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Jackiw-Rebbi zero modes in non-uniform topological insulator nanowire
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We theoretically investigate the emergence of Jackiw-Rebbi zero modes and their conductance signature in
non-uniform topological insulator nanowires. We modelled the non-uniform nanowires as the junction between
two cylindrical nanowires with different radius. In the limit of wire length being much larger than its radius,
the surface state of the nanowire splits into one-dimensional Dirac modes propagating along the axis of the
cylinder owing to radial confinement. The sign of the mass gap in each of these Dirac mode is decided by
angular momentum quantum number corresponding to the rotational motion of the electron about the axis of the
cylindrical. Application of an external magnetic flux through the cylindrical nanowires enables us to tune the
mass gap from positive to negative value across the junction. Due to this flux tunable band inversion, controlled
by the external magnetic filed, Jackiw-Rebbi zero modes can be made to appear or disappear at the junction. We
compute the differential conductance of our topological insulator nanowire junction and show that a quantized
conductance peak appears at zero-energy (zero-bias) in the presence of the Jackiw-Rebbi mode.
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I. INTRODUCTION

In recent years, the search for exotic phases like fractional
charge excitations in modern condensed matter systems has
drawn a large attraction owing to their rich fundamental
physics. In addition, such excitations are believed to be a
possible candidate for performing topological quantum com-
putation [1]. One particular example of exotic excitation with
fraction charge is the fractional fermions (FFs) or Jackiw-
Rebbi modes (JRMs) [2] where it was shown that one-
dimensional (1D) Dirac field coupled to a static background
soliton field gives rise to fractional charge excitations [3,4]
localized about the mass domain wall. In the seminal work
by Su, Schrieffer, and Heeger (SSH) [5,6], they predicted the
existence of similar JRMs and their topological nature and
applied it to describe the physics of polyacetylene. In recent
times, several theoretical proposals have been made to realize
JRMs in various condensed matter systems. In particular,
they can arise in finite-length nanowires (NWs), quantum
dots, and rings in the presence of a charge-density wave gap
induced by a periodic modulation of the chemical potential
[7,8], 1D zigzag fermion chain [9], and in quantum spin Hall
state [10,11]. Moreover, very recently, it was shown that the
simultaneous presence of Rashba spin-orbit interaction (SOI)
along with uniform and spatially periodic magnetic field in
1D NWs can support gapped phases hosting zero modes of
the Jackiw-Rebbi type [12–14] obeying non-abelian statistics
[15]. Theoretical proposals for transport signature of JRMs
have been put forwarded in Refs. [13,16]. However, till date,
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no direct experimental evidence of JRMs in any of these above
recently discussed systems has been reported so far.

The recent discovery of a new class of materials called
topological insulators (TIs) [17–24] has accelerated the search
for new exotic zero energy modes, in particular Majorana
fermions (MFs) [25,26]. These modes are topologically pro-
tected by the inherent symmetry of the system and there-
fore robust against any local perturbation. Very recently, the
emergence of MFs has been theoretically predicted in three-
dimensional topological insulator (3D TI) nanowire (NW) in
the presence of proximity-induced superconductivity [27–30].
3D TI NW with perfectly insulating bulk can be modelled
as an ideal hollow metallic cylinder with a diameter large
enough such that it is amenable to thread a large magnetic
flux through its core [27,28,30–34]. Few transport properties
like the Josephson current [35], magneto conductance [36],
thermoelectric currect [37], and so on have been investigated
in the context of 3D TI NW. In recent times, quasiballistic
3D TI NWs have been experimentally realized to investigate
Aharonov-Bohm oscillations [38], the Josephson current [39],
and so on via them. Nevertheless, the prediction of zero
energy JRMs and their transport signal, in the context of 3D
TI NW, has not been put forward so far, to the best of our
knowledge.

In this article, we consider a junction of two 3D TI NWs
with different radii and show that one can realize the zero
energy Jackiw-Rebbi mode at the junction of two NWs.
Within our geometry, in the limit of wire length being much
larger then its radius, the surface state of the nanowire splits
into 1D Dirac modes owing to radial confinement. The sign
of the mass gap in each of these Dirac modes is then tuned
by the application of an external magnetic flux through the
cylindrical. This enables a possibility of flux tunable mass
gap inversion across a junction of two TI NWs with different
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FIG. 1. Schematic of our setup in which two cylindrical shaped
3D TI NWs with different radii (R1 and R2) form a junction. The
axis of both the NWs are chosen along the z direction. An external
magnetic field B is incorporated along the axis of both the NWs. The
sign change of mass gap and the appearance of zero energy Jackiw-
Rebbi mode at the junction (z = 0), are denoted by blue (grey) and
red (grey) solid lines, respectively. Two leads are placed on the two
sides of the junction to attain dominant contribution appearing from
the Jackiw-Rebbi zero mode such that the differential conductance
reaches a maximum value of e2/h (see text for discussion).

radius leading to emergence of Jackiw-Rebbi zero modes at
the junction. We study the differential conductance of our TI
NWs junction by employing the scattering matrix approach
(Weidenmüller formulas) [40–42] and show that a zero-bias
peak (ZBP) appears in the conductance spectrum. Such ZBP
can be a possible transport signal of the JRMs present in our
setup.

The outline of this article is organized as follows. First,
we describe our model and energy spectrum of a 3D TI NW.
Then, we discuss our results for appearance of JRMs due
to the mass inversion across the junction of two cylindri-
cal shaped TI NWs (both the nontwisted and twisted case)
and their corresponding differential conductance signature.
Finally, we summarize and conclude.

II. MODEL HAMILTONIAN AND BAND SPECTRUM

We briefly review the surface state Hamiltonian of a 3D TI
[27,32] which can be written as

HT I = v

2
[h̄∇ · n̄ + n̂ · ( �P × �σ ) + n̂ · (�σ × �P)] , (1)

where v is the velocity of the surface electrons. �P = −ih̄∇
is the quantum mechanical momentum operator for electrons,
�σ = (σx, σy, σz ) is the Pauli spin matrices, and n̂ denotes
the unit vector normal to the cylindrical surface. Consider-
ing the cylindrical axis along ẑ direction and n̂ = r̂, one can
obtain the TI NW (schematically shown in Fig. 1) Hamilto-
nian in matrix form as [30]

HT I =
[
−ivh̄

(
σz∂θ

R
− σy∂z

)
− μ

]
. (2)

Here we used the two degrees of freedom for the cylindrical
surface, the coordinate along the axis of the cylinder given by
z, and the radial degree of freedom about the z-axis given by

FIG. 2. Energy spectrum of a 3D TI NW is depicted for different
angular momentum modes l .

θ . The energy eigenvalues corresponding to this Hamiltonian
are given by

El±(k) = ±vh̄

√
l2

R2
+ k2 − μ , (3)

where R is the fixed radius of the cylindrical TI NW and
μ is the chemical potential. From Eqs. (3) and (2), one can
conclude that this energy spectrum is a spectrum of a 1D
Dirac fermion propagating along the z direction with a mass
gap given by l/R where l is the angular momentum quantum
number.

We employ an antiperiodic boundary condition of the wave
function of the TI NW in the angular coordinate θ . Hence the
angular momentum quantum numbers are given by the half
integer, i.e., l = ± 1

2 ,± 3
2 ,± 5

2 ,± 7
2 , and so on. k is the linear

momentum along the cylinder axis (z axis in our analysis).
By applying an external magnetic field B through the cylinder
axis this leads to a magnetic flux � piercing the core of the
cylinder. This can be included in the Hamiltonian by replac-
ing the momentum operator with �� = ( �P − e �A

c ) where �A =
ηφ0 ẑ×�r

2πr2 is the vector potential. Therefore, � = η�0 represents
the total magnetic flux piercing the cylinder.

Upon incorporating the magnetic field, the angular mo-
mentum operator translates by −i∂θ → (−i∂θ − �

�0
), where

�0 = hc/e is the flux quanta. Hence the energy spectrum
becomes [27]

El±(k) = ±vh̄

√
(l − η)2

R2
+ k2 − μ . (4)

The corresponding band spectrum is demonstrated in Fig. 2.
Note that, at k = 0, this spectrum is associated with a band
gap, which depends on (l − η) for fixed radius R of the
cylinder. Also, the gap in the surface state spectrum vanishes if
one considers the limit R → ∞ as expected. It is also evident
that one can control the closing and opening of this gap in the
spectra by modulating the flux through the cylinder.

For example, for the case of (η = 1
2 , l = 1

2 ), the gap at
k = 0 vanishes implying a massless Dirac spectrum. This
essentially implies that the Dirac fermions corresponding to
the l = 1

2 undergoes a mass inversion (band inversion) as
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η varies form η = 1
2 − δ̃ to η = 1

2 + δ̃ where δ̃ is a small
positive number. One can physically interpret the gap clos-
ing in terms of Berry phase. When η = 1

2 , the Berry phase
accumulated due to the rotations of the spins constrained
to move on the surface of the cylinder, is nullified by the
Aharonov-Bohm phase due to the flux. This preserves the time
reversal symmetry.

III. RESULTS

In the seminal work by Jackiw and Rebbi, they showed
that the Dirac field coupled to background soliton scaler field
gives rise to exotic zero modes [2] associated with charge
fractionalization [3,4]. To realize such zero energy modes in
TI NWs, we consider a junction of two cylindrical 3D TI NWs
with radius R1 and R2. Our setup is schematically depicted in
Fig. 1. Both the NWs lie along the z direction, i.e., we consider
the z axis as a cylinder axis. A magnetic field B is applied
along the axis of the NWs to induce magnetic flux through the
core of them.

Now for the regime z < 0, we consider the radius of the
NW to be R = R1 and chemical potential μ = μ1. Hence, our
Hamiltonian for z < 0 becomes

HT I (z < 0) =
[

− v

(
σz(i∂θ + η1)

R1
− iσy∂z

)
− μ1

]
. (5)

Similarly for the regime z > 0, considering a NW with radius
R = R2 and chemical potential μ = μ2, our Hamiltonian can
be written as

HT I (z > 0) =
[

− v

(
σz(i∂θ + η2)

R2
− iσy∂z

)
− μ2

]
. (6)

Here η1 = πBR2
1/�0 and η2 = πBR2

2/�0 are the fluxes
through the two cylindrical TI NWs, respectively.

To have a normalizable bound-state solution near the junc-
tion (z = 0) the wave function must vanish at z = ±∞. Also
the wave function must be continuous across the boundary.
The choice of trial wave function that vanishes at z = −∞
reads as

�z<0 =
[
φ1−
φ2−

]
exp(λ−z + il1θ ) , (7)

where, from Eq. (5) we have λ− =
√

(l1−η1 )2

R2
1

− (μ1+E )2

v2 . Simi-

larly the choice of trial wave function that vanishes at z = +∞
can be written as

�z>0 =
[
φ1+
φ2+

]
exp(−λ+z + il2θ ) , (8)

where λ+ =
√

(l2−η2 )2

R2
2

− (μ2+E )2

v2 from Eq. (6).

Because of the continuity condition at the boundary z = 0,
the wave function requires �z<0(z, θ ) = �z>0(z, θ ). Addi-
tionally we consider a junction which respects rotational sym-
metry so that we have l1 = l2 = l . We obtain an expression
for the energy of the bound state as

E =
[−μ1[(l2 − η2)R1] + μ2[(l1 − η1)R2]

(l2 − η2)R1 − (l1 − η1)R2

]
. (9)

In Eq. (9), there exists a solution for E = 0 with the condition
(l1 − η1) = −(l2 − η2) = δ and μ1R1 = −μ2R2 = γ . From

(a) (b)

(c) (d)

FIG. 3. Asymmetric probability density |�|2 of the Jackiw-
Rebbi zero energy modes are illustrated as a function of distance z
for different values of l .

this condition (l1 − η1) = −(l2 − η2), it is evident that the
presence of the zero energy solution is directly related to
the inversion of mass gaps across the junction where the
band gap for the respective NWs are proportional to (l1 −
η1) and (l2 − η2), respectively. One can continuously change
the mass gaps and induce mass inversion by controlling the
magnetic field as leading to JRMs for l1 = l2 = 1/2, 3/2, and
so on.

In Fig. 3, we show the behavior of probability density
|�|2 corresponding to the zero mode (E = 0) wave function
as a function of distance z from the junction for various
parameter values. Note that, for smaller values of l , the zero
modes are asymmetrically spread around the junction. With
the enhancement of the l values, the zero mode gradually
becomes more and more localized at the junction owing to
the increased mass gap in the spectrum.

Furthermore, we consider two cylindrical TI NWs junction
as previously shown in Fig. 1 which are rotated with respect
to each other about the z axis. To be specific, we rotate the
y component of the spin (σy) to x component (σx) in the
right TI NW (z > 0). Hence σx is now coupled to the linear
momentum k along the positive z direction. This mimics a
situation in which the spin of the electrons is rotated while
passing through the junction due to the presence of the non-
uniformity of spin-orbit coupling across the junction.

Therefore, one can write down the Hamiltonian of the two
TI NWs with two different spin components in a compact
form as [43]

HT I (z) = −ivh̄
σz∂θ

R(z)
+ ivh̄

2
σx{cos θ (z), ∂z}

+ ivh̄

2
σy{sin θ (z), ∂z} − μ(z) , (10)

where, for z < 0, θ (z) = 0, R(z) = R1 and z > 0, θ (z) =
π/2, R(z) = R2.
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One has to solve the Schrödinger equation H� = E�

to obtain the correct matching condition at the boundary
(z = 0) of the two cylindrical TI NWs. This can be done
by finding a proper transfer matrix which correctly matches
the wave functions for z < 0 and z > 0 at the boundary

as

�z>0 = T(z>0,z<0)�z<0 . (11)

Following Ref. [43], we derive the transfer matrix for our case
as

T(z,−z) = Px

[
exp

∫ z

−z
dz

{−vh̄σzl/R(z) + E + μ(z) + ivh̄
2 (σx sin θ (z) − σy cos θ (z))∂zθ (z)

M

}]
, (12)

where the matrix M in Eq.(12) can be written as

M = ivh̄(σy sin θ (z) + σx cos θ (z)) . (13)

Therefore, employing the appropriate step function in θ (z)
and considering z → α̃ (α̃ is a small positive number) and
α̃ → 0 at the end, we solve Eq. (12) and obtain the wave-
function matching condition at the TI NWs boundary as

�(0+) = e−(iσzπ )/4�(0−) . (14)

Then computing the wave functions by solving the Hamil-
tonian in Eq. (10) and following the same procedure as
described before, we obtain the same condition for the zero
mode solution. This manifests the robustness of the Jackiw-
Rebbi zero modes with the rotation of the electron spin
accross the boundary.

Finally, we discuss the differential conductance signal of
the Jackiw-Rebbi zero modes present in our TI NWs setup.
We consider a situation where a tunnel probe (leads depicted
in Fig. 1) is in connection to each side of the junction such that
the conductance between the probes connected to the left and
right sides of the junction is dominated by the contribution
arising from the zero modes. The local tunneling Hamiltonian
describing this situation can be written as

HT = γ̃ †
∑
α,k

uαcαk + H.c. . (15)

Here α = L, R denotes the left and the right leads, γ̃ † and
cαk correspond to the creation operator for the zero mode
and annihilation operator of the electrons in the leads, re-

spectively. We compute the scattering amplitudes employing
Weidenmüller formula [40–42] and they read as

rα = 1 − 2iuαπu�
α

E + iπ
(∑

α u2
α

) , (16)

tα = − 2iuβπu�
α

E + iπ
(∑

α u2
α

) . (17)

Therefore, considering the lead wave functions as plane
wave states (�α), the tunneling amplitudes uα in Eqs. (16)
and (17) represent the overlap of the lead wave functions
and the local wave function of the zero mode at the point of
contact of the lead to the NW given by uα = 〈�α|�(z)〉. Here
z represents the position of the tunneling contact of the NW
to the lead. Thus these coefficients, describing the coupling
of the zero mode to the leads follow the same spatial profile
as the profile of the localized wave function corresponding to
the zero mode. Note that we restrict ourselves to zero bias
conductance and hence all other modes which have a finite
gap do not contribute to the conductance.

In Fig. 4, we illustrated the differential conductance at
zero bias given by G = dI/dV |V =0 measured between the
left and right leads as a function of the position of the left
lead (z− = z < 0) and the right lead (z+ = z > 0). Here G0 =
e2/h expressed is the unit of quantized conductance. Note
that the zero energy conductance peak due to the Jackiw-
Rebbi zero mode is widely spread over distance as depicted
in Fig. 4(a). On the other hand, Fig. 4(b) illustrates the
fact that upon increasing the value of angular momentum l ,
the E = 0 conductance spectra gradually becomes localized
over space. Therefore, to obtain the maximum differential

FIG. 4. Zero energy (E = 0) differential conductance spectra, via the Jackiw-Rebbi zero modes, is demonstrated (in units of e2/h) as a
function of distance from the junction. The value of the other parameters are chosen for panel (a) δ = 0.4, γ = 0.1, R1 = 1, R2 = 3 and panel
(b) δ = 1.2, γ = 0.1, R1 = 1, R2 = 3.
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conductance of magnitude e2/h, via the single zero mode in
our TI NWs setup, one needs to place the two leads (see
Fig. 1) very sensitively on the two sides of the junction. In this
way, the leads will locally attain the dominant contribution
appearing from the single zero-mode only and the differential
conductance reaches a maximum value of e2/h. Moreover, the
conductance signature will not be affected by the other mode
present at ±∞. In Figs. 4(a) and 4(b), the black dotted line
is a guide to eye to denote the line of maximum differential
conductance e2/h in the z+-z− plane. As the zero mode wave
function is itself not symmetric about the junction, hence
the quantized conductance peak is also not symmetric when
plotted in the z+-z− plane. Such a zero bias peak in the
differential conductance can be a possible transport signature
of the Jackiw-Rebbi zero mode appearing at the junction of
two 3D TI NWs.

IV. SUMMARY AND CONCLUSION

To summarize, in this article, we investigate the emergence
of Jackiw-Rebbi zero modes in the junction of 3D TI NWs.
In the continuum limit, we first show that the surface states
of single cylindrical TI NW exhibits a finite-size gap in the
spectrum whose sign depends on the angular momentum
quantum number l due to the confinement of electrons to
the surface of the cylinder. Then, applying a magnetic flux
through the core of the cylinder, one can show that this gap,
which represents a mass gap in 1D Dirac spectrum, can be
tuned to zero when the Berry phase accumulated by the spins
rotating on the surface of the cylinder exactly cancels the
Aharonov-Bohm phase due to the flux. To realize JRMs, we
consider a junction of two 3D TI NWs with different radii
and demonstrate that suitable tuning of the magnetic flux can
cause mass gap inversion across the junction for special values
of l . Hence localized Jackiw-Rebbi zero modes appear at the
junction. The degree of localization of the modes depends on
the value of angular momentum quantum number l and hence
on the magnitude of the mass gap.

We also establish the robustness of such modes against
the rotation of the spin across the junction due to variation
of the spin-orbit coupling across the junction. Finally, we ex-
plore the zero energy (E = 0) differential conductance spectra
through the zero mode by locally attaching it to two normal
metallic leads. Note that, in our setup, the leads are not at-
tached to the two TI NWs at their ends. Rather, the differential
conductance attains a maximum value e2/h when the leads
are appropriately placed about the junction of two TI NWs
attaining dominant contribution from the single zero mode
only without being unaffected by the other mode present at
±∞. Such localized zero bias conductance can be a possible
transport signal of the Jackiw-Rebbi zero mode proposed in
our TI NW geometry.

As far as the validity of our results is concerned, we would
like to point out that, in general, the continuity of the full 3D
wave function (which includes the radial coordinates r of the
NW) should be considered. Nevertheless, in our analysis, the
Hamiltonian [Eq. (2)] is valid in the low-energy limit where
the surface states are well defined and separated from bulk
states by a gap. In each of the NWs the radius is fixed and
effect due to their presence can be incorporated as a presence

of a barrier at the junction. This can be understood as follows.
In the above calculation we consider a two band model to de-
scribe the surface states of TI NW which is a good description
as long as we restrict our analysis to a single TI NW. However,
for describing a junction between two different TI NWs we
need to be more careful. The primary point lays in the fact that
description of TI materials like Bi2Se3 at low energies require
a four band model [44]. As far as the surface states of these TIs
are concerned, their wave function can be described as a direct
product of two SU(2) degrees of freedom (totalling to four
degrees of freedom) of which one is a dispersing (momentum
dependent) SU(2) degree of freedom which is described by the
two band model [see Eq. (2)] used above and a nondispersing
frozen (no momentum dependence) SU(2) degrees of freedom
[45], which represents the existence of degrees of freedom of
electron transverse to the surface. In the present problem of TI
NW, the nondispersing degrees of freedom would correspond
to the dependence of the surface state wave function on the
radial coordinate of NW. It has been shown in Ref. [46] that
the effect of such nondispersing degrees of freedom can lead
to the formation of a sharp barrier for electron tunneling at the
junction between the two TIs. In our setup, the two nanowires
are different from each other due to this frozen degree of
freedom owing to different radius R1 and R2. At the junction
(z = 0) of these two cylinders, the radial coordinate changes
discontinuously from R1 to R2 as a function of z. Therefore,
one can think of this situation as, at the junction of two distinct
TI NWs with radius R1 and R2, the tunneling of electron form
one to the other depends on the overlap of wave function
corresponding to the two different frozen degrees of freedom,
which, in general, would be different form unity leading to
an effective potential barrier at the junction and the height of
that potential would depend on the mismatch of the radial part
of the wave fucntion. The presence of such constant potential
barrier (not explicitly considered in our analysis) will intro-
duce enhanced back-scattering of electrons from the junction
which is incorporated in our analysis via the presence of finite
reflection amplitude while computing the transport signature
of the Jackiw-Rebbi mode employing Weidenmüller formula
[Eqs. (16) and (17)]. Also, for moderate barrier height, the
Jackiew-Rebbi mode would be more sharply localized at the
junction and the maximum of the zero bias conductance will
become less than e2/h. Other than that, our results will remain
qualitatively unchanged.

Earlier theoretical setups, based on 1D NWs, require either
periodic modulation of the chemical potential [7] or simulta-
neous presence of strong Rashba SOI along with uniform and
spatially periodic magnetic field [12,13] to realize JRMs in
them. It may be a challenging task to tune all these ingredients
together in an experimental setup. On the other hand, in
our 3D TI NW junction, the basic ingredient to tune the
band inversion, across the junction, is the uniform external
magnetic field.

Thus, from the viewpoint of experimental implementation
of the proposal, our setup can be more advantageous over the
other setups as far as realization of JRMs is concerned.

As far as the practical realization of our geometry is
concerned, very recently TI NW has been experimentally
fabricated in 3D TI crystals (Bi1.33Sb0.67Se3) by mechan-
ical exfoliation [38]. The magnetic flux through the NW
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can be tuned by applying an external magnetic field [38].
Hence, it may be experimentally possible to design a junc-
tion of two TI NWs with radii R1 ≈ 50 nm and R2 ≈
150 nm [38]. To realize the zero modes, the chemical po-
tential and the magnetic flux inside the two NWs can
be tuned to μ1 ≈ 10 meV, μ2 ≈ 3.5 meV, and �1 ≈ 8 ×
10−15 Wb, �2 ≈ 7 × 10−14 Wb, respectively, for a magnetic
field of B ≈ 1 T. The transport signature of the zero modes
should be robust in the presence of scalar disorder as far as the

disorder scale is smaller than the band gap of the cylindrical
TI NW.
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