13)

2. The Voigt geometry

In this case, the electric field propagates in the x̂ direction (k =
kx̂).

Since the right-hand side of the wave equation contains
only time derivatives, the terms on the right-hand side remain
unchanged and are given by Eq. (C9) in this geometry too.

The left-hand side of the wave equation containing spatial
derivatives is modified for this geometry as⎛

⎝0 0 0
0 ∂2/∂x2 0
0 0 ∂2/∂x2

⎞
⎠E = −k2E (C14)

with the second term ∇(∇ · E ) = 0 in this case too. For this
geometry, Eqs. (C10) and (C11) are modified to be

n2

⎛
⎜⎝

0
Ey

Ez

⎞
⎟⎠ = i

ωε0

⎛
⎝ σxx σxy 0

−σxy σyy 0
0 0 σzz

⎞
⎠
⎛
⎝Ex

Ey

Ez

⎞
⎠

+
⎛
⎝ 0 2iαF Qc

πω
0

− 2iαF Qc
πω

0 0
0 0 0

⎞
⎠
⎛
⎝Ex

Ey

Ez

⎞
⎠+ εbI

⎛
⎝Ex

Ey

Ez

⎞
⎠,

(C15)

n2

⎛
⎝ 0

Ey

Ez

⎞
⎠ =

⎛
⎝ ε′

xx ε′
xy 0

−ε′
xy ε′

yy 0
0 0 ε′

zz

⎞
⎠
⎛
⎝Ex

Ey

Ez

⎞
⎠. (C16)

Here, the elements of the modified dielectric tensor are given
by Eqs. (C12) and (C13).
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