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We investigate the nonlocal transport properties in normal/superconducting/normal (NSN) junctions based on
time-reversal symmetric type-I and type-II Weyl semimetals (WSMs). In the type-I WSM-based NSN junction,
we show that a crossed-Andreev-reflection-dominated nonlocal transport can be realized within wide ranges of
related parameters, which is favorable for the Cooper-pair splitting. For the type-II WSM-based NSN junction,
we focus on the manifestations of the anisotropic aspects of type-II WSMs in the nonlocal transport. Owing
to the hyperboloidlike Fermi surfaces of type-II WSMs, the scattering configurations and nonlocal differential
conductance are strongly anisotropic, differing from the scenarios in similar NSN junctions based on other
Dirac materials. These results enrich the understanding of the correlated transport in time-reversal symmetric
WSM-based superconducting heterostructures.
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I. INTRODUCTION

Weyl semimetals (WSMs) are paradigms of gapless topo-
logical phases of matter in three dimensions, possessing
linear band crossings at isolated Weyl nodes in momentum
space [1–4]. The emergence of nontrivial and robust Weyl
nodes requires the breaking of either time-reversal [2,5] or
inversion symmetry [6,7], and the Weyl nodes always arise
in pairs of opposite chirality [8]. In principle, the WSMs
can be classified into two subgroups, i.e., type-I and type-II
WSMs, and which cannot be smoothly deformed into each
other [1,3]. The type-I WSMs have been materialized in the
transition metal monopnictides [9–13], which possess closed
constant energy surfaces. Whereas, the type-II WSMs host
overtilted Weyl cones [1,3] and open constant energy surfaces.
The materialization of type-II WSMs has been achieved in
several systems, including MoTe2 [14–16], TaIrTe4 [17], and
LaAlGe [18]. These achievements hold promise for further
engineering and detecting novel states in various hybrid struc-
tures based on WSMs [19–32], such as the superconducting
correlations in WSM-based superconducting heterostructures
(SHSs) [20–32].

Resorting to the proximity effect, it is possible to real-
ize superconducting correlations by combining WSMs with
ordinary superconductors, as has been experimentally pro-
posed in SHSs based on both type-I [20] and type-II WSMs
[21]. In a SHS with idea contacts, the subgap transport is
dominated by a phase coherent scattering process known
as Andreev reflection [33–35]. In a time-reversal symmetric
type-I WSM/s-wave superconductor heterostructure, it has
been revealed that a universal zero-bias differential conduc-
tance per channel can be obtained, owing to the interaction be-
tween the spin/orbital-momentum locking and s-wave pairing

*hnnuhl@hunnu.edu.cn
†gangouy@hunnu.edu.cn

in the proposed setup [26]. While the stories are quite different
in a type-II WSM-based SHS, it has been proposed that there
exist double Andreev reflections, due to the overtilted Weyl
cones of type-II WSMs [27]. Moreover, the band structure
tilting also manifests itself in the nonlocal transport in a
type-II WSMs-based multi-interface SHS deposited along the
largest tilting direction. As reported in Ref. [28], both the
double crossed Andreev reflection (CAR) and double elastic
cotunneling (EC) processes emerge, in contrast to the scat-
tering configurations in similar SHSs based on conventional
[33,35] and other Dirac materials [36–43].

Based on the remarkable low-lying physics of WSMs
[1,3] as well as the significant achievements in the fabri-
cation of WSM-based SHSs [20,21], we propose two nor-
mal/superconducting/normal (NSN) junctions, respectively,
based on the time-reversal symmetric type-I and type-II
WSMs. The motivation of this work comes from the following
two facts. On the one hand, we note that most experimentally
well demonstrated type-I WSMs are time-reversal symmet-
ric [9–13], and to the best of our knowledge, the nonlocal
transport properties in NSN junctions based on this type of
WSMs have not been concerned up to now. On the other hand,
since the type-II WSM possesses overtilted Weyl cones, it has
been theoretically demonstrated that the type-II-WSM-based
NSN junction harbors double CAR and EC processes when
the junction is arranged along the largest tilting direction of
Weyl cones. However, the manifestations of the anisotropic
band structures in the nonlocal transport properties have not
been completely investigated. Following this line, we devote
this work to exploring the nonlocal transport properties in
time-reversal symmetric type-I and type-II WSMs-based NSN
junctions. In the proposed type-I WSM-based NSN junction,
it is revealed that the CAR transport probability vanishes
for normal incidence, in contrast to those in similar NSN
junctions based on graphene [36,42] and silicene [40,43].
Intriguingly, a CAR-dominated nonlocal transport can be
achieved within wide ranges of relevant parameters, which
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FIG. 1. Schematic of a type-I WSM-based NSN junction, where
the superconducting electrode in the S region (0 < z < d) is
grounded and the two normal regions denoted by L (z < 0) and R
(z > d) are locally gated by VL and VR, respectively. The junction is
assumed to extend to infinity in the xy plane.

is favorable for realizing the Cooper-pair splitting. Regarding
the type-II WSM-based NSN junction, we mainly concentrate
on the manifestations of the anisotropic aspects of type-II
WSMs in the nonlocal transport. It is found that the scatter-
ing configurations and nonlocal differential conductance are
strongly dependent on the interface orientation angle, appar-
ently differing from those in similar NSN junctions based on
other Dirac materials [36,38,40–43].

The remainder of this paper is organized as follows. The
transport properties of the type-I WSM-based NSN junction
are presented in Sec. II. In Sec. III, we focus on the nonlocal
transport properties in a type-II WSM-based NSN junction.
Finally, the conclusion is briefly drawn in Sec. IV.

II. NSN JUNCTIONS BASED ON TYPE-I WSMs

The proposed type-I WSM-based NSN junction is
schematically shown in Fig. 1, where two local gate electrodes
VL and VR are, respectively, deposited in the L (z < 0) and
R (z > d) regions to independently tune the carrier densities
therein. The superconductivity in the middle region (0 < z <

d) is induced by an s-wave superconductor via the proximity
effect. In practice, a recent experiment suggests the proposed
setup could be realized in the system of NbAs by ion milling
[20], based on the fact that Nb is an intrinsic superconductor
and NbAs is a well-characterized type-I WSM preserving
time-reversal symmetry [13]. We assume that in the proposed
setup the translational symmetry is preserved in the xy plane,
so that the transverse momenta k‖ ≡ (kx, ky) can be treated
as good quantum numbers [34–36,44]. Moreover, under this
assumption the boundary effects can be safely neglected and
the transport properties are dominated by the bulk states. In
the framework of a Bogoliubov–de Gennes (BdG) equation
[26,27,44], the nonlocal transport properties along the z direc-
tion are investigated by virtue of the scattering matrix method.

A. Model and formalism

According to the Fermi-doubling theorem [8], a time-
reversal symmetric WSM contains at least four Weyl nodes.
For simplicity, we take a time-reversal symmetric type-I
WSM with four Weyl nodes as the prototype. It has been

demonstrated that the s-wave superconducting paring couples
a pair of electrons with the same chirality. Moreover, as has
been proposed in Ref. [26], the interorbital pairing is strongly
suppressed and only the intraorbital pairing is important. If
the Weyl nodes are well separated in momentum space, the
effective BdG Hamiltonian can be divided into two indepen-
dent subsystems with opposite chiralities. Under these lines, it
suffices to only consider the subsystem with positive chirality,
and the corresponding BdG Hamiltonian takes the form of
[26]

HI =
(

ĥI
+(k) − μ(z) �̂(z)

�̂†(z) −hI
+(k) + μ(z)

)
, (1)

which acts on the basis of ψ =
(ψQ+,↑, ψQ+,↓, ψ∗

−Q+,↓,−ψ∗
−Q+,↑)T , where ±Q+ denotes

a pair of time-reversed Weyl nodes with positive chiralities
and T indicates the transpose operation. The single-particle
effective Hamiltonian ĥI

+(k) = h̄v(kxσ̂1 + kyσ̂2 − i∂zσ̂3)
depicts the low-lying physics near the Weyl node, with
σ̂1,2,3 the three Pauli matrices and v the Fermi velocity.
The parameter μ(z) = μL�(−z) + μS�(z)�(d − z) +
μR�(z − d ), where �(·) symbolizes the Heaviside step
function. We assume that the Fermi wavelength of the
superconducting (S) region is much smaller than those of
normal (N) regions, so that the leakage of Cooper pairs can
be safely neglected [43,44]. In doing so, the pair potential
can be rationally described by a step function model, viz.,
�̂(z) = �0σ̂0eiϕ�(z)�(d − z), with ϕ the superconducting
phase. By diagonalizing the Hamiltonian shown in Eq. (1),
the energy dispersion in the S region can be formulated as

ελ = λ

√(
h̄v

√
k2

z + |k‖|2 ± μS
)2 + �2

0, (2)

with λ = ±1. For a set of fixed energy ε and transverse mo-
mentum k‖, Eq. (2) gives four different roots of kz, implying
that there are four basis scattering states ψS

ν (ν = 1, 2, 3, 4),
thus the wave function in the S region should be

�S =
4∑

ν=1

sνψ
S
ν , (3)

where the corresponding scattering amplitudes are
parametrized by sν and the details of ψS

ν are shown in
Eq. (A1).

In the two N regions, the dispersion relations can be written
as

ε
e(h)
j = ±h̄v

√(
ke(h)

j,z

)2 + |k‖|2 − (+)μ j, (4)

where j = L, R, respectively, indicate the related quantities of
the left (L) and right (R) N regions, and the superscripts e
and h denote the electronlike and holelike excitation spectra,
respectively. Resorting to the dispersion relations we have

ke(h)
j,z = sgn[ε + (−)μ j + |k‖|]

√
[ε + (−)μ j]2/(h̄v)2 − |k‖|2.

(5)

Accordingly, |ε + (−)μ j | − |k‖| � 0 should be satisfied to get
propagating electronlike (holelike) modes. Whereas, for the
case of |ε + (−)μ j | − |k‖| < 0, the corresponding modes are
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evanescent ones which do not contribute to the transport. In
the L region, an electronlike incident quasiparticle can either
be normally reflected as an electronlike one or be locally
Andreev reflected as a holelike one, thus the related wave
function is given by

�L = ψe
L,+ + reeψe

L,− + rheψh
L,−, (6)

with ree and rhe the scattering amplitudes for the normal
reflection (NR) and the local Andreev reflection (LAR), re-
spectively. The basis scattering states ψe,h

j,± can be obtained
by solving the BdG equation HIψ = εψ straightforwardly,
and the details are given by Eq. (A3). On the other hand,
the incident electronlike quasiparticle can tunnel into the R
region as a holelike one through the CAR process or as an
electronlike one via the EC process. Consequently, the wave
function of the R region is given by

�R = t heψh
R,+ + t eeψe

R,+, (7)

where t he(ee) parametrizes the transmission amplitude for the
CAR (EC) process.

To model the effects resulting from the interfacial de-
fects and lattice mismatch, we introduce two interfacial bar-
riers UL and UR arranged within the regions of −dL/2 <

z < dL/2 and d − dR/2 < z < d + dR/2, respectively. In this
work, we take the limits of UL(R) → ∞ and dL(R) → 0 with
UL(R)dL(R)/(h̄v) ≡ ZL(R) being finite. In the barrier regions, by
substituting μ j with Uj ( j = L, R) into Eq. (5), the expres-
sions of the z components of momenta ke,h

B, j,z can be obtained,

and the basis scattering states ψe,h
B, j,± are shown in Eq. (A3)

by substituting ke,h
j,z with ke,h

B, j,z. In doing so, the related wave
functions can be expressed as

�BL = b1ψ
e
B,L,+ + b2ψ

e
B,L,− + b3ψ

h
B,L,+ + b4ψ

h
B,L,−, (8a)

�BR = c1ψ
e
B,R,+ + c2ψ

e
B,R,− + c3ψ

h
B,R,+ + c4ψ

h
B,R,−, (8b)

where bν and cν label the related scattering amplitudes.
The scattering amplitudes can be determined by match-

ing corresponding wave functions at the boundaries, to
wit, �L|z=−dL/2 = �BL|z=−dL/2, �BL|z=0 = �S|z=0, �S|z=d =
�BR|z=d , and �BR|z=(d+dR/2) = �R|z=(d+dR/2), which automat-
ically ensure the current conservation in the z direction. Con-
sequently, the probabilities for the NR and LAR processes can
be defined as

Ree =
∣∣∣∣∣
〈
ψe

L,−
∣∣J I

z

∣∣ψe
L,−

〉
〈
ψe

L,+
∣∣J I

z

∣∣ψe
L,+

〉
∣∣∣∣∣|ree|2, (9a)

Rhe =
∣∣∣∣∣
〈
ψh

L,−
∣∣J I

z

∣∣ψh
L,−〉〈

ψe
L,+

∣∣J I
z

∣∣ψe
L,+

〉
∣∣∣∣∣|rhe|2. (9b)

The particle current density operator J I
z ≡ −i

h̄ [z,HI] =
vτ3 ⊗ σ3, with τ3 the Pauli matrix operating on the Nambu

space. For the EC and CAR processes, the related scattering
probabilities are

T ee =
∣∣∣∣∣
〈
ψe

R,+
∣∣J I

z

∣∣ψe
R,+

〉
〈
ψe

L,+
∣∣J I

z

∣∣ψe
L,+

〉
∣∣∣∣∣|t ee|2, (10a)

T he =
∣∣∣∣∣
〈
ψh

R,+
∣∣J I

z

∣∣ψh
R,+

〉
〈
ψe

L,+
∣∣J I

z

∣∣ψe
L,+

〉
∣∣∣∣∣|t he|2. (10b)

Resorting to the scattering probabilities, the zero-
temperature differential conductances for the CAR and EC
processes can, respectively, be formulated as

∂I I
CAR

∂V
= 4e2A

h

∫
dk‖

(2π )2
T he(eV, k‖), (11a)

∂I I
EC

∂V
= 4e2A

h

∫
dk‖

(2π )2
T ee(eV, k‖), (11b)

with A the cross-sectional area of the junction and V the
bias voltage. Consequently, the nonlocal differential conduc-
tance can be defined as ∂I I

nl/∂V = ∂I I
EC/∂V − ∂I I

CAR/∂V . In
addition, by virtue of the Blonder-Tinkham-Klapwijk (BTK)
formula [34], the zero-temperature differential conductance
for the local transport can be written as

∂I I
l

∂V
= e2A

h

∫
dk‖

(2π )2
[1 − Ree(eV, k‖) + Rhe(eV, k‖)]. (12)

To normalize the differential conductance, it is convenient to
define gI

0(eV ) = e2A(eV + μL )2/(πh), which is the conduc-
tance for a corresponding normal junction in the ballistic limit,
or alternatively, gI

0(eV ) can also be viewed as the number of
available channels at energy (μL + eV ).

B. Results and discussion

In this section, we present the numerical results and un-
cover the underlying mechanisms for realizing the exclusive
CAR transport in the type-I WSM-based NSN junction. In the
numerical calculations, the chemical potential in the S region
is fixed as μS = 50�0 for definiteness.

The scattering probabilities for the normal incidence, i.e.,
the incident angle α = 0, are shown in Figs. 2(a) and 2(b).
As can be seen, the most prominent feature is the vanishing
of the CAR process, i.e., T he = 0, due to the spin/orbital
momentum locking together with the s-wave pairing. This
phenomenon is distinctly different from the scenarios in sim-
ilar NSN junctions based on graphene [36,42] and silicene
[40,43]. The spin/orbital-momentum texture also manifests
itself in the disappearance of the backscattering for α = 0, i.e.,
Ree = 0, differing from that in conventional-material-based
NSN junction [45,46].

We now focus on the CAR process which can split a
Cooper pair into two entangled electrons separated spatially.
Generally, in a type-I WSM-based NSN junction the CAR
process is accompanied by the unintended EC process. Since
the CAR and EC processes transfer opposite charge carriers,
the measurable signal of the CAR process is masked or even
completely canceled by that of the EC process. Moreover,
the appearance of the EC process deeply suppresses the CAR

085410-3



HAI LI AND GANG OUYANG PHYSICAL REVIEW B 100, 085410 (2019)

FIG. 2. Scattering probabilities versus (a) the junction length d
and (b) bias voltage V for the normal incidence (i.e., α = 0), where
eV = 0.5�0 in (a) and d = 2.1ξ0 in (b). Panels (c) and (d) present
the contour plots of probabilities T he and T ee, respectively, where
eV = 0.9�0. In all panels, μL = −μR = 0.5�0, ZL = ZR = 0. The
incident angle α = arctan(k‖/ke

L,z ) and ξ0 symbolizes the supercon-
ducting coherence length.

transport. Additionally, the signal of CAR transport can also
be weakened by the LAR process. Therefore, to improve the
efficiency and measurability of the Cooper-pair splitting, both
the EC and LAR processes need to be forbidden. By virtue
of the zero momentum of the Weyl node, we demonstrate that
both the EC and LAR processes can be totally suppressed by
properly tuning the chemical potentials μL and μR, resulting
in an exclusive CAR transport. The underlying mechanism
can be understood resorting to the scattering configurations.
To do so, we assume the chemical potentials of the L and
R regions take the relation of μL = −μR ≡ μ � 0. As a
consequence, the scattering angles satisfy αe

L = αh
R ≡ α and

αh
L = αe

R ≡ α′. Here the incident angle is chosen as α, and the
scattering angles of NR (LAR) and EC (CAR) processes are,
respectively, parametrized by α

e(h)
L and α

e(h)
R . According to the

conservation of k‖, we have (ε + μ) sin α = (ε − μ) sin α′.
Since (ε + μ) � |ε − μ| for ε > 0, there exists a critical
incident angle αc = arcsin[|eV − μ|/(eV + μ)] [36,38,44].
For an electronlike incident quasiparticle with energy ε �
0 and incident angle |α| > αc, the LAR and EC processes
are completely suppressed. Consequently, the nonlocal trans-
port is solely contributed by the CAR process, leading to
an exclusive CAR transport. This scenario is quantitatively
illustrated in Figs. 2(c) and 2(d), where αc � 0.09π . As can
be seen, for α > 0.09π , the exclusive CAR probability T he

with a sufficiently large value can be achieved. However, for

FIG. 3. Panels (a), (b), and (c) present, respectively, the depen-
dence of nonlocal differential conductance on junction length d , bias
voltage V , and chemical potential μ, where eV = 0.5�0 in (a) and
d = 2.1ξ0 in (b) and (c). In panel (c), the chemical potentials in the
L and R WSM regions satisfy μL = −μR = μ. Panel (d) gives the
dependence of local differential conductance on the bias voltage,
where the solid and short-dotted curves correspond to d = 2.1ξ0 and
d = 10ξ0, respectively. In all panels, ZL = ZR = 0.

α < 0.09π , T he is deeply suppressed, and the nonlocal trans-
port is dominated by the EC process.

The proposed scattering configurations also manifest them-
selves in the experimentally measurable CAR and nonlocal
differential conductances, as shown in Fig. 3. Especially,
as elucidated above, for μL = −μR = eV the critical angle
αc = 0, implying that the LAR and EC processes are for-
bidden for all possible incident angles. Consequently, the
nonlocal differential conductance is exclusively contributed
by the CAR process, i.e., ∂I I

nl/∂V = −∂I I
CAR/∂V , as depicted

by the upper panels in Figs. 3(a)–3(c). As regards the d-
dependent CAR conductance, one can find that the maximum
is achieved when d is comparable with the superconducting
coherence length ξ0. This is because, on the one hand, for
d � ξ0 the EC process dominates the nonlocal transport and
suppresses the CAR process. On the other hand, since the
quasiparticles in the S region are evanescent for eV < �0, the
nonlocal transport processes are exponentially suppressed for
a sufficiently large d [see Fig. 3(a) for details]. Most saliently,
the CAR-dominated nonlocal transport can be realized within
wide ranges of bias voltage V and chemical potential μ, as can
be seen in Figs. 3(b) and 3(c). Intriguingly, the eV -dependent
CAR and nonlocal differential conductances exhibit plateaus
for μL = −μR = 0.5μ. These scenarios indicate that the ex-
clusive CAR conductance is not strongly dependent on the
bias voltage, which should be favorable for the experimental
realization. In addition, we note that in a similar graphene-
based NSN junction [36] the eV -dependent CAR conductance
just possesses a tip at eV = μL = −μR, which means that
the CAR-dominated nonlocal transport is sensitive to the bias
voltage and is difficult to be realized in practice. In this regard,
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FIG. 4. The interfacial-barrier-strength-dependent differential
conductance for the CAR process, where d = 2.1ξ0, ZL = ZR = Z ,
and μL = μR = μ.

the proposed type-I WSM-based NSN junction should be
more interesting for realizing the exclusive CAR transport.

To perform a comparison of local transport properties
in type-I WSM-based NSN and NS junctions, we consider
the local differential conductance in the proposed type-I
WSM-based NSN junction. As illustrated in Fig. 3(d), for
d = 10ξ0  ξ0 the behaviors of local transport tend to those
in a type-I WSM-based NS junction [26], namely, in the
subgap energy regime (i.e., eV < �0) the local differential
conductance disappears at eV = μL = −μR, as indicated by
the short-dotted curves. This feature can be quantitatively
analyzed as follows. On the one hand, the critical angle αc = 0
at eV = μL = −μR, leading to the disappearances of LAR
and EC processes, i.e., Rhe = 0 and T ee = 0. On the other
hand, since the quasiparticles in the S region are evanescent
in the subgap regime, the nonlocal scattering probabilities
T he and T ee vanish for d = 10ξ0  ξ0, resulting in Ree =
1 − Rhe. According to Eq. (12), the integrand 1 − Ree + Rhe =
2Rhe = 0, leading to a vanishing local differential conduc-
tance. However, in the NSN junction with a small junction
length, although the LAR and EC processes are prohibited
when eV = μL = −μR, the CAR probability T he is finite
and Ree + T he = 1. Therefore, 1 − Ree + Rhe = T he is finite
and the nonlocal differential conductance is nonvanishing at
eV = μL = −μR [see the solid curves in Fig. 3(d) for details].

Figure 4 presents the dependence of CAR conductance
on the strength of the interfacial barrier; it is observed that
the CAR conductance oscillates with the barrier strength Z
without a decaying profile. As proposed in Ref. [26], this
property can be attributed to the spin/orbital-momentum lock-
ing of type-I WSMs. Notably, the nondecaying profile of CAR
conductance makes the type-I WSM-based NSN junction
favorable for the realization of Cooper-pair splitting.

III. TYPE-II WSM-BASED NSN JUNCTION

In this section, we concentrate on the effects of the
anisotropic band structures on the nonlocal transport prop-
erties of type-II WSM-based NSN junctions. The proposed
setup is similar to the type-I WSM-based NSN junction
depicted in Fig. 1, except that the type-II WSM-based NSN
junction is deposited in the xy plane and is assumed to be

infinite in the yz plane. The superconducting correlation in the
S region can be induced by a superconducting electrode via
the proximity effect, as has been experimentally proposed in
a type-II WSM-based SHS [21].

A. Model and formalism

We consider a NSN junction based on a time-reversal
symmetric type-II WSM. Near the Weyl node Q, the single-
particle effective Hamiltonian of a time-reversal symmetric
type-II WSM can be written as ĥII

+(k) = h̄v1kxσ̂0 + h̄v2k · σ̂,
where v2 denotes the Fermi velocity, σ̂ = (σ̂1, σ̂2, σ̂3) are
Pauli matrices, and k = (kx, ky, kz ) symbolize the momenta
measured with respect to the Weyl node. The parameter v1

depicts the tilting of the Weyl cone along the x direction,
and |v1/v2| > 1 in accordance with the definitions of type-II
WSMs. For definiteness, we set v1 > v2 > 0 hereafter.

To highlight the effects of the strongly anisotropic band
structures on the nonlocal transport properties, we concentrate
on a type-II WSM-based NSN junction extended along the
n direction, where n = (cos γ , sin γ ) indicates the normal
directions of NS interfaces, and γ represents the interface
orientation angle between directions of the x axis and n. In
this way, the two NS interfaces are located at x = −y tan γ

and x = −y tan γ + d/ cos γ , respectively. It is convenient to
take a coordinate transformation of (x̃, ỹ)T = R̂(x, y)T , with
the rotation operator R̂ = eiσ2γ . In the new coordinate system,
the L and R regions are, respectively, placed within ranges
of x̃ < 0 and x̃ > d , and the S region is deposited within the
range of 0 < x̃ < d . After the coordinate transformation, the
single-particle effective Hamiltonian near the Weyl node Q
can be recast into ĥII

+(k̃) = h̄v1σ̂0(−i∂x̃ cos γ − k̃y sin γ ) +
h̄v2σ̂1(−i∂x̃ cos γ − k̃y sin γ ) + h̄v2σ̂2(−i∂x̃ sin γ + k̃y cos γ ).
For simplicity, we fix kz = 0 throughout this work, as has
been implemented in Refs. [27,28]. In the superconducting
region we consider the Bardeen-Cooper-Schrieffer pairing
which couples electron excitations near the Weyl node Q and
hole excitations close to the Weyl node −Q. In the basis of
ψ = (ψQ,↑, ψQ,↓, ψ∗

−Q,↓,−ψ∗
−Q,↑)T the BdG Hamiltonian

can be formulated as [27,28]

HII =
(

ĥII
+(k̃) − μ(x̃) �̂(x̃)

�̂†(x̃) −hII
+(k̃) + μ(x̃)

)
. (13)

Taking advantage of the step function model [26–31,33–44],
the chemical potential can be parametrized as μ(x̃) =
μL�(−x̃) + μS�(x̃)�(d − x̃) + μR�(x̃ − d ). As proposed
in Sec. II A, the chemical potential of the S region is assumed
to be large enough, so that the leakage of Cooper pairs is
negligibly small [43,44]. Consequently, the pair potential can
be rationally characterized by a step function model, i.e.,
�̂(x̃) = �0σ̂0eiϕ�(x̃)�(d − x̃).

In the L and R regions, by diagonalizing the BdG Hamilto-
nian straightforwardly, the dispersion relations can be written
as

ε
e(h)
j,η = +(−)h̄v1(k̃ j,x cos γ − k̃y sin γ ) + ηh̄v2|k̃ j | − (+)μ j,

(14)
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where η = ±1, |k̃ j | =
√

k̃2
j,x + k̃2

y , the superscript e(h) repre-

sents the electronlike (holelike) band, and j = L(R) denotes
the related quantities of the L (R) region. It can be inferred that
the Weyl cones tilt both in the x̃ and ỹ directions. According
to Eq. (14), the group velocities along the x̃ direction can be
formulated as

ṽ
e(h)
j,x ≡ ∂ε

e(h)
j /∂ (h̄k̃ j,x )

= +(−)v1 cos γ + ηv2k̃ j,x/|k̃ j |,
(15)

depending on the interface orientation angle γ . Specifically,
in the case of v1 cos γ > v2, ṽ

e(h)
j,x are always positive (neg-

ative). Consequently, in the two N regions, all electronlike
(holelike) quasiparticles propagate along the +(−)x̃ direction,
resulting in so-called double EC (LAR) processes. Whereas,
for v1 cos γ < v2, the scattering problem is similar to that of
type-I WSM-based NSN junctions. Therefore, there are two
essentially different scattering configurations which need to
be considered separately.

Parenthetically, since the Fermi surfaces of type-
II WSMs possess hyperbolalike profiles, the incident
angle of an electron quasiparticle should be defined
as θ = − arctan(ṽe

L,y/ṽ
e
L,x ), which is not identical to

− arctan(k̃y/k̃e
L,x ), as elaborated in Ref. [27]. Furthermore,

the range of θ should be restricted in accordance with the
following considerations. On the one hand, it can be inferred
from Eq. (14) that, for a given γ , the incident angle θ should
satisfy the relation of | sin(θ − γ )| � v2/v1. On the other
hand, since in this work we are only concerned with the
current flowing though the NSN junctions along the x di-
rection, the relation of −π/2 < θ < π/2 should be satisfied.
Combining the two conditions, we arrive at max(−π/2, γ −
θc) � θ � min(π/2, γ + θc), with θc being defined as θc =
arcsin(v2/v1).

1. v1 cos γ > v2

In the L region (x̃ < 0), there are two possible electron-
like incident quasiparticles stemming from the εe

L,− and εe
L,+

bands, respectively, which can only be Andreev reflected
as holelike quasiparticles. Consequently, the corresponding
wave functions are, respectively, given by

�̃L,− = ψ̃e
L,1 + r̃he

1,−ψ̃h
L,1 + r̃he

2,−ψ̃h
L,2, (16a)

�̃L,+ = ψ̃e
L,2 + r̃he

1,+ψ̃h
L,1 + r̃he

2,+ψ̃h
L,2, (16b)

where the amplitudes of LAR processes are symbolized by
r̃he

i,± (i = 1, 2) and the basis scattering states ψ̃e,h
1,2 are given by

Eq. (B1). In the R region, since only electronlike quasiparti-
cles propagate along the +x̃ direction for v1 cos γ > v2, the
CAR process disappears and only the two EC processes arise.
Accordingly, the wave functions of the R region (x̃ > d) can
be written as

�̃R,− = t̃ ee
1,−ψe

R,1 + t̃ ee
2,−ψe

R,2, (17a)

�̃R,+ = t̃ ee
1,+ψe

R,1 + t̃ ee
2,+ψe

R,2, (17b)

with t̃ ee
i,± the corresponding transmission amplitudes for the

EC processes. In the S region (0 < x̃ < d), the wave function
�̃S is a linear superposition of all possible basis scattering
states, viz.,

�̃S =
4∑

m=1

s̃mψ̃S
m, (18)

where s̃m labels the related scattering coefficients, and the
details of ψ̃S

m are shown in Eq. (B3).
The effects of interfacial imperfections can be modeled by

two interfacial barriers arranged in the regions of −dL/2 <

x̃ < dL/2 and −dR/2 + d < x̃ < dR/2 + d , with strengths UL

and UR, respectively. As proposed in Sec. II A, we take the
limits of UL(R) → ∞ and dL(R) → 0 with UL(R)dL(R)/(h̄v2) ≡
Z̃L(R) being finite. In the barrier regions, the corresponding
wave functions are linear superpositions of all possible basis
scattering states, taking forms of

�̃BL = b̃1ψ̃
e
B,L,1 + b̃2ψ̃

e
B,L,2 + b̃3ψ̃

h
B,L,1 + b̃4ψ̃

h
B,L,2, (19a)

�̃BR = c̃1ψ̃
e
B,R,1 + c̃2ψ̃

e
B,R,2 + c̃3ψ̃

h
B,R,1 + c̃4ψ̃

h
B,R,2, (19b)

where b̃m and c̃m label the related scattering amplitudes, and
the detailed structures of basis scattering states are given in
Appendix B 1.

As proposed in Sec. II A, the scattering amplitudes can be
obtained by demanding the continuities of wave functions at
the boundaries. With this in hand, the probabilities for the
LAR processes can be defined as

R̃he
1(2),− =

∣∣∣∣∣
〈
ψ̃h

L,1(2)

∣∣J II
x̃

∣∣ψ̃h
L,1(2)

〉
〈
ψ̃e

L,1

∣∣J II
x̃

∣∣ψ̃e
L,1

〉
∣∣∣∣∣|r̃he

1(2),−|2, (20a)

R̃he
1(2),+ =

∣∣∣∣∣ 〈ψ̃
h
L,1(2)|J II

x̃ |ψ̃h
L,1(2)〉

〈ψ̃e
L,2|J II

x̃ |ψ̃e
L,2〉

∣∣∣∣∣|r̃he
1(2),+|2, (20b)

where the particle current density operator J II
x̃ = −i

h̄ [x̃,HII].
According to Eq. (13), we have J II

x̃ = τ3 ⊗ (v1 cos γ σ0 +
v2 cos γ σ1 + v2 sin γ σ2), with τ3 the Pauli matrix operating
on the Nambu space. For the EC processes, the transmission
probabilities can be formulated as

T̃ ee
1(2),− =

∣∣∣∣∣ 〈ψ
e
R,1(2)|J II

x̃ |ψe
R,1(2)〉

〈ψe
L,1|J II

x̃ |ψe
L,1〉

∣∣∣∣∣|t̃ ee
1(2),−|2, (21a)

T̃ ee
1(2),+ =

∣∣∣∣∣ 〈ψ
e
R,1(2)|J II

x̃ |ψe
R,1(2)〉

〈ψe
L,2|J II

x̃ |ψe
L,2〉

∣∣∣∣∣|t̃ ee
1(2),+|2. (21b)

Resorting to the transmission probabilities, the zero-
temperature differential conductance for the EC process can
be written as

∂I II
EC

∂V
=

∑
i=1,2

∑
δ=±

4e2A

h

∫
d k̃‖

(2π )2
T̃ ee

i,δ (eV, k̃‖)�(v1cos γ −v2),

(22)
where k̃‖ = (k̃y, kz ) and k̃‖ = |k̃‖|. The parameter κ is the

cut-off value of the integral area, satisfying κ �
√

k̃2
y + k2

z .
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Since the CAR process disappears for v1 cos γ > v2, only
the two EC processes contribute to the nonlocal transport.
Therefore, the nonlocal differential conductance at zero tem-
perature can be defined as ∂I II

nl/∂V = ∂I II
EC/∂V . To normalize

the differential conductance, it is advisable to define g̃II
0 (eV ) =

4e2κ2A/(πh)�(v1 cos γ − v2). Additionally, taking advan-
tage of the BTK formula [34], the local differential conduc-
tance at zero temperature can be formulated as

∂I II
l

∂V
=

∑
i=1,2

∑
δ=±

4e2A

h

∫
d k̃‖

(2π )2

[
2+R̃he

i,δ (eV, k̃‖)
]
�(v1cosγ − v2).

(23)

2. v1 cos γ < v2

In the L region, we take an electronlike quasiparticle as
the incident one, and the scenarios resulting from a holelike
incident quasiparticle can be discussed in the same way.
For an electronlike incident quasiparticle propagating along
the +x̃ direction, it can either be normally reflected as an
electronlike quasiparticle or be Andreev reflected as a holelike
one, thus the involved wave function can be formulated as

�̃L = φ̃e
L,1 + r̃eeφ̃e

L,2 + r̃heφ̃h
L,2, (24)

where r̃ee and r̃he, respectively, represent the scattering am-
plitudes for the NR and LAR processes. The basis scattering
states φ̃e,h

j,1 and φ̃e,h
j,2 ( j = L, R) are given in Eq. (B6). The

incident quasiparticle can also tunnel into the R region through
the EC or CAR process. Thus, in the R region the wave
function can be expressed as

�̃R = t̃ eeφ̃e
R,1 + t̃ heφ̃h

R,1, (25)

with t̃ ee and t̃ he the transmission amplitudes for the EC and
CAR processes, respectively. In the two interfacial barrier
regions, the wave functions can also be described by Eq. (19),
by substituting ψ̃e,h

B, j,1 and ψ̃e,h
B, j,2 with φ̃e,h

B, j,1 and φ̃e,h
B, j,2, re-

spectively. The details of φ̃e,h
B, j,1 and φ̃e,h

B, j,2 are presented in
Appendix B 2. In the S region, the wave function is given by
Eq. (18).

According to the standard procedure of matching corre-
sponding wave functions at the boundaries, we can get the
scattering amplitudes. In doing so, the probabilities for the NR
and LAR processes can be, respectively, written as

R̃ee =
∣∣∣∣∣ 〈φ̃

e
L,2|J II

x̃ |φ̃e
L,2〉

〈φ̃e
L,1|J II

x̃ |φ̃e
L,1〉

∣∣∣∣∣|r̃ee|2, (26a)

R̃he =
∣∣∣∣∣ 〈φ̃

h
L,2|J II

x̃ |φ̃h
L,2〉

〈φ̃e
L,1|J II

x̃ |φ̃e
L,1〉

∣∣∣∣∣|r̃he|2, (26b)

for the EC and CAR processes, and the related probabilities
are, respectively, given by

T̃ ee =
∣∣∣∣∣ 〈φ̃

e
R,1|J II

x̃ |φ̃e
R,1〉

〈φ̃e
L,1|J II

x̃ |φ̃e
L,1〉

∣∣∣∣∣|t̃ ee|2, (27a)

T̃ he =
∣∣∣∣∣ 〈φ̃

h
R,1|J II

x̃ |φ̃h
R,1〉

〈φ̃e
L,1|J II

x̃ |φ̃e
L,1〉

∣∣∣∣∣|t̃ he|2. (27b)

By virtue of the transmission probabilities, the zero-
temperature differential conductances for the EC and CAR
processes can be, respectively, defined as

∂I II
EC

∂V
= 4e2A

h

∫
d k̃‖

(2π )2
T̃ ee(eV, k̃‖)�(v2 − v1 cos γ ), (28a)

∂I II
CAR

∂V
= 4e2A

h

∫
d k̃‖

(2π )2
T̃ he(eV, k̃‖)�(v2 − v1 cos γ ).

(28b)

Thus, the nonlocal differential conductance at zero tempera-
ture can be obtained as ∂I II

nl/∂V = ∂I II
EC/∂V − ∂I II

CAR/∂V . To
normalize the differential conductance, we define g̃II

0 (eV ) =
2e2κ2A/(πh)�(v2 − v1 cos γ ). Resorting to the BTK for-
mula, the local differential conductance at zero temperature
can be defined as

∂I II
l

∂V
=4e2A

h

∫
d k̃‖

(2π )2
[1 − R̃ee(eV, k̃‖) + R̃he(eV, k̃‖)]

× �(v2 − v1 cos γ ). (29)

B. Results and discussion

We now proceed to analyze the numerical results and
discuss the transport properties of type-II WSM-based NSN
junctions. What we mainly focus on are the manifestations
of the anisotropic band structures in the transport scenar-
ios. For definiteness, the associated parameters are fixed as
v1 = 2, v2 = 1, and μS = 100�0 in the numerical calculation.
In doing so, the critical interface orientation angle can be
evaluated as γc = cos−1(v2/v1) = π/3. For γ < π/3, there
only exist double LAR and double EC processes. Whereas,
for γ > π/3, the scattering mechanism is similar to that in
type-I WSM-based NSN junctions, as proposed in Sec. III A.
In addition, the parameter θc = π/6, thus the incident angle
θ should be restricted within the range of [max(−π/2, γ −
π/6), min(π/2, γ + π/6)].

To uncover the influences of the anisotropic band structures
on the scattering configurations, we investigate the incident-
angle- and energy-dependent scattering probabilities for γ =
π/18, and compare our findings with the results correspond-
ing to γ = 0 [28]. As shown in Fig. 5, it is found that the EC
probability T̃ ee

2,− is almost independent of the incident angle θ ,
while the other three scattering probabilities, i.e., R̃he

1,−, R̃he
2,−,

and T̃ ee
1,−, nonmonotonically vary with increasing θ . These

results are independent of the incident energy. In contrast, as
proposed in Ref. [28], in the case of γ = 0, for a fixed incident
energy all the scattering probabilities monotonically depend
on the incident angle. The clear-cut difference between the
scattering configurations of γ = π/18 and γ = 0 reflects the
anisotropic aspects of type-II WSMs. It is worthy stressing
that the remarkable γ -dependent scattering configurations are
unique for the type-II WSMs, which are absent in similar
NSN junctions based on other Dirac materials [36–43]. In
addition, by inspecting the scattering probabilities related to
junction lengths d = ξ0 and d = 5ξ0, one can find that the
tunneling resonances appear in the long NSN junction with
length d = 5ξ0, and thus enhance the amplitudes of scattering
probabilities. Furthermore, the proposed resonant peaks can
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(a)R̃he
1,− , d = ξ0 (b)R̃he

2,−, d = ξ0 (c)T̃ ee
1,−, d = ξ0 (d)T̃ ee

2,−, d = ξ0

(e)R̃he
1,− , d = 5ξ0 (f)R̃he

2,−, d = 5ξ0 (g)T̃ ee
1,− , d = 5ξ0 (h)T̃ ee

2,− , d = 5ξ0

FIG. 5. Contour plots of the scattering probabilities versus the incident angle θ and energy eV , where the incident mode is selected as ψ̃ e
L,1.

In all panels, γ = π/18, μL = μR = 0.5�0, and Z̃L = Z̃R = 0.

be achieved by electrically tuning the bias voltage, as indi-
cated by panels (d)–(h) in Fig. 5.

We now turn to the manifestations of anisotropic band
structures in the experimentally measurable conductance. The
contour plots of nonlocal differential conductance are illus-
trated in Fig. 6. In all panels, one can find that the nonlocal
differential conductance strongly depends on γ . Specifically,
as can be seen in Fig. 6(a), for eV � �0, the oscillation period
(T ) of the eV -dependent nonlocal differential conductance
obviously varies with γ , quite differing from that in similar
NSN junctions based on graphene [38] and topological insula-
tors [39]. This phenomenon can be quantitatively understood
as follows. Actually, in the regime of μS  �0, the oscillation

FIG. 6. Contour plots of nonlocal differential conductance
∂I II

nl/∂V × 1/g̃II
0 . The related parameters are taken as (a) d = 2ξ0,

μL = μR = 0.5�0, and Z̃L = Z̃R = 0; (b) eV = 0, Z̃L = Z̃R = 0, and
μL = μR = 0.5�0; (c) d = 2ξ0, eV = 0, Z̃L = Z̃R = 0, and μL =
μR = μ; (d) Z̃L = Z̃R ≡ Z̃ , d = 2ξ0, μL = μR = 0.5�0, and eV = 0.

period T ∝ h̄|v2
1 cos2 γ−v2

2 |
2μSv2

. Accordingly, for a set of fixed v1 =
2 and v2 = 1, one can find that T decays by enhancing γ

within the range of [0, π/3] and increases when γ changes
from π/3 to π/2. Figure 6(b) depicts the zero-bias nonlocal
differential conductance as functions of γ and d . It is found
that with increasing d , the nonlocal differential conductance
monotonically decays in the case of γ < π/3. As mentioned
in Ref. [28], this scenario results from the phase difference
of π between the two d-dependent transmission probabilities,
i.e., T̃ ee

1,+(−)(d ) and T̃ ee
1,+(−)(d ), which dismisses the oscillating

textures of the d-dependent zero-bias nonlocal differential
conductance. Notably, although in Ref. [28] the proposed
mechanism was concluded by analyzing the scattering con-
figurations of γ = 0, our findings reveal that the validity of
the mechanism can be extended to the situations of 0 < γ <

π/3. Additionally, for γ > π/3, the scattering configurations
are similar to that in similar NSN junctions based on other
Dirac systems [36,38–43], and the d-dependent nonlocal dif-
ferential conductance harbors oscillating characters when d is
not sufficiently large. By passing, the decaying profile of d-
dependent nonlocal differential conductance originates from
the evanescent characters of the modes in the superconducting
region. The γ -dependent behaviors of the zero-bias nonlocal
differential conductance can also be observed in Figs. 6(c)
and 6(d). In the regime of γ < π/3, the nonlocal differential
conductance is independent of the chemical potential μ and
the interfacial barrier strength Z̃ . However, for γ > π/3,
the nonlocal differential conductance slightly decays with
increasing the chemical potential, and the Z̃-dependent nonlo-
cal differential conductance exhibits tiny oscillating textures.
The γ -dependent nonlocal differential conductance can be
ascribed to the anisotropic aspects of type-II WSMs. In the
case of γ < π/3, the band structures in the two N regions
are overtilted, so that both the NR and CAR processes are
completely suppressed, and the nonlocal transport is solely
contributed by the EC process. Whereas, for γ > π/3, the
band tilting is weakened, and both the CAR and EC processes
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FIG. 7. Contour plot of the local differential conductance
∂I II

l /∂V × 1/g̃II
0 . The related parameters are taken as (a) d =

2ξ0, μL = μR = 0.5�0, and Z̃L = Z̃R = 0; (b) eV = 0, μL = μR =
0.5�0, and Z̃L = Z̃R = 0; (c) d = 2ξ0, eV = 0, Z̃L = Z̃R = 0, and
μL = μR = μ; (d) Z̃L = Z̃R ≡ Z̃ , d = 2ξ0, μL = μR = 0.5�0, and
eV = 0.

contribute to the nonlocal differential conductance. We note
that the nonlocal differential conductance is always positive
even in the regime of γ > π/3, implying that the EC process
dominates the nonlocal transport in type-II WSM-based NSN
junctions. Moreover, the exclusive CAR transport is absent
in type-II WSM-based NSN junctions. This scenario can be
attributed to the fact that the electron and hole pockets coexist
in the neighborhood of the Fermi level and both contribute to
the nonlocal transport.

Besides the nonlocal differential conductance discussed
above, we now investigate the local differential conductance
in a type-II WSM-based NSN junction. As shown in Fig. 7(a),
in the case of eV � �0, the local differential conductance
decays with increasing eV and possesses oscillating textures.
Moreover, the oscillation period of the eV -dependent local
differential conductance also depends on γ . As can be seen,
with increasing γ the oscillation period of the eV -dependent
local differential conductance decreases within the range
of γ < π/3 and increases when γ > π/3. The oscillating
textures originate from the quantum interferences due to
the multi-interface geometry of the proposed NSN junction,
which are absent in the type-II WSM-based NS junction
[27]. As shown in Ref. [27], in the situation of eV � �0,
the local differential conductance monotonically decreases
with increasing eV . In the subgap regime, i.e., eV � �0, with
enhancing γ the local differential conductance monotonically
increases in the regime of γ < π/3 and slightly oscillates with
γ when γ > π/3. These characters are also different from
those in a type-II WSM-based NS junction [27], where the
γ -dependent zero-bias local differential conductance exhibits
a plateau for γ < π/3 and monotonically decays when γ

changes from π/3 to π/2. The dependence of zero-bias
local differential conductance on d is depicted in Fig. 7(b).
It is observed that in the regime of γ < π/3 the zero-bias
local differential conductance can be smoothly enhanced by

increasing d , while in the case of γ > π/3 the zero-bias
local differential conductance possesses oscillating characters
for small d . Furthermore, by inspecting Figs. 6(c) and 6(d),
one can find that the zero-bias local differential conductance
oscillates with μ and Z̃ when γ > π/3. With regard to γ <

π/3, the zero-bias local differential conductance is insensitive
to both μ and Z̃ . In light of the above elucidations, one
can conclude that in the type-II WSM-based NSN junction
the local differential conductance is also γ dependent and
different from that in a type-II WSM-based NS junction.

IV. CONCLUSION

To conclude, we have investigated transport properties
in NSN junctions based on time-reversal symmetric type-
I and type-II WSMs. In contrast to those in similar NSN
junctions based on other Dirac materials, in the proposed
type-I WSM-based NSN junction the CAR transport prob-
ability vanishes for normal incidence. Remarkably, a CAR-
dominated nonlocal differential conductance can be achieved
within wide ranges of related parameters. Additionally, owing
to the spin/orbital-momentum locking of type-I WSMs, the
proposed CAR-dominated nonlocal differential conductance
possesses a nondecaying profile with enhancing the strengths
of interfacial barriers. These intriguing attributes enable the
type-I WSM-based NSN junctions to be favorable for the
Cooper-pair splitting.

For the type-II WSM-based NSN junction, the manifesta-
tions of the anisotropic aspects of type-II WSMs in the nonlo-
cal transport have been emphasized. Due to the anisotropic
band structures of the type-II WSM, the scattering config-
urations and nonlocal differential conductance are strongly
dependent on the interface orientation angle, in contrast to
those in similar NSN junctions based on other Dirac mate-
rials. Furthermore, for γ < γc the differential conductance is
insensitive to the chemical potential and the strength of the
interfacial barrier, while for γ > γc the differential conduc-
tance exhibits oscillating textures with respect to the relevant
parameters. These findings provide intriguing insights into the
correlated transport properties in WSM-based superconduct-
ing heterostructures.
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APPENDIX A: CALCULATION OF THE BASIS
SCATTERING STATES IN A TYPE-I WSM-BASED

NSN JUNCTION

In this Appendix we present necessary calculation details
regarding the wave functions and related quantities in atype-I
WSM-based NSN junction.
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In the superconducting region, solving the BdG equation
HIψ = εψ straightforwardly yields

ψS
1(2) =

⎛
⎜⎜⎜⎝

k‖eiβ−iη[
μS + � − (+)kS

z,1

]
eiβ

k‖e−iϕ−iη[
μS + � − (+)kS

z,1

]
e−iϕ

⎞
⎟⎟⎟⎠eikS

z,1(2)z, (A1a)

ψS
3(4) =

⎛
⎜⎜⎜⎝

k‖eiϕ−iη[
μS − � − (+)kS

z,2

]
eiϕ

k‖eiβ−iη[
μS − � − (+)kS

z,2

]
eiβ

⎞
⎟⎟⎟⎠eikS

z,3(4)z, (A1b)

where kS
z,2(4) = −kS

z,1(3), η = tan−1(ky/kx ), and the related pa-
rameters are

� = i
√

�2
0 − ε2�(�0 − |ε|) + sgn(ε)

√
ε2 − �2

0�(|ε| − �0), (A2a)

β = cos−1 [|ε|/�0)�(�0 − |ε|] − i cosh−1(|ε|/�0)�(|ε| − �0), (A2b)

kS
z,1(3) = sgn[ε + (−)

√
�2

0 + [μS + (−)k‖]2]
√

[μS + (−)�]2/(h̄v)2 − k2
‖ . (A2c)

In the two N regions, the basis scattering states can be
formulated as

ψe
j,+(−) =

⎛
⎜⎜⎜⎝

k‖e−iη

ε + μ j − (+)ke
j,z

0

0

⎞
⎟⎟⎟⎠e+(−)ike

j,zz, (A3a)

ψh
j,+(−) =

⎛
⎜⎜⎜⎝

0

0

−k‖e−iη

ε − μ j + (−)kh
j,z

⎞
⎟⎟⎟⎠e+(−)ikh

j,zz, (A3b)

where j = L (R) denotes the related quantities of the L (R)
region.

APPENDIX B: CALCULATION OF THE BASIS
SCATTERING STATES IN A TYPE-II WSM-BASED

NSN JUNCTION

In this Appendix we perform calculation details for the
basis scattering states and involved parameters in a type-II
WSM-based NSN junction.

1. v1 cos γ > v2

For v1 cos γ > v2, in the N regions the basis states can be
formulated as

ψ̃e
j,1(2) =

⎛
⎜⎜⎜⎜⎝

−(+)
√

(k̃e
j,x,1(2))

2 + k̃2
y

(k̃e
j,x,1(2) + ik̃y)eiγ

0

0

⎞
⎟⎟⎟⎟⎠ei(k̃e

j,x,1(2) x̃+k̃y ỹ), (B1a)

ψ̃h
j,1(2) =

⎛
⎜⎜⎜⎜⎝

0

0

+(−)
√

(k̃h
j,x,1(2))

2 + k̃2
y

(k̃h
j,x,1(2) + ik̃y)eiγ

⎞
⎟⎟⎟⎟⎠ei(k̃h

j,x,1(2) x̃+k̃y ỹ), (B1b)

where the related parameters are given by

k̃e
j,x,1(2) =

ṽ1(ε+μ̃ j )+(−)v2

√
(ε+μ̃ j )2+ h̄2

(
ṽ2

1 −v2
2

)
k̃2

y

h̄
(
ṽ2

1 − v2
2

) ,

(B2a)

k̃h
j,x,1(2) =

−ṽ1(ε−μ̃ j )−(+)v2

√
(ε−μ̃ j )2+ h̄2

(
ṽ2

1 −v2
2

)
k̃2

y

h̄
(
ṽ2

1 − v2
2

) ,

(B2b)

where j = L, R, ṽ1 = v1 cos γ , and μ̃ j = μ j + h̄v1 sin γ k̃y.
In the interfacial barrier regions, by substituting μ j with Uj

into Eq. (B2), the expressions of k̃e,h
B, j,x,1(2) can be obtained. In

Eq. (B1), by substituting k̃e,h
j,x,1(2) with k̃e,h

B, j,x,1(2), we can get the

basis states ψ̃e,h
B, j,1(2) in the interfacial barrier regions.

In the S region, in the limit of μS  max{μL(R),�0, ε}, the
basis states can be formulated as

ψ̃S
1(3) =

⎛
⎜⎝

e−iβ+iϕ

+(−)e−iβ+iϕ+iγ

1
+(−)eiγ

⎞
⎟⎠ei(k̃S

x,1(3) x̃+k̃y ỹ), (B3a)

ψ̃S
2(4) =

⎛
⎜⎝

eiβ+iϕ

+(−)eiβ+iϕ+iγ

1
+(−)eiγ

⎞
⎟⎠ei(k̃S

x,2(4) x̃+k̃y ỹ), (B3b)

where the related parameters are defined as

k̃S
x,1(2) = μS − (+)i�0 sin β

h̄(v1 cos γ + v2)
, (B4a)

k̃S
x,3(4) = μS − (+)i�0 sin β

h̄(v1 cos γ − v2)
. (B4b)

As an aside, we note that the basis scattering states ψ̃S
1,3(2,4)

propagate along the −(+)x̃ direction for |ε| > �0. In the
case of |ε| < �0, ψ̃S

1,3(2,4) describe the evanescent modes and
decay exponentially as x̃ → −∞ (x̃ → +∞).
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2. v1 cos γ < v2

We now proceed to the derivations of basis scattering states and associated quantities in the case of v1 cos γ < v2. In the N
regions, the x̃ components of the momenta can be expressed as

q̃e
j,x,1(2) =

ṽ1(ε + μ̃ j ) − (+)ζ j,ev2

√
(ε + μ̃ j )2 + h̄2

(
ṽ2

1 − v2
2

)
k̃2

y

h̄
(
ṽ2

1 − v2
2

) , (B5a)

q̃h
j,x,1(2) =

ṽ1(μ̃ j − ε) + (−)ζ j,hv2

√
(ε − μ̃ j )2 + h̄2

(
ṽ2

1 − v2
2

)
k̃2

y

h̄
(
ṽ2

1 − v2
2

) , (B5b)

where ζ j,e(h) = sgn[μ̃ j + (−)ε]. The basis scattering states can be formulated as

φ̃e
j,1(2) =

⎛
⎜⎜⎜⎝

ζ j,e

√
(q̃e

j,x,1(2))
2 + k̃2

y

(q̃e
j,x,1(2) + ik̃y)eiγ

0
0

⎞
⎟⎟⎟⎠ei(q̃e

j,x,1(2) x̃+k̃y ỹ), (B6a)

φ̃h
j,1(2) =

⎛
⎜⎜⎜⎝

0
0

ζ j,h

√
(q̃h

j,x,1(2) )
2 + k̃2

y

(q̃h
j,x,1(2) + ik̃y)eiγ

⎞
⎟⎟⎟⎠ei(q̃h

j,x,1(2) x̃+k̃y ỹ). (B6b)

In the interfacial barrier regions, the basis states φ̃e,h
B, j,1(2) can be achieved by substituting q̃e,h

j,x,1(2) with q̃e,h
B, j,x,1(2) into Eq. (B6),

where q̃e,h
B, j,x,1(2) can be obtained by substituting μ j with Uj into Eq. (B5).

In the S region, the basis scattering states can also be formulated by Eq. (B3), except that ψ̃S
1,4(2,3) denote the basis scattering

states propagating along the −(+)x̃ direction for |ε| > �0.
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