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We study a single-level quantum dot strongly coupled to a superconducting lead and tunnel coupled to a normal
electrode which can exchange energy with a single-mode resonator. We show that such a system implements
a single atom laser. We employ both a semiclassical treatment and a quantum master-equation approach to
characterize the properties of this laser. In particular, we find that this system can be operated with efficiency
approaching unity; that is, a single photon is emitted into the cavity for every Cooper pair participating in the
charge current. We find also that lasing in the proposed setup is clearly identifiable in the transport properties:
in the lasing state, the electrical current through the quantum dot is pinned to the maximum value achievable in
this hybrid nanostructure, and hence, the onset of lasing can be detected simply by a current measurement.
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I. INTRODUCTION

Hybrid nanoscale systems combine elemental components
of different natures and provide a way to explore novel
mechanisms of coherent energy exchange. Hybrid nanoscale
systems that are commonly studied experimentally include
quantum dots coupled to localized harmonic oscillators such
as microwave photon cavities [1–6] and mechanical res-
onators [7–11]. In particular, these systems can realize single
atom lasers [12,13]. Besides photon cavities, nanomechanical
systems can also sustain phonon lasing, for instance, in a
superconducting single-electron-transistor setup [14]. Single
atom lasers exhibit unique features compared to conventional
lasers, such as multistability [12,14–18]. Furthermore, such
hybrid nanoscale systems are ideal platforms to explore cor-
relations between charge transport and nonequilibrium photon
states [19–26]. Early theoretical studies proposed lasing in a
double-dot system on the basis of pure inelastic electron tun-
neling with single-photon emission [27–29]. However, single
atom lasing has been achieved experimentally in double-dot
systems [30,31] only in the phonon-assisted gain regime,
where electron tunneling events are enhanced via simultane-
ous emission of a phonon besides the photon pumped into the
cavity [32,33].

In this paper we demonstrate that single atom lasing can be
achieved in a quantum dot with a single orbital level, strongly
coupled to a superconducting lead. In Figs. 1(a) and 1(b) we
show a specific example with a microwave photon cavity,
similar to the experimental setup of Ref. [3]. Such a lasing
system has an extremely appealing feature: it can be operated
in a regime in which a single photon is emitted into the cavity
almost for each Cooper pair participating in the charge current
(efficiency β ≈ 1). This high pumping efficiency is related to
another interesting result: in the lasing state, the current is
pinned to the maximum value that characterizes the system
in the large-gap limit.

Before discussing our results in detail, we wish to give
an intuitive description of how lasing occurs in this system.
In the limit of a large superconducting gap, Andreev bound
states, |+〉 and |−〉, are formed in the dot. These are coherent
superpositions of the empty and doubly occupied dot states,
|0〉 and |D〉, respectively. At high bias voltage, the normal lead
behaves as a source of electrons; hence, only the empty state
|0〉 can transition by tunneling to one of the singly occupied
states |σ 〉, which in turn can transition to the doubly occupied
state |D〉 [Fig. 1(c)]. At sufficiently large energy detuning δ,
between states |D〉 and |0〉, state |−〉 has a larger component
of state |0〉, whereas |+〉 is mostly state |D〉. This implies that
the transitions |−〉 → |σ 〉 and |σ 〉 → |+〉 are favored over
the opposite transitions [Fig. 1(d)]. This symmetry breaking
is ultimately the reason for lasing. Additionally, the product
states corresponding to different occupations of the resonator
(Fock states) and the Andreev bound states, |±, n〉 ≡ |±〉 ⊗
|n〉, are mixed by the interaction between the charge on
the dot and the resonator mode [curved dashed arrows in
Fig. 1(e)]. As explained above, for the right choice of system
parameters (detuning δ), tunneling with the normal lead favors
the chain of transitions |−, n〉 → |σ, n〉 → |+, n〉, in which
the state of the resonator is not modified. The interaction
with the resonator then brings |+, n〉 into |−, n + 1〉, and the
process can start again. This leads to an increasingly higher
occupation of the resonator mode [Fig. 1(e)]. Eventually, this
energy-pumping mechanism is balanced by the intrinsic losses
of the resonator, and hence, a steady state with a large but
finite average occupation n̄ is established. More precisely,
we show that the resonator reaches a lasing state in the
steady-state regime. In particular, by tuning the orbital energy
level of the dot ε0, one can control the energy splitting 2εA

between states |+〉 and |−〉. Accordingly, one can achieve the
resonant condition for the coupling between the dot’s degree
of freedom and the resonator mode when 2εA = h̄ω0, with ω0

being the resonator’s frequency.
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FIG. 1. (a) Device setup: a quantum dot between a superconduc-
tor (S) and a normal metal (N) is capacitively coupled to a microwave
cavity. (b) In the rotating-wave approximation, the states |+〉 and
|−〉 indicated by the yellow dashed lines are dynamically coupled
to the resonator. The blue solid line denotes the singly occupied
states |σ 〉. �N/h̄ is the tunneling rate from N , and �S is the effective
pairing potential in the quantum dot. (c) In the high-bias voltage
limit, only the empty state |0〉 can transition to the singly occupied
state, which in turn can transition to the doubly occupied state |D〉.
(d) At positive and large detuning δ, the states |+〉 ≈ |D〉 − �S

2δ
|0〉

and |−〉 ≈ |0〉 + �S
2δ

|D〉. This breaks the symmetry in the transitions
between the states |±〉 and |σ 〉. (e) Schematic description of the
pumping mechanism using the level diagram of the quantum dot
coupled to the resonator.

This paper is organized as follows. In Sec. II we present
the model of the system. In Sec. III, starting from a Lindblad
equation in the rotating-wave approximation (RWA), we de-
velop a semiclassical theory to estimate the value of the lasing
threshold for the coupling strength between the dot and the
resonator [34]. In Sec. IV, we supplement the semiclassical
treatment by a quantum master-equation approach in order
to evaluate the effect of quantum fluctuations. Results are
discussed in Sec. V. Finally, conclusions are briefly drawn in
Sec. VI.

II. MODEL

The Hamiltonian of the system can be written as H =
Hosc + Hint + HdS + Htun + HN. The quantum dot coupled to
the superconductor in the large-gap limit is described by the
effective Hamiltonian [35]

HdS = ε0
∑

σ=↑,↓ nσ + Un↑n↓ − �S
2 (d†

↑d†
↓ + d↓d↑), (1)

where dσ (d†
σ ) is the annihilation (creation) operator for an

electron with spin σ =↑,↓ and nσ = d†
σ dσ . The Hilbert space

of the dot is spanned by the states |0〉 (empty), |σ 〉 = d†
σ |0〉

(singly occupied with spin σ ), and |D〉 = d†
↑d†

↓|0〉 (doubly
occupied). The detuning between the energy of the doubly
occupied state and the empty state, δ = 2ε0 + U , determines

the strength of the proximity effect in the dot. The eigenstates
of the effective Hamiltonian are the singly occupied states
|σ 〉 with eigenenergies Eσ = ε0 and the states |±〉, which are
coherent superpositions of |D〉 and |0〉 and read

|+〉 = cos(θ )|D〉 − sin(θ )|0〉, (2a)

|−〉 = sin(θ )|D〉 + cos(θ )|0〉, (2b)

with energies E± = δ/2 ± εA and coefficients cos(θ ) =
(1/

√
2)[1+δ/(2εA)]1/2 and sin(θ )= (1/

√
2)[1 − δ/(2εA)]1/2.

The energy 2εA =
√

δ2 + �2
S is the splitting between the |+〉

and the |−〉 states. The normal lead is described by HN =∑
kσ (εk − μN )c†

kσ
ckσ

, with the lead-electron operators ckσ

and c†
kσ

. We choose as the energy reference the chemical
potential of the superconductor μS and set, without loss of
generality, μS = 0. The chemical potential of the normal lead
is μN = eV , where e is the electron charge and V is the voltage
difference between the normal lead and the superconductor.
The tunneling between the lead and the dot is modeled by
the tunneling Hamiltonian Htun = V

∑
kσ c†

kσ
dσ + H.c. We

assume that the density of states ρN of the normal lead is
constant in the energy window relevant for transport (wide-
band approximation) and define the tunnel-coupling strength
as �N = 2πρN |V |2. The Hamiltonian of the resonator reads
Hosc = h̄ω0 a†a. The interaction Hamiltonian between the
dot’s degrees of freedom and the resonator is

Hint = λ(a† + a)

(∑
σ

d†
σ dσ − 1

)
, (3)

where λ denotes the interaction strength. We have defined
the equilibrium position of the oscillator when the dot is
singly occupied. As shown in Appendix A, we decompose
the charge-resonator interaction into a transverse part and a
longitudinal part with respect to the Andreev states [36]. Then,
using a polaronic transformation, the longitudinal interaction
appears in the tunneling term [37]. The longitudinal part of
the interaction on its own yields a nonequilibrium state of the
resonator with an average energy larger than in the thermal
state [38]. The inelastic tunneling processes associated with
the longitudinal part scale as ∼λ/(h̄ω0) and can be safely
neglected for λ � h̄ω0. By contrast, the transversal coupling
plays a crucial role even for λ � h̄ω0. For small frequency
detuning |h̄ω0 − 2εA| < λ, the states of the system |+, n〉 and
|−, n + 1〉 are almost degenerate and get hybridized by the
interaction even for λ � h̄ω0. Hence, for the transverse inter-
action, we introduce the RWA, which is valid when h̄ω0 ≈
(E+ − E−) = 2εA. In the RWA the interaction Hamiltonian
reads

HRWA
int = λ sin(2θ )[a†|−〉〈+| + a|+〉〈−|]. (4)

III. SEMICLASSICAL APPROXIMATION

We define the Hamiltonian of the system Hs = HdS +
Hosc + HRWA

int . The reduced density matrix of the quantum dot
coupled to the resonator ρs is obtained by tracing out the
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normal lead, and it obeys the following Lindblad equation:

h̄
∂ρ̂s

∂t
= − i[Hs, ρs] − �N

2

∑
σ

[{dσ d†
σ , ρs} − 2d†

σ ρsdσ ]

− κ

2
[{a†a, ρs} − 2a ρsa

†], (5)

with {·, ·} being the anticommutator. The second term of the
Lindblad equation (5) describes the single electron tunneling
with the normal lead and is valid in the high-voltage regime
with eV > 0, that is, when eV is much larger than all the other
energy scales of the system (except the superconducting gap)
[16]. The third term of Eq. (5) describes the relaxation of the
resonator towards its ground state quantified by the rate κ/h̄
(namely, the intrinsic finite losses of the resonator).

Assuming that the resonator is in a lasing state, one can use
the mean-field or semiclassical approximation in which we
replace the bosonic operator a with its expectation value a ≈
〈a〉 = α. The quantity |α|2 represents, in the semiclassical
language, the average number of bosons, i.e., |α|2 ≡ A2 ≈
〈a†a 〉 = n̄. In terms of the Fock states, the condition of va-
lidity for the semiclassical approximation reads n̄  δn, with
δn = [〈 (a†a )2 〉 − n̄2]1/2. Within the semiclassical approach,
one can write a closed system of equations for the resonator
amplitude α and the matrix elements of the reduced density
matrix of the dot. More details are given in Appendix B. We
focus on the resonant regime h̄ω0 = 2εA. The equation for the
oscillator’s energy dynamics is given by

∂A2

∂t
= 1

h̄
[−κ − γeff(A

2)]A2, (6)

with

γeff(A
2) = −2λ2

�N

sin2(2θ ) cos(2θ )

1 + 4 λ2 sin2(2θ )
�2

N
A2

. (7)

Equations (6) and (7) are the mean-field semiclassical lasing
equations [39]. They describe the laser as a classical oscillator
with a simple linear friction (with damping coefficient κ)
and a nonlinear gain which arises from the interaction with
the two quantum levels. A nontrivial steady-state solution
Ā �= 0 exists for coupling strength larger than the critical value
λ > λc, which is known as the lasing threshold:

λc =
√

κ�N

2

[
δ2 + �2

S

]3/4

�S

√
δ

, δ > 0. (8)

Notice that lasing can be achieved only for δ > 0 by choice
of the applied voltage. If we invert the applied voltage, lasing
occurs for δ < 0. The solution for the amplitude in the semi-
classical approach, which should be compared with n̄, is

Ā2 =
(

�N

2κ

)
δ√

δ2 + �2
S

[
1 −

(
λc

λ

)2
]
. (9)

IV. QUANTUM MASTER EQUATION IN RWA

In order to assess the relevance of quantum effects for
single atom lasing in this system, we employ the quantum
master-equation approach. We now use the basis |s, n〉 =
|s〉 ⊗ |n〉, where s ∈ {↑,↓,+,−} labels the eigenstates of the

Hamiltonian in Eq. (1). Within the rotating-wave approxima-
tion the Hamiltonian Hs can be diagonalized. The states |σ, n〉
are eigenstates of Hs with eigenenergies Eσ,n = ε0 + h̄ω0n. In
the presence of the interaction with the oscillator, the states
|±〉 are hybridized with the Fock states, yielding the following
eigenstates:

|rw+, n〉 = sin(ϕn)|+, n〉 − cos(ϕn)|−, n + 1〉, (10a)

|rw−, n〉 = cos(ϕn)|+, n〉 + sin(ϕn)|−, n + 1〉, (10b)

with sin(ϕn) = (1/
√

2)[1 − �/(2Wn)]1/2 and cos(ϕn) =
(1/

√
2)[1 + �/(2Wn)]1/2, where � = h̄ω0 − 2εA is

the detuning between states |−, n + 1〉 and |+, n〉 and
Wn = [(�/2)2 + λ2 sin2(2θ )(n + 1)]

1/2
. The eigenenergies

corresponding to the eigenstates given in Eq. (10) are
Erw±,n = E+ + h̄ω0n + �/2 ± Wn.

Performing a perturbation expansion in Htun, a master
equation for the populations of the eigenstates of Hs can
be obtained in the framework of a diagrammatic real-time
technique [40,41]. Here we restrict ourselves to first order
in �N . We relabel the eigenstates of Hs as |α, n〉, with α ∈
{↑,↓, rw+, rw−}. The master equation for the occupation
probabilities Pα,n = Trlead[ρ|α, n〉〈α, n|] can be written as

Ṗα,n = 1

h̄

∑
α′,n′

W(α,n);(α′,n′ )Pα′,n′ , (11)

where W(α,n);(α′,n′ )/h̄ for (α′, n′) �= (α, n) is the transition
rate from state |α′, n′〉 to |α, n〉. The diagonal elements
of the kernel W(α,n);(α′,n′ ) are defined by W(α,n);(α,n) =
−∑

(α′,n′ )�=(α,n) W(α′,n′ );(α,n).
Using Fermi’s golden rule, the transition rates associated

with the tunneling events with the normal lead in the high-bias
regime (unidirectional transport) are

W N
(α,n);(α′,n′ )(χ ) = �N

∑
σ

[e−iχ |〈α, n|d†
σ |α′, n′〉|2], (12)

where for ease of calculation we have introduced the counting
field χ in the usual way [42]. The counting field allows
us to express the current simply in terms of a derivative
of a generalized transition rate. We introduce the damp-
ing of the resonator mode by coupling the oscillator to
a zero-temperature bosonic bath. The corresponding rates
are W D

(α,n);(α′,n′ ) = κ|〈α, n|a|α′, n′〉|2. The rates in the master
equation (11) are given by W(α,n);(α′,n′ ) = W N

(α,n);(α′,n′ )(χ ) +
W D

(α,n);(α′,n′ ). The counting field χ needs to be removed from
the diagonal elements of the kernel. The stationary proba-
bilities Pstat

α,n are obtained solving Eq. (11) for Ṗα,n = 0 with
the condition that

∑
α,n Pα,n = 1 and are the kernel of the

matrix W(α,n);(α′,n′ ). The stationary current in the normal lead
can be written in terms of the stationary probabilities as
I = −i e

h̄

∑
α,α′,n,n′

∂W(α,n);(α′ ,n′ )

∂χ
|
χ→0

Pstat
α′,n′ . To perform numerical

computations, we introduce a maximum value nmax for the
highest Fock state number with nmax  n̄.

V. RESULTS AND DISCUSSION

In this section we present the results of the quantum
master-equation approach in the RWA and compare them with
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FIG. 2. Average occupation of the oscillator mode n̄ obtained by
solution of the master equation as a function of the detuning δ =
2ε + U for different ratios of �S/(h̄ω0). The dashed line corresponds
to the semiclassical approximation, where the system is always on
resonance. Parameters: λ = 0.01 h̄ω0 and κ/�N = 0.02.

the analytical results obtained by the semiclassical approxi-
mation.

A. Average occupation of the resonator

One of the telltales of lasing is a large average occupa-
tion of the resonator mode. The average occupation of the
oscillator mode as a function of the detuning is shown in
Fig. 2 together with the semiclassical result for small �N , n̄ =
[�N/(2κ )] δ /[δ2 + �2

S]1/2. As the semiclassical result corre-
sponds to a situation where the parameters of the system are
tuned to be always on resonance, it is an envelope to the curves
corresponding to different values of �S . Using the quantum
master equation within the RWA, we find that n̄ shows a
peak as a function of the detuning at δ2 = (h̄ω0)2 − �2

S . The
average occupation at the peak (on resonance) follows the
semiclassical prediction, as can be seen in Fig 2.

We proceed by calculating the phase diagram of the
system. In Fig. 3, we show a density plot of the average
occupation of the resonator as a function of δ and of the
coupling strength λ in Fig. 3(a) and of the tunneling strength
�S in Fig. 3(b). The occupation n̄ shows a peak located at
δ2 = (h̄ω0)2 − �2

S with a width approximately given by w =
4 λ�S

(h̄ω0 )

√
n̄res + 1, where n̄res = [�N/(2κ )]

√
1 − �2

S/(h̄ω0)2 is
the occupation on resonance. The estimate of the width was
obtained by looking at the range of values of δ for which
sin(2ϕn̄res ) is different from zero. In Fig. 3(a), we notice that to
this order in �N there is no threshold when the system is per-
fectly on resonance, that is, � = h̄ω0 − 2εA = 0. However,
this is true as long as � < λ. Near the resonance, we see an
increase of the occupation with increasing coupling strength
λ. We do not show values of λ > 0.1h̄ω as in this ultrastrong-
coupling regime the RWA ceases to be valid.

B. Fano factor

In order to check whether the resonator is in a lasing
state, we calculate the full Fock-state distribution pn. The

FIG. 3. (a) Density plot of the average bosonic occupation n̄ ob-
tained by solution of the master equation as a function of δ/(h̄ω0) and
log10[λ/(h̄ω0)]. Parameters: �S = 0.4 h̄ω0, κ/�N = 0.02. (b) Den-
sity plot of the average bosonic occupation n̄ obtained by solution of
the master equation as a function of δ/(h̄ω0) and �S/(h̄ω0). Param-
eters: λ = 0.01 h̄ω0, κ/�N = 0.02. The dashed lines in both panels
correspond to the curves defined by δ − √

(h̄ω0)2 − �2
S ± w/2 = 0,

with w = 4 λ�S
(h̄ω0 )

√
n̄res + 1, and show the quality of the estimate for

the width of the lasing region.

latter shows a peak centered at n̄. To characterize the fluc-
tuations around this peak, we introduce the Fano factor F =
[〈 (a†a )2 〉 − n̄2]/n̄. The Fano factor as a function of detun-
ing is shown in Fig. 4. Interestingly, F computed by the
master-equation approach drops below 1 in the vicinity of
the peak, clearly indicating sub-Poissonian lasing (F < 1).
The semiclassical adiabatic approximation which is valid for
ultralow damping, as discussed in Ref. [39], allows us to
calculate the steady-state population of the Fock states and
the Fano factor of the resonator F . For the present case, the
adiabatic approximation, for coupling strengths larger than
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FIG. 4. Fano factor of the oscillator mode F obtained by solution
of the master equation as a function of the detuning δ = 2ε + U for
different ratios of �S/(h̄ω0). Parameters: λ = 0.01 h̄ω0 and κ/�N =
0.02.

the threshold, yields F � 1 on resonance. More details on
the adiabatic approximation are given in Appendix B. We
conclude that quantum fluctuations narrow the distribution pn

on resonance with respect to the Poissonian regime (F = 1),
as was already found for different implementations of single
atom lasers [43].

C. Transport current

In Fig. 5, we show the current as a function of the detuning.
The current closely follows the result for zero coupling to the
oscillator except on resonance, where it peaks to its maximum
value achievable in the large-gap regime, i.e., |e|�N/h̄. The
peak in the current indicates single atom lasing. The cur-
rent behavior can be explained following the arguments of
Ref. [42]. In the absence of coupling to the resonator, for

 0
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FIG. 5. Current flowing through the quantum dot obtained by the
solution of the master equation. The current I is scaled with |e|�N/h̄
and is plotted as a function of the detuning δ = 2ε + U in units of �S

for different ratios of �S/(h̄ω0). In the full lasing regime the current
is pinned to the maximum value |e|�N/h̄ (dashed line). Parameters:
λ = 0.01 h̄ω0 and κ/�N = 0.02.
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FIG. 6. Efficiency β as a function of δ/�S for different ratios of
�S/(h̄ω0) obtained by the solution of the master equation. Parame-
ters: λ = 0.01 h̄ω0, κ/�N = 0.02.

δ  �S the dot will be mostly stuck in the state |+〉 ≈ |D〉,
and the bottleneck for transport is the cotunneling of a Cooper
pair to the superconductor with a rate ∝�2

S/δ
2 [refer also to

Fig 1(d)]; this leads to a suppression of the current. The res-
onant coupling with the resonator removes this bottleneck by
allowing the fast transition |+, n〉 → |−, n + 1〉 ≈ |0, n + 1〉.
From state |−, n + 1〉 a sequential tunneling event with the
normal lead with rate ∝�N brings the dot in |σ, n + 1〉 and
a subsequent sequential tunneling event to |+, n + 1〉 [see
Fig. 1(e)]. In this case, the bottleneck for transport is the
sequential tunneling with the normal lead, and the current
reaches the same value as for δ = 0 and no coupling to
the oscillator. We wish to emphasize that the process which
restores the maximum value of the current is the very same
that leads to lasing.

D. Efficiency

We define the efficiency of the lasing mechanism as the
number of quanta h̄ω0 (photons) pumped into the resonator
per transported Cooper pair. The efficiency is given by the ra-
tio between the pumping photon flux and the Cooper-pair cur-
rent flowing through the system I/(2|e|). At steady state, the
pumping photon flux into the cavity equals the output losses of
the cavity, which read κ n̄/h̄. Hence, the efficiency is given by
β = κ n̄/h̄

I/(2|e|) . In Fig. 6 we plot the efficiency β as obtained by
means of the master equation in the RWA. On resonance, the
efficiency is β = δ2/

√
δ2 + �2

S =
√

1 − ( �S
h̄ω0

)2 : the efficiency
β reaches values in excess of 0.91 for �S/(h̄ω0) < 0.4.

E. Validity of the RWA and experimental feasibility

In order to validate the results obtained in the RWA we
have employed the master-equation approach beyond the
RWA approximation, that is, with the full interaction Hamilto-
nian of Eq. (3). In the parameter range explored in this paper,
the results obtained with and without RWA agree extremely
well, as shown in Appendix D.

Finally, an assessment of the experimental feasibility of
the setup considered here is in order. Typical experimental
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values are λ/(2π h̄) ∼ 50–100 MHz in single quantum dots
[3] and ω0/(2π ) ∼ 7 GHz [3,5,31]. Large asymmetric tunnel
coupling between the quantum dot and the superconduc-
tor has also been achieved [44], �N � �S . �S can be tens
of μeV, reaching the typical microwave cavity frequency [44]
�S � h̄ω0. For computational reasons, we use a moderate
damping coefficient for the intrinsic losses of the resonator.
Experimental devices with a large quality factor can have
better performance [31], viz., Q = h̄ω0/κ , with Q ∼ 104. For
instance, at resonance 2εA = h̄ω0, and assuming �S ∼ h̄ω0,
we have the scaling λc/(h̄ω0) ∼ (1/

√
Q)(�N/�S )1/2. In this

case, one can estimate lasing even for smaller values of the
coupling constant than the one used here (λ = 0.01h̄ω0).

VI. CONCLUSIONS

In this paper we have shown that a quantum dot strongly
coupled to a superconductor can implement a highly efficient
single atom laser. Single atom lasing is achievable within the
reach of the experimental state of the art for these hybrid
nanodevices. Both a semiclassical treatment and a quantum
master-equation approach have been employed to characterize
the properties of this laser. We discuss the phase diagram
and show that the Fock-state distribution on resonance is
sub-Poissonian due to quantum effects. In the lasing state, the
transport current through the quantum dot is pinned to the
maximum value achievable in this hybrid nanostructure and
hence can be used to identify the onset of lasing.
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APPENDIX A: DERIVATION OF THE
EFFECTIVE HAMILTONIAN IN THE
ROTATING-WAVE APPROXIMATION

We consider the Hamiltonian

H = Hosc + Hint + HdS + Htun + HN, (A1)

whose terms are described in the main text. The interaction
Hamiltonian between the dot’s degrees of freedom and the
oscillator is

Hint = λ(a† + a)

(∑
σ

d†
σ dσ − 1

)
, (A2)

where λ denotes the interaction strength. The operator∑
σ d†

σ dσ − 1 can be expressed as∑
σ

d†
σ dσ − 1 = |D〉〈D| − |0〉〈0| = cos(2θ )τz + sin(2θ )τx,

(A3)

with τz = |+〉〈+| − |−〉〈−| and τx = |+〉〈−| + |−〉〈+|.
Hence, the interaction Hamiltonian reads

Hint = λ(a† + a)[cos(2θ )τz + sin(2θ )τx]. (A4)

We introduce the polaron transformation defined
by the unitary operator Ûz = e−iPτz , with P =
−i[λ/(h̄ω0)] cos(2θ )(a − a†). The transformed Hamiltonian
reads

Ûz (Hosc + Hint + HdS)Û †
z

= Hosc + HdS − λ2

h̄ω0
cos2(2θ )[|+〉〈+| + |−〉〈−|]

+ λ sin(2θ )[a + a†][e−2iP|+〉〈−| + e2iP|−〉〈+|]

− λ2

h̄ω0
sin(4θ )τz[e

−2iP|+〉〈−| + e2iP|−〉〈+|]. (A5)

The unitary transformation also changes the tunneling Hamil-
tonian, which contains the Fermionic operators of the dot. The
latter operators can be written, for instance, as

d↑ = |0〉〈↑| + |↓〉〈D| = [− sin(θ )|+〉 + cos(θ )|−〉]〈↑|
+ |↓〉[cos(θ )〈+| + sin(θ )〈−|], (A6)

and we have

Ûzd↑Û †
z = [− sin(θ )e−iP|+〉 + cos(θ )eiP|−〉]〈↑|

+ |↓〉[cos(θ )eiP〈+| + sin(θ )e−iP〈−|]. (A7)

A similar expression is valid for Ûzd↓Û †
z . Hereafter, we as-

sume that we are working in the weak-coupling limit with
λ � h̄ω0, such that we can set the argument of the exponential
function P � 0 in Eqs. (A5) and (A7). Then the effective
interaction reduces to

H (eff)
int = λ sin(2θ )[a + a†]τx. (A8)

We define the Hamiltonian of the system as

Hs = Hosc + H (eff)
int + HdS. (A9)

Finally, we introduce the rotating-wave approximation
(RWA), which is valid when h̄ω0 ≈ (E+ − E−) = 2εA =√

δ2 + �2
S , with the detuning � = h̄ω0 − 2εA satisfying the

conditions |�| � h̄ω0, |�| � 2εA, and |�| � λ| sin(2θ )|. In
the RWA the interaction Hamiltonian reads

HRWA
int = λ sin(2θ )[a†|−〉〈+| + a|+〉〈−|]. (A10)

In the presence of the interaction with the oscillator, the
states |±〉 are hybridized with the Fock states. We now use
the basis |s, n〉 = |s〉 ⊗ |n〉, with s ∈ {↑,↓,+,−} labeling
the eigenstates of the effective Hamiltonian. In this basis, the
interaction Hamiltonian reads

HRWA
int = λ sin(2θ )

∞∑
n=0

√
n + 1(|−, n + 1〉〈+, n| + H.c.).

(A11)
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APPENDIX B: ANALYTIC RESULTS FOR THE
LASING IN RWA

From the Lindblad equation (5) of the main text, one can
derive a hierarchy of coupled equations for the fermionic and
bosonic operators which are generally not exactly solvable.

1. Semiclassical approximation

Assuming that the resonator is in a lasing state, one can use
the mean-field or semiclassical approximation in which we
replace the bosonic operator a with its expectation value a ≈
〈a〉 = α. Such an approximation is valid under the condition
that the reduced density matrix of the resonator corresponds
to a peaked distribution in phase-space representation, which
is centered around the amplitude |α| with small quantum fluc-
tuations. In other words we require the condition |α|2  δα2,
with δα2 = 〈(a − α)2〉. For Poissonian fluctuations one has
δα2 ∼ |α|, whereas δα2 ∼ |α|ν , with ν < 1, for a sub-
Poissonian distribution. Notice that in both cases the condition
|α|  δα is fulfilled. This condition defines the lasing state
of the oscillator that we analyze here. The quantity |α|2 rep-
resents, in the semiclassical language, the average oscillator
occupation |α|2 = α∗α ≈ 〈a†a〉 = n̄.

Within the semiclassical approach, one can write a closed
system of equations for the resonator amplitude α and the
matrix elements of the reduced density matrix of the dot,
namely, the populations p+, p−, pσ (diagonal elements) and
the coherence factor ρ+− for states |±〉 (off-diagonal ele-
ment). The semiclassical equations read

h̄
∂ p+
∂t

= iλ sin(2θ )(α + α∗)(ρ+− − ρ∗
+−)

− �N

[
2 sin2(θ ) p+ − 2 cos2(θ ) pσ

+ sin(2θ )

2
(ρ+− + ρ∗

+− )

]
, (B1)

h̄
∂ p−
∂t

= −iλ sin(2θ )(α + α∗)(ρ+− − ρ∗
+−)

−�N

[
2 cos2(θ ) p− − 2 sin2(θ ) pσ

+ sin(2θ )

2
(ρ+− + ρ∗

+− )

]
, (B2)

h̄
∂ρ+−

∂t
= −i(E+ − E−) − iλ sin(2θ )(α + α∗)(p− − p+)

−�N

(
ρ+− + sin(2θ )

2

)
, (B3)

h̄
∂ pσ

∂t
= −�N

[
pσ − sin2(θ ) p+ − cos2(θ ) p−

− sin(2θ )

2
(ρ+− + ρ∗

+− )

]
. (B4)

Notice that the derivative of the sum p+ + p− + 2pσ van-
ishes; that is, the probability is conserved. The last equation
in the semiclassical approach is for the oscillator’s degree of
freedom

h̄
∂α

∂t
=

(
−ih̄ω0 − κ

2

)
α − iλ sin (2θ )(ρ+− + ρ∗

+−). (B5)

From the latter equation, we can obtain

h̄
∂|α|2
∂t

= −κ|α|2 + iλ sin(2θ )(ρ+− + ρ∗
+−)(α − α∗). (B6)

We now go into the rotating frame where the oscillator is
at rest and set α(t ) = α̃(t )e−iω0t and ρ+−(t ) = ρ̃+−(t )e−iω0t .
Neglecting fast oscillating terms (RWA), at the resonance
h̄ω0 = 2εA, we can write

h̄
∂ p+
∂t

� iλ sin(2θ )(α̃∗ρ+− − α̃ρ∗
+−)

−�N [2 sin2(θ ) p+ − 2 cos2(θ ) pσ ], (B7)

h̄
∂ p−
∂t

� −iλ sin(2θ )(α̃∗ρ+− − α̃ρ∗
+−)

−�N [2 cos2(θ ) p− − 2 sin2(θ ) pσ ], (B8)

h̄
∂ρ̃+−

∂t
� −�N ρ̃+− − iλ sin (2θ ) α̃ (p− − p+), (B9)

h̄
∂ pσ

∂t
� −�N [pσ − sin2(θ ) p+ − cos2(θ ) p−], (B10)

h̄
∂|α|2
∂t

= −κ|α|2 + iλ sin(2θ )(α̃ρ̃∗
+− − α̃∗ρ̃+−). (B11)

Using the normalization condition p+ + p− + 2pσ = 1, the
solutions for the populations read

p+ = cos4(θ ) + χα̃

1 + 4χα̃

, (B12)

p− = sin4(θ ) + χα̃

1 + 4χα̃

, (B13)

ρ̃+− = iλ sin(2θ ) cos(2θ )

�N

(
α̃

1 + 4χα̃

)
, (B14)

with

χα̃ = λ2 sin2(2θ )

�2
N

|α̃|2. (B15)

After setting |α̃|2 = |α|2 = A2, the equation for the oscilla-
tor’s energy dynamics is given by

h̄
∂A2

∂t
= [−κ − γeff(A

2)]A2, (B16)

with

γeff(A
2) = −2λ2

�N

sin2(2θ ) cos(2θ )

1 + 4 λ2 sin2(2θ )
�2

N
A2

. (B17)

Equations (B16) and (B17) are the mean-field semiclassical
lasing equations. They describe the laser as a classical oscil-
lator with simple linear friction (with damping coefficient κ)
and a negative, nonlinear damping (gain) which arises from
the interaction with the two quantum levels. A nontrivial
solution A �= 0 exists for coupling strengths larger than the
critical value λ > λc, which is known as the lasing threshold:

λc =
√

κ�N

2

[
δ2 + �2

S

]3/4

�S

√
δ

, δ > 0. (B18)

The solution for the amplitude A in the semiclassical ap-
proach, which should be compared with the average oscillator
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occupation (A2 = |α|2 ≈ n̄), is

Ā2 =
(

�N

2κ

)
δ√

δ2 + �2
S

[
1 −

(
λc

λ

)2
]
. (B19)

2. Adiabatic approximation on resonance: Effective
equation for pn

Starting from the Lindblad equation (5) of the main text,
we perform the so-called adiabatic approximation, which is
valid for ultralow damping [39] defined by the conditions
κ � �N and κ � λ sin(2θ ). In other words, the intrinsic
relaxation of the resonator (e.g., due to the coupling to a
thermal bath) is assumed to be very slow compared to the

internal dynamics of the systems and the timescale associated
with tunneling with the normal lead.

Along the lines of Ref. [39], one can find the steady-
state population pn of the Fock states of the resonator in the
ultraunderdamped regime of the resonator.

We use the interaction representation for the density matrix
of the system formed by the oscillator and the proximized
dot. We set ρ(t ) = e− i

h̄ H0tρI(t )e
i
h̄ H0t , with H0 = Hosc + HdS

and ρI(t ) being the density matrix in interaction picture. For
the sake of conciseness, we adopt the notation

λT = λ sin(2θ ). (B20)

Using the RWA, the matrix elements of ρI satisfy the follow-
ing (exact) equations:

h̄ρ̇++
nm = −iλT (

√
n + 1ρ−+

n+1m − √
m + 1ρ+−

nm+1) − 2�N
[

sin2(θ )ρ++
nm − cos2(θ )ρσσ

nm

]
− κ

2
[(n + m)ρ++

nm − 2
√

(n + 1)(m + 1)ρ++
n+1m+1], (B21)

h̄ρ̇−−
nm = iλT (

√
mρ−+

nm−1 − √
nρ+−

n−1m) − 2�N
[

cos2(θ )ρ−−
nm − sin2(θ )ρσσ

nm

] − κ

2
[(n + m)ρ−−

nm − 2
√

(n + 1)(m + 1)ρ−−
n+1m+1],

(B22)

h̄ρ̇−+
nm = −iλT (

√
nρ++

n−1m − √
m + 1ρ−−

nm+1) − �Nρ−+
nm − κ

2
[(n + m)ρ−+

nm − 2
√

(n + 1)(m + 1)ρ−+
n+1m+1], (B23)

h̄ρ̇+−
nm = iλT (

√
mρ++

nm−1 − √
n + 1ρ−−

n+1m) − �Nρ+−
nm − κ

2
[(n + m)ρ+−

nm − 2
√

(n + 1)(m + 1)ρ+−
n+1m+1], (B24)

h̄ρ̇σσ
nm = −�N

[
ρσσ

nm − sin2(θ )ρ++
nm − cos2(θ )ρ−−

nm

] − κ

2

[
(n + m)ρσσ

nm − 2
√

(n + 1)(m + 1)ρσσ
n+1m+1

]
. (B25)

The above set of equations is not in a closed form. In the limit
of the ultraunderdamping regime of the resonator, one can
neglect the relaxation dynamics due to the interaction with
the thermal bath since this occurs on a longer timescale than
the dynamics associated with the single electron tunneling
and the coherent coupling between the resonator and the
two levels |+〉 and |−〉. This is the so-called adiabatic ap-
proximation [39], where the terms proportional to κ can be
neglected. Using this approximation and relabeling the di-
agonal elements as populations ρ++

nn = p+
n , ρ−−

n+1,n+1 = p−
n+1,

and ρσσ
mm = pσ

m, we can write the following closed system of
equations for the steady state:

0 = − iλT

√
n + 1(ρ−+

n+1,n − ρ+−
n,n+1)

− 2�N
[

sin2(θ )p+
n − cos2(θ )pσ

n

]
, (B26)

0 = iλT

√
n + 1(ρ−+

n+1,n − ρ+−
n,n+1)

− 2�N
[

cos2(θ )p−
n+1 sin2(θ )pσ

n+1

]
, (B27)

0 = −iλT

√
n + 1(p+

n − p−
n+1) − �Nρ−+

n+1,n, (B28)

0 = iλT

√
n + 1(p+

n − p−
n+1) − �Nρ+−

n,n+1. (B29)

The equations for the populations with the dot being singly
occupied read

pσ
n = sin2(θ )p+

n + cos2(θ )p−
n , (B30)

pσ
n+1 = sin2(θ )p+

n+1 + cos2(θ )p−
n+1. (B31)

Now, we introduce the reduced density matrix of the res-
onator defined by summing over the dot’s states. In particular,
the distribution for the populations of the Fock states pn is
given by

pn = p+
n + p−

n + 2pσ
n , (B32)

pn+1 = p+
n+1 + p−

n+1 + 2pσ
n+1. (B33)

From Eqs. (B30), (B31), (B32), and (B33) one obtains

pσ
n = [sin2(θ ) − cos2(θ )]p+

n + cos2(θ )pn

1 + 2 cos2(θ )
, (B34)

pσ
n+1 = [cos2(θ ) − sin2(θ )]p−

n+1 + sin2(θ )pn+1

1 + 2 sin2(θ )
. (B35)

Inserting Eqs. (B34) and (B35) into (B26) and (B27), we solve
the full set of Eqs. (B26), (B27), (B28), and (B29) and find
the steady-state solutions for p+

n , p−
n+1, ρ−+

n+1,n, and ρ+−
n,n+1. In

particular one obtains the following result:

An+1 = −iλT

√
n + 1(ρ−+

n+1,n − ρ+−
n,n+1)

= 2�Nλ2
T (n + 1)

�2
N + 4λ2

T (n + 1)
[cos4(θ )pn − sin4(θ )pn+1]. (B36)

Equation (B36) represents the gain rate of the laser, and it is
the crucial result to derive the effective equation for pn. The
equation for the reduced density matrix of the resonator with
matrix element ρn,m, in the interaction picture, is obtained by
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tracing over the dot’s states,

h̄ρ̇nm = −iλT (
√

n + 1ρ−+
n+1m − √

m + 1ρ+−
nm+1)

+ iλT (
√

mρ−+
nm−1 − √

nρ+−
n−1m)

− κ

2
[(n + m)ρnm − 2

√
(n + 1)(m + 1)ρn+1m+1].

(B37)

For the population pn = ρnn we have

h̄ ṗn = An+1 − An − κ[npn − (n + 1)pn+1]. (B38)

Inserting Eq. (B36) into Eq. (B38), one obtains the steady-
state solution under the condition of detailed balance,

0 =
(

κn + 2�Nλ2
T sin4(θ )

�2
N + 4λ2

T n
n

)
pn − 2�Nλ2

T cos4(θ )

�2
N + 4λ2

T n
npn−1.

(B39)

The iterative solution reads

pn = ac

bc + n
pn−1, (B40)

with

ac = �N

2κ
cos4(θ ), bc = �N

2κ
sin4(θ ) + �2

N

4λ sin2(2θ )
. (B41)

The normalized solution of Eq. (B40) reads

pn = bc
an

c

(bc)(n+1)
p0, p0 = 1

1F1(1, 1 + bc, ac)
, (B42)

with the generalized hypergeometric function 1F1 defined as

1F1(x, y; z) =
∞∑

n=0

zn

n!

(x)n

(y)n
(B43)

and where (· · · )n is the Pochhammer symbol, defined by

(x)n = x(x + 1) · · · (x + n − 2)(x + n − 1) = �(x + n)

�(x)
.

(B44)

By calculating the average number 〈n〉, we obtain

〈n〉 = n̄ =
∞∑

n=1

n pn = ac − bc(1 − p0). (B45)

In the limit of λ → ∞, one recovers the result n̄ ≈ �N/(2κ )
(in this limit p0 ≈ 0). For the average of n2 we find

〈n2〉 =
∞∑

n=1

n2 pn = n̄(ac − bc) + ac, (B46)

and the Fano factor is given by

F = 〈n2〉 − n̄2

n̄
= ac

ac − bc(1 − p0)
− bp0. (B47)

Inserting Eq. (B41) into Eq. (B47), one obtains F ≈ 1 above
the lasing threshold λ  λc.

APPENDIX C: MASTER EQUATION IN RWA

Within the rotating-wave approximation the Hamiltonian
HdS + Hosc + HRWA

int can be diagonalized. The eigenstates read

|σ, n〉, (C1a)

|rw+, n〉 = sin(ϕn)|+, n〉 − cos(ϕn)|−, n + 1〉, (C1b)

|rw−, n〉 = cos(ϕn)|+, n〉 + sin(ϕn)|−, n + 1〉, (C1c)

with

sin(ϕn) = 1√
2

√
1 − �/2

Wn
, (C2a)

cos(ϕn) = 1√
2

√
1 + �/2

Wn
, (C2b)

where � = h̄ω0 − 2εA is the detuning between states |−, n +
1〉 and |+, n〉 and Wn =

√
( �

2 )
2 + λ2 sin2(2θ )(n + 1). The

eigenenergies corresponding to the eigenstates (C1) are

Eσ,n = ε0 + h̄ω0 n, (C3a)

Erw±,n = E+ + h̄ω0n + �

2
± Wn. (C3b)

We now wish to obtain the occupation probabilities for
the eigenstates (C1) of the RWA Hamiltonian, Pα,n =
Trlead[ρ|α, n〉〈α, n|], with ρ being the density matrix of the
system and α ∈ {↑,↓, rw+, rw−}. Performing a perturbation
expansion in Htunn, either in the Lindblad-equation formalism
or in the framework of a diagrammatic real-time technique
[40,41], yields the master equation

Ṗα,n = 1

h̄

∑
α′,n′

W(α,n);(α′,n′ )Pα′,n′ . (C4)

Since we restrict our calculation to first order in the tunnel
coupling with the normal lead �N , the rates can be calculated
by means of Fermi’s golden rule:

W N
(α,n);(α′,n′ )(χ )

= �N

∑
σ

{e−iχ f (Eα,n − Eα′,n′ )|〈α, n|d†
σ |α′, n′〉|2

+ eiχ [1 − f (Eα′,n′ − Eα,n)]|〈α, n|dσ |α′, n′〉|2}, (C5)

where χ is the counting field for electrons entering the normal
lead [42] and f (ε) = {1 + exp[(ε − μN )/kBT ]}−1 denotes the
Fermi function of the normal lead, with μN = eV being the
chemical potential and T being the temperature. In the high-
bias regime, the electron transport is unidirectional, and the
golden-rule rates simplify to

W N
(α,n);(α′,n′ )(χ ) = �N

∑
σ

[e−iχ |〈α, n|d†
σ |α′, n′〉|2]. (C6)

The matrix elements in the rates are easy to evaluate. The
nonvanishing matrix elements read

〈σ, n|d†
σ |rw+, n′〉 = δn′,n sin(θ ) sin(ϕn)

− δn′,n−1 cos(θ ) cos(ϕn−1), (C7a)
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〈σ, n|d†
σ |rw−, n′〉 = δn′,n sin(θ ) cos(ϕn−1)

+ δn′,n−1 cos(θ ) sin(ϕn−1). (C7b)

We now introduce some damping of the oscillator’s mode.
This is done by coupling the oscillator to a bosonic bath. We
will consider an interaction Hamiltonian of the form

Hdamp = −kd

∑
i

(b†
i a + a†bi ). (C8)

Furthermore, we will assume that the bosonic bath is at zero
temperature (namely, kBT � h̄ω0). Therefore, only the terms
b†

i a will cause transitions. The transition rates due to the
dissipative bath are

W D
(α,n);(α′,n′ ) = κ|〈α, n|a|α′, n′〉|2, (C9)

where we have introduced the coupling strength κ ∝ |kd |2.
The off-diagonal rates [(α, n) �= (α′, n′)] in the master

equation (C4) are given by

W(α,n);(α′,n′ ) = W N
(α,n);(α′,n′ )(χ ) + W D

(α,n);(α′,n′ ), (C10)

and the diagonal elements are given by

W(α,n);(α,n) = −
∑

(α′,n′ )�=(α,n)

[
W N

(α′,n′ );(α,n)(χ = 0) + W D
(α′,n′ );(α,n)

]
.

(C11)

In order to perform numerical calculations we truncate
the Hilbert space by introducing a maximum value nmax for
the quantum number of the oscillator. The dimension of the
truncated Hilbert space is 4(nmax + 1). The master equation
(C4) can therefore be written in matrix form as

Ṗ = WP, (C12)

where W is a 4(nmax + 1) × 4(nmax + 1) matrix. We define a
vector containing all probabilities as

P = (P−,0, p0, p1, . . . , pn, . . . , pnmax−1 , P↑,nmax , P↓,nmax ,

P+,nmax )T , (C13)

with

pn = (P↑,n, P↓,n, Prw+,n, Prw−,n)T . (C14)

Notice that the state |−, 0〉, which is not coupled to other
states by HRWA

int , also needs to be included. Similarly, in the
sector with n = nmax, the state |+, nmax〉 is not coupled to
any other state due to the truncation of the Hilbert space of
the oscillator. The vector of the stationary probabilities Pstat

is the null space of the matrix W. Once we have obtained
the probabilities, we can easily calculate other stationary
properties, such as the current flowing in the normal lead
and the Fock distribution of the oscillator. The full Fock-state
distribution for the on-resonance case is shown in Fig. 7(a),
and it is compared with the result of the adiabatic expansion,
Eq. (B42)

APPENDIX D: MASTER EQUATION BEYOND RWA

We now wish to go beyond the RWA and consider the full
Hamiltonian Hint of Eq. (A2). To this purpose we diagonalize
HdS + Hosc + Hint numerically in the truncated 4(nmax + 1)-
dimensional Hilbert space. We use as a basis |s, n〉 = |s〉 ⊗
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− n

δ / Γs

master eq. + Hint

master eq. + HRWA

FIG. 7. (a) The probabilities pn, namely, the distribution of the
Fock states of the resonator, in the high-voltage regime obtained nu-
merically by means of the quantum master equation within the RWA
(squares) and the analytic results, Eq. (B42), within the adiabatic
approximation (dots). The detuning corresponds to the on-resonance
condition. (b) Comparison between the results obtained by the master
equation with and without the RWA for the average occupation of
the oscillator mode n̄ as a function of the detuning δ = 2ε0 + U in
units of �S . Parameters for (a) and (b): �S = 0.5h̄ω0, λ = 0.01h̄ω0,
κ/�N = 0.02, and the numerical cutoff nmax = 100.

|n〉, with s ∈ {↑,↓,+,−}. The eigenenergies are denoted
by El , and the corresponding eigenstates are written as

|El〉 =
∑
s,n

al;s,n|s, n〉. (D1)

Notice that the eigenstates with the dot singly occupied are
simply |σ, n〉. Using the states in Eq. (D1) as a basis, the rates
can be written, in the high-bias voltage limit, as

W N
l;m(χ ) = �

∑
σ

[e−iχ |〈El |d†
σ |Em〉|2], (D2)

W D
l;m = κ

∑
σ

[|〈El |a|Em〉|2]. (D3)

The results obtained without the RWA agree extremely well
with those obtained within the RWA, as shown in Fig. 7(b).
The average occupation of the resonator as a function of the
detuning computed both with and without RWA are in almost
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perfect agreement. The Fock distributions pn on resonance,
computed with both methods (not shown), are practically

indistinguishable. This establishes the validity of the results
of the RWA.
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