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Ab initio investigation of single-layer high thermal conductivity boron compounds
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The discovery and design of materials with large thermal conductivities (κL) is critical to address future
heat management challenges, particularly as devices shrink to the nanoscale. This requires developing novel
physical insights into the microscropic interactions and behaviors of lattice vibrations. Here, we use ab initio
phonon Boltzmann transport calculations to derive fundamental understanding of lattice thermal transport in
two-dimensional (2D) monolayer hexagonal boron-based compounds, h-BX (X = N, P, As, Sb). Monolayer
h-BAs, in particular, possesses structural and dispersion features similar to bulk cubic BAs and 2D graphene,
which govern their ultrahigh room temperature κL (1300 W/m K and 2000–4000 W/m K, respectively), yet
here combine to give significantly lower κL for monolayer h-BAs (400 W/m K at room temperature). This
work explores this discrepancy, and thermal transport in the monolayer h-BX systems in general, via comparison
of the microscopic mechanisms that govern phonon transport. In particular, we present calculations of phonon
dispersions, velocities, scattering phase space and rates, and κL of h-BX monolayers as a function of temperature,
size, defects, and other fundamental parameters. From these calculations, we make predictions of the thermal
conductivities of h-BX monolayers, and more generally develop deeper fundamental understanding of phonon
thermal transport in 2D and bulk materials.
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I. INTRODUCTION

As microelectronic devices shrink and power densities
grow, heat dissipation has become a formidable technology
challenge. The discovery of high thermal conductivity mate-
rials to improve thermal management and energy efficiency
is essential for further gains in device performance. Ab initio
theoretical tools such as those based on density functional
theory (DFT) have been recently developed and demonstrated
their capability to precisely calculate thermal properties of
materials [1–3]. In particular, boron compounds, including
cubic boron phosphide (c-BP) and boron arsenide (c-BAs),
were predicted to have high thermal conductivities [4,5]. Im-
portantly, experimental work has demonstrated the synthesis
of high-quality crystals and measured thermal conductivity
values of 500 and 1300 W/m K, respectively, in c-BP [6] and
c-BAs [7–9]. These studies exemplify the power of combined
synthesis, characterization, and ab initio theory for developing
design rules for new materials discovery.

Motivated by these studies, here we perform ab ini-
tio calculations to examine the thermal properties of two-
dimensional (2D) honeycomb structures of these boron com-
pounds [inset, Fig. 1(a)]. We present calculations of the
lattice thermal conductivity (κL) and spectral phonon trans-
port properties for monolayer hexagonal compounds: h-BN,
h-BP, h-BAs, and h-BSb–referred to collectively as h-BX
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monolayers. Physical insights relating symmetry, structure,
and the vibrational characteristics that build microscopic,
mode-specific phonon properties and transport behaviors are
developed as the monolayer structures are compared with their
bulk counterparts, and criteria for high thermal conductivity
are discussed in detail.

II. THEORY AND COMPUTATIONAL DETAILS

In this section, we discuss the underlying theoretical and
numerical details used to perform the ab initio calculations of
thermal transport in the h-BX systems. Further details can be
found in the literature [10–12].

A. Boltzmann transport and lattice thermal conductivity

Thermal energy in semiconductor materials is primar-
ily carried by lattice vibrations (quantized modes called
phonons), as electrons and other heat carriers (e.g., magnons)
usually give negligible contributions. The lattice thermal con-
ductivity here is calculated using an ab initio methodology
based on DFT and solution of the phonon Boltzmann trans-
port equation (BTE) [13,14], without relying on empirical
adjustable parameters. This microscopic transport descrip-
tion explicitly considers mode-dependent quantum phonon-
scattering processes and their entangled distribution functions
as the Boltzmann equation is solved self-consistently. In par-
ticular, a small applied temperature gradient ∇T perturbs the
phonon distributions from equilibrium, resulting in a drifting
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FIG. 1. Ab initio calculated thermal conductivity vs temperature
and classical metrics. (a) Calculated lattice thermal conductivity κL

in 2D units as a function of temperature for monolayer graphene
(green), h-BN (black), h-BP (blue), h-BAs (red), and h-BSb (orange)
with natural isotopic abundances. (Inset) Top view of the hexagonal
structure of a diatomic 2D honeycomb crystal. Room temperature
κL of different materials with natural isotopic abundances vs (b)
average atomic mass (mavg), (c) Debye temperature (θD ), and (d)
mass ratio (mX /mB ): monolayer h-BX (red), elemental monolayer
materials (black), and separately bulk cubic-BX (black). Curves in
(b)–(d) are guide lines to illustrate the dependence trend.

phonon flux which is balanced by phonon scatterings,

vλ · ∇T
∂nλ

∂T
=

(
∂nλ

∂t

)
scattering

. (1)

Here, nλ is the nonequilibrium distribution function for
phonon mode λ ≡ (q, p) with wave vector q and polariza-
tion p, and vλ is the phonon group velocity. The right-hand
side of Eq. (1) represents the sum of all scatterings that
alter nλ, which are predominantly built from three-phonon
interactions determined within quantum perturbation theory
[15,16]. Isotopes, boundaries, and other extrinsic phonon-
scattering mechanisms are considered in some cases, as
discussed below. Phonon frequencies and eigenvectors are
determined by diagonalizing the dynamical matrix for each
wave vector considered (see Sec. II B). For cases where ∇T
does not drive the phonon populations far from equilibrium,
the single-mode relaxation time approximation (RTA), where
individual scattering rates are calculated with the background
phonons in equilibrium, gives a reasonably accurate solution
to the BTE [17]. However, if the distributions are driven
far from equilibrium, a higher-order correction linear in the
temperature gradient, nλ = n0

λ + (−∂n0
λ/∂T )Fλ · ∇T should

be considered, where n0
λ is the Bose-Einstein distribution

function, and Fλ gives a measure of the deviation from equi-
librium. In the latter case, the phonon BTE is solved through
self-consistent iteration [18,19] to determine Fλ. The lattice
thermal conductivity tensor καβ is given by [18]

καβ = 1

kBT 2�N

∑
λ

n0
λ

(
n0

λ + 1
)
(h̄ωλ)2vα

λ Fβ

λ , (2)

where h̄, �, N, and ωλ are the reduced Plank constant, the
volume of unit cell, the number of q-mesh points in the first
Brillouin zone, and the mode frequency, respectively. α and β

are Cartesian directions.

B. Interatomic force constants

The only inputs to this BTE formalism are the har-
monic and third-order anharmonic interatomic force constants
(IFCs), which determine the phonon dispersions and scatter-
ings, respectively. Fundamentally, the lattice vibrations are
determined by the atomic masses and the interatomic potential
(U) of the crystal; IFCs are expansion coefficients of U with
respect to small atomic displacements from equilibrium,

U = U0 + 1

2

∑
{l,b,μ}


μ1μ2 (l1b1; l2b2)uμ1 (l1b1)uμ2 (l2b2)

+ 1

3!

∑
{l,b,μ}


μ1μ2μ3 (l1b1; l2b2; l3b3)uμ1 (l1b1)uμ2

× (l2b2)uμ3 (l3b3) + . . . (3)

where U0 is the equilibrium potential and � is the summation
over all numbered indices. uμ(lb) denotes the atomic displace-
ment of the bth atom in the lth unit cell from its equilibrium
position along the μ (= x, y, z) direction. 
μ1μ2 (l1b1; l2b2)
and 
μ1μ2μ3 (l1b1; l2b2; l3b3) are second and third-order IFCs,
respectively. The first-order derivatives are zero as they are
calculated at equilibrium. We calculated all IFCs through the
finite-displacement method (numerical derivatives from per-
turbed supercells) [20–22], and enforced physical constraints
on these based on crystal symmetries, derivative permutations,
translational invariance, and rotational invariance.

For a flat 2D lattice in the xy plane, reflection symmetry
across the z axis results in the vanishing of IFCs involving
an odd number of z components [12,23]. Hence, all IFCs
like 
xz(l1b1; l2b2) are zero, which completely decouples the
out-of-plane and in-plane vibrations at the harmonic level.
The same is true for third-order IFCs, only those with even
numbers of z components are not zero. Physically, this means,
e.g., two out-of-plane flexural vibrational modes cannot merge
into another out-of-plane vibrational mode. This limits in-
trinsic phonon-phonon scatterings, and its consequences on
thermal transport in h-BX systems will be discussed in
Sec. III C. Besides crystal symmetry, IFCs are also con-
strained by translational invariance [24], rotational invariance
[25–27], Born-Huang equilibrium invariance [28] constraints
(see Sec. III A), and derivative permutation symmetries. We
enforced translational invariance on the third-order IFCs and
all constraints on the harmonic IFCs of each 2D material.
This results in the correct physical low-frequency dispersion
[29]: two linear acoustic branches [one longitudinal (LA), one
transverse (TA)] and one quadratic flexural acoustic branch
(ZA). Without such an enforcement, numerical issues, such
as finite supercell size and small symmetry violations, can
give unphysical linear ZA dispersion [30] or imaginary fre-
quencies near the Brillouin-zone center. This quadratic behav-
ior not only varies the phonon velocities, but also the low-
frequency scattering rates and thus phonon lifetimes. Precise
representation of these low-frequency modes is essential for
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an accurate calculation of the thermal conductivity of 2D
materials.

C. Phonon scatterings

In this paper, we consider thermal resistance from intrinsic
anharmonic three-phonon interactions, point-defect scatter-
ing, and boundary scattering. For high-quality single crystals
around room temperature (RT), the intrinsic anharmonic scat-
tering dominates thermal transport, which is determined from
scattering processes constrained by transition selection rules
for energy conservation ωλ ± ωλ1 − ωλ2 = 0 and momentum
conservation q ± q1 − q2 = G. For a normal (N) process, G =
0; while for an umklapp (U) process, G �= 0, where G is a
reciprocal lattice vector. For real materials, extrinsic resis-
tance arises due to phonon interactions with lattice imperfec-
tions. Here we considered phonon-point-defect interactions
(isotopes and vacancies) due to mass perturbations [31,32].
Defect-induced force constant perturbations and structural
relaxation have been shown to be important for vacancies,
but give the same general trends as the mass perturbation
scattering in reducing thermal conductivity, although for
significantly lower defect concentrations [33,34]. Boundary
scattering is caused by limited sample size, which becomes
especially important at low temperature or in nanostructures
where phonon mean-free paths are relatively long compared
to the sample size. Here we calculated phonon mean-free
path spectra for the h-BX monolayers and evaluated width-
dependent κL with an empirical boundary scattering model
(see Sec. III E).

Within the RTA these separate phonon-scattering mech-
anisms can be linearly combined via Matthiessen’s rule to
determine phonon lifetimes as

1

τλ

=
(

1

τλ

)
anharmonic

+
(

1

τλ

)
defect

+
(

1

τλ

)
boundary

. (4)

Full solution of the BTE in Eq. (1), however, captures the
network of interactions that tie the distributions of all the
phonons together and is required to more accurately determine
phonon transport. In particular, the RTA treats N scattering
as purely resistive and therefore underestimates κL as U scat-
tering actually degrades the collective phonon flow. Thus, in
materials with strong N scattering relative to U scattering the
κL determined by these two methods can differ substantially.
We compare both methods in this work and demonstrate the
failure of the RTA (see Sec. III B) in describing κL of the h-BX
monolayers.

D. DFT details

We used DFT to determine the IFCs, which are the
only inputs to the BTE formalism to calculate κL, thus
no adjustable parameters are used. DFT calculations were
performed using the QUANTUM ESPRESSO package [35,36]
with norm-conserving pseudopotentials in the local-density
approximation (LDA) [37,38]. For h-BX, we first optimized
the structure using a 31 × 31 × 1q mesh and a convergence
precision for energies and forces taken as 10−10 Ry and
10−6 Ry/bohr, respectively. The kinetic energy cutoff for all
calculations was 80 Ry. All IFCs were calculated using atomic

perturbations of supercells with 128 atoms and 15-Å vac-
uum distance between periodic layer images. The harmonic
IFCs determine the phonon frequencies, eigenvectors, and
velocities (see Sec. III A). The anharmonic IFCs determine
the phonon-phonon coupling matrix elements (see Sec. III B).
The lattice thermal conductivity is built from transport life-
times determined from full solution of the linearized BTE
using the ShengBTE code [18]. For graphene, we used the
IFCs from the almaBTE [39] database. For 2D materials,
the definition of thickness is fairly arbitrary. In Fig. 1(a),
we use 2D units of thermal conductivity (W/K), which are
independent of the arbitrarily defined monolayer thickness.
In the rest of the paper, the thickness 3.35 Å (typical value
chosen for the thickness of graphene) is used in the thermal
conductivity calculations for comparison with bulk values
and physical intuition. Note that this thickness simply scales
the thermal conductivity, which can be easily changed to
compare with other definitions of the monolayer thickness.
For c-BAs, we used the same DFT settings as Ref. [7]. For
c-BP, we used the LDA projector-augmented wave pseudopo-
tential [40]. The electronic structure calculations were done
with 80-Ry plane-wave cutoff kinetic energy and 6 × 6 × 6 k
meshes. The second-order IFCs were calculated by density-
functional perturbation theory [41] with a k-point mesh of
6 × 6 × 6 using the QUANTUM ESPRESSO package [35,36]. The
third-order IFCs were calculated by the finite-displacement
method on 128-atom supercells and cut off at eighth-nearest-
neighboring atoms. The convergence test of thermal con-
ductivity versus supercell size, mesh size, cutoff radius for
third-order IFCs, and scalebroad settings are included in
Appendix A.

III. RESULTS AND DISCUSSION

Calculated lattice thermal conductivities for monolayer
h-BX compounds are given in Fig. 1. The 2D h-BX com-
pounds have higher κL than most other 2D group-IV and
III–V compounds reported in the literature [42–45], which
typically have buckled structures. After full structural relax-
ation, each h-BX system remained flat [inset, Fig. 1(a)], i.e.,
buckling of these monolayers was not energetically favorable
as was found for graphene’s elemental cousins, silicene and
germanene [44]. The calculated RT κL of h-BX monolayers
with natural isotopic abundances are 1045, 323, 399, and
121 W/m K, respectively, for h-BN, h-BP, h-BAs, and h-BSb
using thickness of 3.35 Å. The isotopically pure κL at RT are
1242, 374, 457, and 160 W/m K for h-BN, h-BP, h-BAs, and
h-BSb, respectively. From 200 to 600 K, κL decreases mono-
tonically for each system due to enhanced intrinsic anhar-
monic scattering from thermal population of higher-frequency
phonons.

We evaluate κL of h-BX monolayers with conventional cri-
teria used to understand thermal conductivity, rules of thumb
proposed by Slack [46]. High lattice thermal conductivity
generally occurs in materials with simple structure, small
average atomic mass (mavg), large Debye temperature (θD),
and low aharmonicity. Insights from first-principles calcula-
tions of κL of bulk GaN [47], BAs [4,48], and Li2Se [49]
demonstrated that these rules should be augmented to consider
the mass difference between constituent atoms in compound
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FIG. 2. Calculated phonon dispersions and mode-dependent group velocities. Calculated phonon dispersions in high-symmetry directions
for hexagonal monolayer (a) h-BN, (b) h-BP, (c) h-BAs, and (d) h-BSb. Circle symbols in (a) correspond to experimental data for bulk h-BN
determined by inelastic x-ray scattering [54]. (e)–(h) For the same systems, calculated lower-frequency phonon group velocities vs phonon
frequencies of different polarizations: ZA (red), TA (blue), LA (green), and ZO (orange).

materials and how closely the acoustic branches, and sep-
arately the optic branches, are packed together. The for-
mer determines the frequency gap between acoustic phonons
and high-frequency optic modes, which governs the number
of acoustic-acoustic-optic scattering channels for the heat-
carrying acoustic phonons via energy conservation. The lat-
ter determines how many all-acoustic and acoustic-optic-
optic interactions are possible. Thus, in materials with a
large acoustic-optic frequency gap, closely packed acoustic
branches, and small optic bandwidth, scattering resistance is
limited and κL can be large [4,48].

Figure 1 gives κL of h-BX monolayers as a function of
(b) mavg, (c) θD, and (d) mass ratio, in comparison with
their bulk cubic counterparts [48] and elemental monolay-
ers [44]—graphene, silicene, and germanene. As shown in
Figs. 1(b) and 1(c), κL of graphene, silicene, and germanene
all decrease monotonically with increasing mavg and decreas-
ing θD, following the conventional criteria and similar to
the behavior of their bulk cubic counterparts—diamond, sil-
icon, and germanium [4,48]. However, κL values for bulk
[4,7,48] and monolayer BAs deviate from these trends. This
deviation and unusually high thermal conductivity of c-BAs
is understood in terms of the large mass ratio between boron
and arsenic atoms and tightly packed acoustic branches [4,48].
Despite monolayer h-BAs and bulk c-BAs demonstrating
similar trends, h-BAs does not realize an ultrahigh κL as
naively expected, particularly when considering its similari-
ties to graphene which also has unusually high κL (h-BAs:
399 W/m K; c-BAs: 1300 W/m K [7]; graphene: 2000–4000
W/m K [11,50–52]). What is the microscopic basis for the
extra thermal resistance in h-BAs compared with c-BAs and
graphene? In the following sections, we develop physical
insights into the phonon transport behaviors of h-BAs and
the other h-BX monolayers by comparing their fundamental

vibrational properties with those of their bulk counterparts
and the elemental monolayers, including phonon dispersions,
scattering phase spaces [53], and scattering rates.

A. Phonon band structures and scattering phase space

The phonon dispersion of each 2D h-BX material consists
of six branches [Figs. 2(a)–2(d)]: two flexural out-of-plane
vibrations (one acoustic ZA and one optic ZO) and four
in-plane branches [longitudinal acoustic (LA), longitudinal
optic (LO), transverse acoustic (TA), and transverse optic
(TO)]. The calculated phonon dispersion of monolayer h-BN
is compared with the measured dispersion of bulk h-BN by
inelastic X-ray scattering [54]. Note that near the  point,
the dispersion of the TA and LA branches are linear, while
the ZA branch is quadratic. Similar quadratic behavior has
been shown for the dispersion of flexural acoustic waves
in thin membranes by continuum elastic mechanics [55].
This quadratic flexure behavior is a characteristic of lower
dimensional materials (e.g., nanotubes [56,57], graphene [58],
borophene [29]), and necessary for accurate calculation of
their equilibrium κL values. Often in calculations, numerical
issues such as residual strain, finite supercell size, and small
symmetry violations can lead to unphysical linear dispersion
or imaginary frequencies of the ZA branch near the zone
center. The quadratic behavior of the ZA branch [Figs. 2(a)–
2(d)] is guaranteed by enforcing rotational invariance [25–27]

∑
l2b2


μ1μ2 (0b1; l2b2)
[
xμ3 (l2b2) − xμ3 (0b1)

]

=
∑
l2b2


μ1μ3 (0b1; l2b2)
[
xμ2 (l2b2) − xμ2 (0b1)

]
(5)
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and Born-Huang equilibrium conditions [28]

[μ1μ2; μ3μ4] = [μ3μ4; μ1μ2], (6)

with

[μ1μ2; μ3μ4] = −
∑
b1b2

∑
l2


μ1μ2 (0b1; l2b2)
[
xμ3 (l2b2)

− xμ3 (0b1)
][

xμ4 (l2b2) − xμ4 (0b1)
]

(7)

by nominally altering the “as-calculated” DFT harmonic IFCs
using a χ2 minimization procedure [24,59]. Here, xμ(lb)
is the μth Cartesian position of the bth atom in the lth
unit cell. The quadratic nature of the ZA branch in each
h-BX material is most clearly demonstrated by the group
velocities approaching zero near the Brillouin-zone center
[Figs. 2(e)–2(h)].

The group velocities of the heat carriers play a critical
role in determining material thermal conductivity. The group
velocities of the h-BX monolayers [Figs. 2(e)–2(h)] generally
decrease with increasing average mass in going from h-BN
to h-BSb. This is expected as the acoustic frequencies, and
thus low-frequency velocities, generally scale inversely with
the square root of the heaviest atomic mass [60]. The non-
monotonic behavior of κL values of h-BX monolayers with
mavg in Fig. 1(b) and for c-BX [48] violates this reasoning, thus
demonstrating the critical importance of phonon-scattering
resistance in determining κL. This will be discussed in detail
below.

Comparing phonon band structures of h-BX monolayers
[Figs. 2(a)–2(d)], the phonon band gap below the upper op-
tical branches (TO and LO) increases significantly from h-BN
(0.88 THz) to h-BSb (14.14 THz) as a result of increasing
mass ratio. Unlike bulk c-BX systems, h-BX monolayers have
a midfrequency ZO phonon branch near the top of the trans-
verse acoustic spectrum in each material. This does not shift
appreciably with increasing mass and mass ratio. This ZO
branch may play an important role in scattering of the heat-
carrying acoustic modes in h-BX monolayers, and may partly
explain the lower κL value in h-BAs compared with c-BAs,
although it does not explain the discrepancy when compared
with graphene which has a similar ZO branch. The effects of
ZO phonon scattering and the h-BAs/c-BAs/graphene discrep-
ancies will be discussed in more detail in Secs. III C and III D
below.

Two features determine the phonon scattering that limits
thermal conductivity: (1) strength of scattering interactions
as determined by anharmonicity and (2) amount of scattering
channels available as determined by energy and momentum
conservation conditions. The latter has been shown to be a
strong indicator of calculated κL values when comparing over
a variety of materials [53,61]. This is quantified for each
system considered here by calculating the scattering phase
space (P3) of each phonon mode λ by integrating over energy-
and momentum-conserving delta functions [53]

P3λ = 2

3m3

(
P(+)

3λ + 1

2
P(−)

3λ

)
, (8)

FIG. 3. Phonon scattering phase space. Contour plot of the three-
phonon phase space for each phonon branch in h-BX monolayers and
graphene: (a) ZA, (b) TA, (c) LA, (d) ZO, (e) TO, and (f) LO, in the
irreducible segment of the Brillouin zone.

where

P(±)
3λ = 1

N

∑
λ′, λ′′

δ(ωλ ± ωλ′ − ωλ′′ )δq±q′,q′′+G, (9)

where m is the number of phonon branches,′′±′′ corresponds
to absorption and emission processes, respectively, and the
total scattering phase space is Ptotal

3 = 1
N

∑
λ P3λ. In addition

to energy and momentum conservation, we note that reflection
symmetry of the planar 2D materials introduces an additional
selection rule (as discussed in Sec. II B) that forbids three-
phonon processes involving odd numbers of out-of-plane vi-
brations and thus further restricts the phonon-scattering phase
space [12,23]. This reflection symmetry has been considered
in determining the phase-space calculations in this work. The
calculated total scattering phase-space values for graphene, h-
BN, h-BP, h-BAs, and h-BSb are 0.00327, 0.00396, 0.00484,
0.00584, and 0.00785 ps, respectively. Graphene has the
smallest total scattering phase space among the calculated
materials, and the total scattering phase space increases mono-
tonically with mavg from h-BN to h-BSb. This is understood
in terms of the larger atomic mass scaling down the phonon
frequency, and thus increasing the phase space as the energy-
conserving delta function in Eq. (9) scales like δ(βω) =
1
β
δ(ω), where β is a scaling factor of ω [53]. As demonstrated

in Fig. 3, for the ZA, TA, LA, and ZO modes, the mode-
dependent scattering phase space generally shows the same
increasing trend with mavg as that of the total scattering phase
space, but the difference of P3 is weaker for TO and LO modes
going from h-BN to h-BSb. The nonmonotonic behavior of
κL is difficult to understand in terms of the phonon-scattering
phase space increasing and the mode velocities decreasing
with increasing mavg.

Besides the number of scattering channels, the strength of
the scattering processes can be important when comparing
scattering rates among different materials. To do this, we
estimated the anharmonicity of each material by evaluating
the mode-dependent Grüneisen parameters [60]

γλ = − �

ωλ

∂ωλ

∂�
. (10)
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FIG. 4. Mode-dependent Grüneisen parameters (γλ) for the ZA
branch of h-BAs (red) and h-BP (black) as a function of frequency.

Figure 4 gives the mode-dependent Grüneisen parameters
of the ZA branch for h-BP and h-BAs. The γλ values for the
other branches can be found in Fig. 13. As shown in Fig. 4, h-
BAs has smaller magnitude ZA γλ than those of h-BP, which
indicates the anharmonicity of h-BAs is weaker than h-BP.
This also partly explains the higher κL of h-BAs compared
with that of h-BP. Note that the mode Grüneisen for ZA modes
diverge at the  point, indicating that a small expansion in the
lattice generates a very significant relative increase in phonon
frequencies for these modes near the Brillouin-zone center.
This is connected with the quadratic behavior becoming linear
with lattice strain.

B. Full BTE solution and failure of the RTA

In general, 2D materials are expected to have strong normal
scattering relative to umklapp resistance, which leads to the
failure of the RTA and gives rise to interesting hydrody-
namic transport behaviors [62,63]. In such cases, the full
self-consistent solution to the BTE is required to accurately
describe thermal transport. Figure 5 gives the ratio of umk-
lapp to normal scattering rates τ−1

U /τ−1
N as a function of

phonon frequency for the h-BX monolayers considered here.
Normal scattering dominates over umklapp scattering (i.e.,
τ−1

U /τ−1
N < 1) for most frequency regimes, particularly for the

ZA branches and other low-frequency acoustic modes.
The κL for h-BX monolayers from both RTA and full BTE

solution calculations are given in Fig. 15, which demonstrates
that the RTA fails to accurately describe thermal transport
in the h-BX monolayers due to the strong normal scattering.
For example, the RT κL of h-BN changes from 213 W/m K
(RTA value) to 1045 W/m K after iteration. Another inter-
esting point: The thermal conductivity contributions from the
different acoustic branches are comparable before iteration as
shown in Table I. After iteration, however, the contributions
from the ZA branch increases significantly (e.g., for h-BN
this increases from 33 to 89%), as the dominance of normal
scattering is more significant for the ZA modes compared with
the other branches. As shown in Fig. 5, τ−1

N > τ−1
U over the

whole ZA frequency range, but for LA and TA τ−1
N > τ−1

U
only for their low-frequency modes. During the iteration, the
significant increase in the thermal conductivity contributions

FIG. 5. Comparison of the ratio of umklapp and normal scatter-
ing of h-BX monolayers. Calculated ratio of mode-specific scattering
rates of umklapp (τ−1

U ) and normal (τ−1
N ) scattering rates for lower-

frequency phonons in (a) h-BN, (b) h-BP, (c) h-BAs, and (d) h-BSb.
Colors are used to distinguish different phonon polarizations: ZA
(red), TA (blue), LA (green), and ZO (orange).

from the ZA branch implies that the flexural phonons play an
import role in single-layer h-BX thermal transport.

C. Comparison of phonon transport between h-BAs and c-BAs

Both c-BAs (RT κL = 1300 W/m K) [7] and h-BAs (RT
κL = 399 W/m K) show high κL and deviate from the typical
trends defined by the conventional criteria for understanding
thermal conductivity when compared with the other BX ma-
terials. However, κL of h-BAs is 70% lower than that of bulk
c-BAs despite expectations that this flat monolayer material
would conduct heat at least as well given that κL of monolayer
graphene is larger than that of diamond. High κL in c-BAs
is attributed to a large phonon band gap and acoustic branch
bunching [48]. Figure 6(a) compares the phonon dispersions
of h-BAs and c-BAs. Both systems have a large phonon band
gap due to the large mass ratio between B and As atoms.
For c-BAs, such a large band gap significantly suppresses the
acoustic-optic scattering channels. Unlike c-BAs, however,
h-BAs has a midfrequency ZO branch near the top of the
acoustic frequency spectrum. Thus, in h-BAs energy conser-
vation for acoustic interactions with the ZO branch is easier to

TABLE I. Calculated thermal conductivity contributions from
the different acoustic branches.

Contribution (%)

ZA TA LA

RTA BTE RTA BTE RTA BTE

h-BN 32.8 89.1 32.1 6.9 28.6 3.5
h-BP 17.8 68.0 36.5 15.3 18.5 6.2
h-BAs 5.3 43.2 48.8 29.4 42.9 25.8
h-BSb 9.5 37.1 44.3 31.1 44.5 31.7
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FIG. 6. Comparison of the dispersions and phonon transport properties of h-BAs and c-BAs. (a) Calculated phonon dispersions. (b) Total
calculated scattering phase space versus phonon frequency. (c) Scattering phase space versus phonon frequency for different process types.
(d) Calculated phonon scattering rates at room temperature versus scaled frequency for the lowest-frequency branches in h-BAs (ZA) and c-BAs
(TA1). (e) The same as (d) but for the second-lowest-frequency branches in h-BAs (TA) and c-BAs (TA2). The figures show the scattering
rates determined by different three-phonon processes: acoustic-acoustic-acoustic (aaa), acoustic-acoustic-optic (aao), and acoustic-optic-optic
(for aoo, see Fig. 14). The scattering rates are scaled by the highest frequency of each polarization for easier comparison. The inset of (d)
illustrates a ZA + ZA → TA scattering process, which results in the kink observed in the scattering rates for the TA branch.

satisfy. To quantitatively analyze the thermal conductivity re-
duction due to the ZO phonon modes we artificially removed
the scattering processes involving these and found that the
κL contributed by TA and LA phonons increases 4 ∼ 5 times
but only increases by 20% for ZA phonons. With ZO phonon
scattering, the isotopically pure κL is 457 W/m K, and the con-
tributions from ZA, TA, and LA are 175.7, 127.7, and 109.5
W/m K, respectively. After removing the scattering processes
involving ZO modes, κL increases to 1470 W/m K, and the
contribution from ZA, TA, and LA phonons are 214, 581, and
527 W/m K, respectively. ZO modes significantly suppress
the κL of TA and LA branches. To make further evaluation,
we calculated the mode-dependent phonon-scattering phase
space [Fig. 6(b)]. It shows that the scattering phase space of h-
BAs is significantly larger than that of c-BAs in particular for
the 4∼6-THz phonon frequency range that makes a significant
contribution to thermal transport in c-BAs.

Another possible explanation for lower κL in h-BAs com-
pared to bulk c-BAs is the acoustic branches are much more
separated in the former due to the quadratic behavior of the
ZA branch at low frequency in h-BAs. Therefore, the 2D
acoustic phonon band structure introduces more all-acoustic
scattering channels in h-BAs compared with that in c-BAs. To
quantify the acoustic bunching, we computed and compared
the acoustic-acoustic-acoustic (aaa) and acoustic-acoustic-
optical (aao) scattering phase space of c-BAs and h-BAs in
Fig. 6(c). It is found that acoustic bunching does not necessar-
ily decrease the scattering phase space. At high frequency, the
acoustic bunching in c-BAs makes its scattering phase space
smaller than h-BAs. However, at low frequency, due to the
quadratic feature in phonon dispersion, the acoustic bunching

becomes weaker, but the aaa scattering phase space for ZA
branch is also smaller.

To further quantify the differences in anharmonic scat-
tering between h-BAs and c-BAs, we calculated the
branch-dependent phonon scattering rates for these materi-
als for particular interacting channels: aaa, aao, acoustic-
optical-optical (aoo), and optical-optical-optical (ooo). In
particular, some of the scattering rates of the lowest-
frequency (h-BAs−ZA; c-BAs−TA1) and second-lowest-
frequency (h-BAs−TA; c-BAs−TA2) branches are compared
in Figs. 6(d) and 6(e) and Fig. 14. The aao scattering rates for
c-BAs are very weak due to its large phonon band gap, and
thus are not shown. However, for h-BAs, aao scattering rates
are non-negligible although much weaker than aaa scattering.
This indicates stronger acoustic-optical interactions in h-BAs
than in c-BAs, except at low frequencies where aoo scatter-
ing becomes important [49]. We note that aoo interactions
involving a ZA phonon and two ZO phonons are forbidden
by symmetry in the h-BX monolayers. To summarize, these
calculations suggest that h-BAs has higher scattering rates and
lower κL than c-BAs partly due to increased interactions be-
tween acoustic and ZO phonons for all phonon polarizations.

An interesting kink occurs in the TA scattering rates in-
volving aaa processes for h-BAs around 4.3 THz [Fig. 6(e)].
The frequency for which this kink occurs is exactly twice
the maximum frequency of the ZA branch. This result can
be explained in terms of energy conservation and the re-
flection symmetry selection rule discussed in Sec.III B. An
important symmetry-allowed scattering channel for the TA
modes involves their interaction with two lower-frequency ZA
modes [inset, Fig. 6(e)]. For TA phonons below ∼4.3 THz
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such scatterings are also allowed by energy conservation.
However, for TA phonons above ∼4.3 THz, energy cannot be
conserved as this is two times the maximum energy of the ZA
branch. Therefore, the suppressed scattering channels lead to
a significant drop of scattering rates as shown by the kink in
Fig. 6(e).

Higher-order anharmonicity is expected to be important for
thermal transport at high temperatures or in strongly anhar-
monic materials. However, in both c-BAs [5] and graphene
[64], four-phonon anharmonic scattering has been shown to
give significant thermal resistance, even at room tempera-
ture, due to relatively weak three-phonon scattering in each
system. Three-phonon scattering alone gives calculated RT
κL of 2200 W/m K [4] and 3200 W/m K [65] in c-BAs
and graphene, respectively, which reduce by 35% [5] and
75% (using an empirical potential) [64] when including four-
phonon interactions. The monolayer h-BX materials consid-
ered here have significantly lower κL values than both c-BAs
and graphene, suggesting that four-phonon scattering is not
as important in determining their thermal transport properties.
Unfortunately, the computational cost is too large to test this
here. In addition, phonon frequency renormalization can be
introduced by higher-order anharmonicity and the failure of
the quasiharmonic approximation has been observed, even at
room temperature and below, in tin selenide [66], but strong
phonon renormalization is expected in strongly anharmonic
materials with low thermal conductivities.

D. Comparison of phonon transport between
h-BAs and graphene

In the previous section, increased acoustic-optical phonon
scattering in h-BAs due to a midfrequency ZO branch was
suggested as one of the causes of lower κL in h-BAs than
that in c-BAs. However, graphene has an ultrahigh thermal
conductivity despite also having a midfrequency ZO branch
that provides scattering channels of the heat-carrying acoustic
phonons. Here we compare the microscopic vibrational prop-
erties of monolayer h-BAs and graphene to further understand
2D transport.

The phonon dispersions of h-BAs and graphene are com-
pared in Fig. 7(a) demonstrating two major differences: (1)
h-BAs has a large phonon band gap that is absent in graphene,
and (2) the graphene dispersion has a much larger overall
frequency scale than that of h-BAs. Graphene’s comparatively

small mavg and strong covalent bonding (large θD) drive this
overall frequency-scale difference and give sound velocities
more than two times greater in graphene than in h-BAs
[Fig. 7(b)]. As shown in Fig. 7(c), the phase space P3 of
graphene is much smaller than that of h-BAs, which indicates
fewer scattering channels in graphene and reduced scattering
rates. As discussed in Sec. III A, P3 tends to scale inversely
with the frequency scale of the overall dispersion. In addition,
despite lacking a phonon band gap between the LO and TO
branches and the acoustic spectrum, these optic branches have
such high frequency that energy conservation forbids aao in-
teractions for ZA and LO/TO modes. In other words, the large
frequency scale mimics a phonon band gap for the ZA modes,
which were shown to carry ∼75% of the heat in graphene for
certain cases [11]. Note that aao scattering among ZA and
ZO modes is also forbidden by mirror reflection symmetry.
The scattering phase space of h-BAs and graphene are given
in Fig. 7(c), which demonstrates significantly more scattering
channels in h-BAs and results in higher scattering rates.

E. Mean-free path spectra and size-dependent
thermal conductivity

Rational ways to control thermal properties via size effects
are of high scientific and technological interest, e.g., using
nanostructuring for improved thermoelectrics or designing
transport at multiple length scales for thermal management
in electronic devices. In particular, phonon mean-free path
(MFP) spectra have been intensively studied to understand the
spectral contributions of the thermal conductivity over char-
acteristic length scales of the heat carriers. Ab initio transport
calculations have been directly tested by sophisticated mea-
surements enabled by recently developed laser-based thermal
spectroscopies [6,7,67]. Here, we calculated the MFP spectra
in the h-BX monolayers and investigated the effects of finite
sample width on their κL. MFPs describe the characteristic
lengths that phonons travel, on average, before scattering.
In general, MFPs are mode-dependent and can span across
several orders of magnitude, from ∼1 nm to ∼1 mm. These
spectral features are quantified by calculating the contribu-
tions to the overall thermal conductivity from phonons with
MFPs smaller than a reference length �′ [67,68].

καβ (�′) = 1

�N

∑
λ

Cλv
α
λv

β

λ τλ�(�′ − |vλ|τλ), (11)

FIG. 7. Comparison of vibrational properties of monolayer h-BAs and graphene. Calculated (a) phonon dispersions, (b) group velocities,
and (c) scattering phase spaces for h-BAs (red) and graphene (black). In (c) the frequencies are scaled by the highest phonon frequency for
easier comparison.
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FIG. 8. Phonon mean-free path spectra and size-dependent ther-
mal conductivity of h-BX monolayers. (a) Cumulated thermal con-
ductivity [κacc; Eq. (11)] versus phonon mean-free path (�) of h-BX
monolayers compared with c-BP, c-BAs, and graphene. (b) Size-
dependent thermal conductivity [κL (W )]. A nanoribbon geometry is
used with diffuse scattering considered from edges of finite width
W. Thermal conductivities in both figures are calculated for room
temperature and are normalized by their corresponding bulk values
(κL).

where � is the Heaviside function, Cλ is the mode-specific
heat, and the other terms have been defined above. Figure 8(a)
gives the calculated MFP spectra of the h-BX monolayers, as
well as c-BAs, c-BP, and graphene. A large portion of the
phonons in the h-BX monolayers have MFPs over 1 µm that
contribute ∼50% of the total κL at RT. Also, the heat carriers
of h-BX monolayers have MFPs distributed over a wide range,
while the heat carriers in c-BAs and c-BP all have MFP values
within one order of magnitude. In comparison, the MFP
spectra of the h-BX monolayers have different behaviors from
c-BXs. Take h-BAs for example: After a rapid increase below
1.3 µm, the accumulated h-BAs thermal conductivity begins
a steady climb towards the peak. This feature arises from a
large number of ZA phonons with long MFPs contributing to
transport [see Fig. 16(a)]. For MFPs >1.3 µm, only ZA modes
contribute to the thermal conductivity. This behavior is not
seen in the bulk cubic materials such as c-BAs and c-BP. Such
MFP spectra are directly related to size-dependent κL and can
provide important guidance for multiscale thermal transport.

To further evaluate size-dependent thermal transport in
the h-BX monolayers, we included boundary scattering from
finite nanoribbon width, but with infinite length along the
transport direction [see Fig. 8(b)], by modifying a model
[69] used in ShengBTE [18]. Specifically, the heat flux is
applied along the nanoribbon and the deviation function Fλ

[see Eq. (2)] is a function of the spatial position across the
width in the solution of the BTE. Here, the boundary is treated
as totally diffusive, so Fλ = 0 at the boundary and is described
with exponentially decaying behavior from the center [69].
The cross-section averaged Fλ can be derived within the
iteration framework, from which the effective lattice thermal
conductivity of the nanoribbon is obtained [70]. Figure 8(b)
gives the width-dependent thermal conductivity κL(W ) of
h-BX monolayers and graphene nanoribbons normalized by
their bulk values. Finite sample width strongly affects the
thermal conductivity for widths on the order of a micron. For
example, for W = 0.4 μm, κL(W ) is reduced to 50, 56, 63, and
69% of their bulk values for h-BAs, h-BN, h-BP, and h-BSb,
respectively. This analysis also indicates that finite-size effects

FIG. 9. Defect scattering effects. (a) Normalized thermal con-
ductivity κvacancy as a function of vacancy concentration from 0.001
to 1 (atomic %) at room temperature for h-BX monolayers. The
vacancies are treated as mass defects similar to isotopes with zero
mass.

should be more easily observed in h-BAs at considerably
larger lengths than for the other materials.

F. Defect scattering and isotope effects

Defects inevitably exist in materials of practical interest
and can often play a critical role in determining thermal
transport. As discussed in Sec. II C, imperfections such as
vacancies and other point defects can introduce additional
phonon scattering which suppresses κL from its intrinsic
value. To evaluate the effects of defects on thermal transport
in h-BX monolayers, we considered phonon-defect scattering
from mass variance due to vacancy defects on the X site (ar-
senic, nitrogen, phosphorus, and antimony). Note that defect-
induced force constant changes are not considered here. κL

of the h-BX monolayers are given in Fig. 9 as a function of
vacancy concentration ranging from 0.001 to 1%. A stronger
effect is seen for κL of h-BAs and h-BSb than for h-BN and
h-BP, partly because vacancies induce a larger perturbation to
the heavier As and Sb atoms. Isotopes can also play an impor-
tant role in limiting thermal conductivity, although giving a
smaller mass perturbation than vacancies. Arsenic is naturally
isotopically pure, while Sb has an even mix of 121Sb (57.21%)
and 123Sb (42.79%). Therefore, phonon-isotope scattering in
h-BSb provides significant thermal resistance, 24% decrease
of κL, even before considering phonon-vacancy scattering.

IV. SUMMARY AND CONCLUSIONS

From ab initio phonon Boltzmann transport calculations
we investigated the lattice thermal conductivities of hexagonal
single-layer h-BX compounds: boron nitride, boron phos-
phide, boron arsenide, and boron antimonide. Large κL was
observed for these single-layer h-BX materials making them
promising building blocks for thermal management applica-
tions. Microscopic physical insights were developed in com-
paring h-BX monolayer κL values with those of their bulk
counterpart materials (c-BAs and c-BP), as well as proto-
typical 2D materials (graphene, silicene, and germanene). In
particular, large κL, dimensionality-induced transport differ-
ences, and the possibility of hydrodynamic behaviors were
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discussed in terms of features of the phonon dispersions:
a-o gap, acoustic bunching, ZA phonon heat carriers, and
midfrequency ZO phonon scattering. Strong normal scat-
tering plays a key role in thermal transport for 2D h-BX
materials, especially for ZA phonons. Furthermore, reflection
symmetry of the 2D flat plane of h-BX materials restricts
phonon-phonon scattering, thus leading to larger κL values
than buckled 2D materials. For h-BAs, the midfrequency ZO
branch and decreased acoustic bunching due to quadratic
dispersion introduce extra thermal resistance compared with
c-BAs. Phonon MFPs and size-dependent κL of the h-BX
monolayers were calculated to understand length-scale effects
on thermal transport, which are important for future device
design. The effects of phonon–point–defect interactions were
also estimated by calculating κL with vacancy defects in a
mass-disorder model. This ab initio κL study gives predictions
of the thermal properties of 2D boron-based compounds for
thermal management applications and provides fundamental
microscopic insights into phonon transport physics.
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FIG. 10. Convergence test of thermal conductivity versus the
cutoff radius for third-order IFCs.

TABLE II. Calculated thermal conductivity κL vs supercell size.

κL (W/m K)

Supercell h-BN h-BP h-BAs h-BSb

72 atoms 1045 323 399 121
128 atoms 1134 292 388 153

APPENDIX A: CONVERGENCE TESTS OF THE LATTICE
THERMAL CONDUCTIVITY

We have performed convergence tests of thermal conduc-
tivity versus the cutoff radius for third-order IFCs, supercell
size, and mesh size, as well as sensitivity tests on the scale-
broad settings. The convergence of thermal conductivity is
tested with different cutoff radii (from fifth to eighth-nearest-
neighboring atoms) for third-order IFCs on 128-atom super-
cells, as shown in Fig. 10. Results are converged within 10%
when the cutoff radius reaches eighth-nearest-neighboring
atoms. Thermal conductivities are calculated using IFCs from
72- and 128-atom supercells, shown in Table II. Figure 11
shows calculated thermal conductivities with five different
ShengBTE [18] scalebroad settings: 0.9, 1.0, 1.05, 1.1, and 1.2.
Results are converged when the scalebroad setting is above
1.1. In this work, thermal conductivity is obtained by using
1.1 as a scalebroad setting and fitting points to a curve of the
form κL = κL|N1→∞[1 − e−N1/A], where κL|N1 is the thermal
conductivity under mesh size N1 × N1 × 1, and A is a fitting
parameter.

APPENDIX B: INTRINSIC PHONON SCATTERING RATES

We have performed the calculation of mode-dependent
intrinsic phonon scattering rates for different h-BX materials.
Contour plots of the calculated phonon-scattering rates for
each phonon branch are compared and shown in Fig. 12.

FIG. 11. Calculated lattice thermal conductivity κL in 2D units
with respect to q-point grid density N for (a) h-BN, (b) h-BP, (c)
h-BAs, and (d) h-BSb at room temperature for different scalebroad
values.
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FIG. 12. Intrinsic scattering rates. Contour plot of the calculated
phonon-scattering rates at room temperature for each phonon branch
in h-BX monolayers (a) ZA, (b) TA, (c) LA, and (d) ZO in the
irreducible segment of the Brillouin zone.

APPENDIX C: MODE-DEPENDENT GRÜNEISEN
PARAMETERS

We have performed the calculation of the mode-dependent
Grüneisen parameters for each phonon branch. The Mode
Grüneisen parameters for all the h-BX materials are plotted
in Fig. 13.

FIG. 13. Mode-dependent Grüneisen parameters (γλ) for (a) h-
BAs (solid squares) compared with h-BP (hollow triangles), (b)
h-BN, and (c) h-BSb. Colors are used to differentiate polarizations:
ZA (red), TA (blue), LA (green), ZO (orange), TO (purple), and
LO (yellow). The ZA Gruneisen parameters for h-BAs and h-BP are
given in Fig. 4.

FIG. 14. Calculated scattering rates for hexagonal monolayer h-BX materials for the various types of processes: aaa (solid blue squares),
aao (solid red squares), and aoo (solid green squares). The phonon frequencies are scaled by the highest frequency for each phonon branch. The
aaa scattering in h-BAs increases monotonically with increasing frequency, while for bulk c-BAs these decrease in the middle to high-frequency
range.
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FIG. 15. Calculated lattice thermal conductivity κL in 2D units
as a function of temperature for monolayer graphene (green), h-BN
(black), h-BP (blue), h-BAs (red), and h-BSb (orange) with natural
isotopic abundances. Solid curves correspond to full BTE solutions,
while dashed curves correspond to RTA values.

APPENDIX D: IDENTIFICATION OF PHONON
POLARIZATIONS AND SCATTERING TYPES

In Fig. 14, we distinguish the three-phonon processes into
different types: acoustic-acoustic-acoustic (aaa), acoustic-
acoustic-optical (aao), and acoustic-optical-optical (aoo). We
developed the following method to determine the phonon
polarizations. To identify the polarization for each phonon
mode, we started by labeling the polarizations for phonons
with small q points near the  point, i.e., before any branch
crossing takes place. For these small q points, the phonon
modes follow the standard sequence of ZA, TA, LA, ZO,
TO, and LO with increasing frequency. Then, we traced down
each phonon branch to check the energy scale to determine if
any two branches cross each other. In addition, to carefully
verify the branch crossing, we zoomed in using a large q-
mesh density along all high-symmetry directions. If crossing
takes place, the phonon polarizations are reversely labeled
between the corresponding two branches. For example, we
have identified that for h-BAs, the ZO crosses the LA branch.

FIG. 16. Calculated phonon mean-free path distribution at room
temperature for (a) h-BAs and (b) c-BAs. The top panels give the ac-
cumulated thermal conductivity normalized to their bulk values. The
bottom panels give the mode-dependent mean-free paths correlated
with their frequencies.

However, for h-BN, we identified that there is no crossing
between the LO and TO branches, despite these two branches
seeming to cross each other in the low-resolution Fig. 2(a).

APPENDIX E: COMPARISON BETWEEN RTA AND FULL
BTE SOLUTIONS

We have performed the calculation of the thermal conduc-
tivity using both RTA and full BTE solutions. The results
for different h-BXs materials are compared and plotted in
Fig. 15. The calculated thermal conductivity of h-BXs from
RTA is not as accurate and in general lower than that from
full BTE solution, due to the strong normal scattering. More
discussions can be found in Sec. III B.

APPENDIX F: PHONON MEAN FREE PATH SPECTRA
AND MODE CONTRIBUTIONS BETWEEN h-BAs and c-BAs

We have performed the calculation of the phonon mean
free path spectra and the mode-dependent contribution to total
lattice thermal conductivity. The results for h-BAs and c-BAs
are plotted in Fig. 16 for comparison. More discussions can
be found in Sec. III E.
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