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Consistent description of mesoscopic transport: Case study of current-dependent
magnetoconductance in single GaN:Ge nanowires
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The so called phase-coherence length lϕ and its relation to the geometrical dimensions of a sample determine
the electronic transport regime. Different approaches are established for extracting lϕ from magnetotransport data
of mesoscopic systems and need to be cross-checked by using experimental data on the same model system in
order to ensure an overall consistent theoretical description. Suitable model systems for testing this consistency
are single GaN:Ge nanowires. Their magnetoconductance at low temperatures exhibits universal conductance
fluctuations as well as weak localization effects. We find that the values of lϕ obtained from the established
analysis of the magnitude of the conductance fluctuations rms(�G) decrease with increasing measurement
current, whereas the corresponding values of lϕ determined by the analyses of the correlation field BC and
the weak localization effect yield the same value for lϕ independent of the measurement current used. We
apply and modify the existing theoretical framework for bias-dependent differential conductance fluctuations,
in order to explain the decrease of the conductance fluctuations rms(�G) with increasing current density in our
dc measurements. This leads to the same values of lϕ independent of the analysis approach applied to the same
set of data.
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I. INTRODUCTION

To further increase the performance of semiconducting
devices other materials, such as III-V semiconductors, need
to be integrated onto the existing silicon technology. The
integration of these materials is, among others, limited by the
formation of dislocations due to the lattice mismatch with the
substrate. Semiconducting nanowires overcome such limita-
tions and beyond that provide excellent physical properties for
future nanoscaled electronical devices. In particular, gallium
nitride (GaN) nanowires are promising candidates for opto-
electronics and high power field-effect transistors because of
the direct band gap and large electron mobilities [1–4]. How-
ever, to use GaN nanowires in optical and electrical devices, a
detailed understanding of the fundamental transport properties
of the nanowires is needed. Although studied over the past
decades the transport properties in mesoscopic systems have
not yet been fully understood. Doped GaN nanowires are
an ideal model system for studying the fundamental prop-
erties of mesoscopic systems such as the transition from a
diffusive to a ballistic transport regime in strongly confined
structures [5–10]. The character of the electronic transport is
determined by the interplay of different length scales. These
are, on the one hand, geometrical extensions of the system
and, on the other hand, lengths characteristic for the scattering
mechanisms occurring in the system. One of the latter is the
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so called phase-coherence length lϕ , i.e., the characteristic
length over which the electron phase is preserved [11–14].
If the phase-coherence length is comparable to the system’s
geometrical extensions, quantum interference effects can be
directly observed. Universal conductance fluctuations (UCF)
and weak localization (WL) are two prominent examples of
such quantum interference phenomena [15–18]. The phase-
coherence length may be determined by three different ap-
proaches when analyzing the magnetotransport measurements
[10,12,19], i.e., (i) by evaluation of the magnitude of the
conductance fluctuations rms(�G), (ii) by the correlation
field BC, or (iii) by the weak localization effect. All three
approaches must yield the same value for lϕ to give a con-
sistent description [7,10,20]. Performing a careful analysis of
magnetotransport data of single Ge-doped GaN nanowires, we
demonstrate that based on the existing models this is not the
case. The lϕ values based on approach (i) deviate from those
of the other two approaches due to an alleged reduction of
rms(�G), in particular, as a function of current density or
applied electric field.

A bias dependence of differential conductance fluctuations
δGd [not to be confused with rms(�G)] was first theoretically
predicted by Larkin and Khmel’nitski [21] and experimentally
observed in metallic nanowires and rings [22–25], as well
as in metal-oxide-semiconductor field-effect transistors [26].
The differential conductance fluctuations increase in these
systems with increasing bias voltage at first and then start
to decrease again. The decrease of δGd at sufficiently high
voltages V is explained by a reduction of the phase-coherence
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FIG. 1. (a) Measured temperature-dependent conductivity of nanowire A (blue triangles) and theoretical model (red solid line). The
inset shows exemplarily an SEM image of a contacted nanowire sample. (b) Determined activation energies ε1, ε2, ε3 for samples A–H.
(c) Determined conductivities σ1, σ2, σ3 for samples A–H.

length by inelastic scattering, in agreement with theory
[21,27]. In this context V denotes the voltage drop per co-
herence length lϕ and Ec = h̄D/l2

ϕ is the so called Thouless
energy and D the diffusion coefficient of electrons. However,
such a behavior is only observed for the differential conduc-
tance measured in ac lock-in technique, where eV � Ec, kBT .
Here, we report on voltage-dependent magnetoconductance
fluctuations measured in a dc bias technique in a regime
eVdc ≈ Ec ≈ kBT . We explain the reduction of the magnitude
of UCF rms(�G) with Vdc by electric-field averaging of
uncorrelated energy intervals somewhat similar to the thermal
averaging derived by Lee, Stone, and Fukuyama, which ex-
plains the reduction of rms(�G) with increasing temperature
[28]. The proof that the reduction of rms(�G) is not caused
by a reduction of lϕ due to inelastic scattering is possible only
because, for the mesoscopic system under study, values of lϕ
can be determined independently by three different methods
from the same magnetoresistance curves.

II. EXPERIMENTAL METHODS

Self-assembled Ge-doped GaN nanowires were grown in
nitrogen-rich conditions on Si(111) substrates at tempera-
tures of 795 ◦C using plasma-assisted molecular beam epitaxy
(PAMBE) [29]. The growth conditions yielded doped GaN
nanowires with an effective carrier concentration in the order
of 2 to 4 × 1019 cm−3 determined by Seebeck measurements
[10,30]. Structural analysis of the nanowires with a scanning
electron microscope (SEM) revealed an average length of
about 1.5 to 2.0 μm and a diameter d between 60 and 140 nm.
The GaN nanowires were detached from the substrate by soni-
cation and transferred to an oxidized Si(100) substrate in order
to separate them and to contact individual specimens. The
electrical contacts were prepared by a combination of photo-
and electron-beam lithography. Ohmic contacts were realized
by thermally depositing 25 nm Ti followed by 200 nm Au
onto the designated contact areas and annealing of the sample
at 600 ◦C for 60 s in high vacuum.

Magnetotransport measurements at various temperatures
were carried out using a He-4 flow cryostat with a
superconducting magnet system providing external fields up

to 10 T. The nanowire axis was oriented perpendicular to
the external magnetic field. dc currents ranging from 100 to
1500 nA have been applied to measure the magnetoresistance
in two-probe geometry. For each current and at each magnetic
field value, the voltage drop was averaged 20 times with a
Keithley Nanovoltmeter 2182. The two-probe geometry was
used to ensure the symmetry of the magnetoresistance under
magnetic field reversal [6]. We averaged the conductance data
for positive and negative magnetic field to reduce the influ-
ence of noise. The typical two-point resistance for different
samples varied between 4000 and 9000 � at room temper-
ature. The electrical conductivity was calculated assuming a
cylindrical shape of the nanowire and using the geometrical
parameters determined by SEM.

III. RESULTS AND DISCUSSION

We investigated the temperature dependence of the con-
ductivity of eight Ge-doped GaN nanowires (samples A–H)
in the temperature range between 1.7 and 280 K. Figure 1(a)
exemplarily shows the temperature dependence of the con-
ductivity of nanowire A. As the conductivity decreases with
decreasing temperature, the Ge-doped GaN nanowire exhibits
a semiconducting behavior. The temperature dependence of
the conductivity of such a nanowire is affected by three
different transport processes, namely the thermal excitation
of electrons from the impurity band to the conduction band
at high temperatures, the conduction of electrons via neutral
donors at intermediate temperatures, and a conduction within
the impurity band at low temperatures. Taking all three trans-
port processes into account the temperature dependence of the
conductivity can be expressed as [31]

σ (T ) = σ1 e−ε1/kBT + σ2 e−ε2/kBT + σ3 e−ε3/kBT , (1)

where the activation energies ε1, ε2, ε3 and the conductivities
σ1, σ2, σ3 are associated with these three transport processes,
respectively. According to theory the relations ε1 > ε2 > ε3

and σ1 � σ2 � σ3 should hold [31]. The activation energies
and the corresponding conductivities of samples A to H are
shown in Figs. 1(b) and 1(c), respectively. All measured
samples A to H exhibit comparable values for each of the
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three activation energies. The mean value for the activation
energy ε1 corresponding to carrier activation from the donor
level into the conduction band is 35 ± 11 meV. It should
be noted that a reasonable agreement between the activation
energy ε1 of the different nanowires is achieved only if all
three transport processes are considered. The mean value is
in good agreement with the theoretically predicted ioniza-
tion energy of a Ge donor in GaN of EGe

ion ≈ 31 meV [32].
Corresponding experimental values in the range from 19 to
50 meV have been reported in literature [33,34]. Furthermore,
the activation energy ε2 = 2.2 ± 1.1 meV is approximately
one-tenth of the ε1 and, thus, also in agreement with the
theoretical expectations. The mean value of the activation
energy ε3 = 3.4 ± 5.5 μeV, which is characteristic for the
conduction in an impurity band at temperatures below 10 K
[35], is much smaller, again in accordance with theory. How-
ever, the corresponding conductivity values do not quite fulfill
the relation σ1 � σ2 � σ3, in particular, σ3 is much larger
than expected. We attribute this deviation to the vicinity of the
insulator-to-metal transition. The conduction in the impurity
band at these low temperatures is in the metallic regime, i.e.,
carried by delocalized electrons. In this metallic transport
regime the mobility of carriers and thus the conductivity
is significantly larger than in case of the insulating regime
where transport takes place by hopping of localized electrons
between impurity states.

Magnetotransport measurements of nanowires A and B
were performed for various current densities at a constant
temperature of 1.7 K. As recently shown, slightly doped
GaN:Ge nanowires show a quasi-one-dimensional transport
bahavior [10], i.e., lϕ is smaller or comparable to the diameter
of the nanowire, whereas the diffusive transport remains in
the weakly disordered regime (dirty metal limit, l � d , with
the mean free path l). The change of the magnetoconduc-
tance with magnetic field �G(B) was extracted from the
magnetoresistance data using [10,36]

�G(B) = G(B) − 〈G(B)〉 ∼= − �R(B)

〈R(B)〉2
B

, (2)

where 〈R(B)〉B is the mean resistance averaged over the full
magnetic field range and �R(B) = R(B) − 〈R(B)〉B denotes
the fluctuations of the resistance. Both nanowires show a
negative magnetoresistance effect, i.e., a positive magneto-
conductance effect, for magnetic fields below 1 T due to WL.
This effect is accompanied by UCF with an amplitude of a few
tenths of e2/h [Figs. 3(a) and 3(d)], which are observable up to
10 T. The weak localization effect (WL) arises from enhanced
backscattering of electrons in the absence of a magnetic field
due to a constructive interference of the electron paths induced
by time reversal symmetry [12]. The latter is broken by
applying a magnetic field. The corresponding backscattering
of electrons is no longer enforced and, thus, the conduc-
tivity increases with increasing magnetic field. The UCF in
strongly confined systems, on the other hand, are caused by
the interference of different coherent electron transport paths
forming loops [37,38]. The magnetic flux through such a
loop changes when the external magnetic field is varied. This
flux variation in turn alters the electron interference and the
UCF emerge. The presence of WL and UCF in the measured
magnetoconductance curves confirms that the transport

properties of the nanowires are mesoscopic. It implies that lϕ
is comparable to the diameter of the nanowire and larger than
le, which is the distance between elastic scattering centers, i.e.,
donors or sidewalls.

Three different approaches for determining the phase-
coherence length lϕ are established for mesoscopic systems.
Approach (i) analyzes the root mean square of the conduc-
tance fluctuations rms(�G). If lϕ is smaller than the length of
the nanowire L between the two voltage probes rms(�G) is
given by [11,12,16]

rms(�G) ∝ e2

h

(
lϕ
L

)3/2

. (3)

In approach (ii), lϕ is determined from an analysis of the
correlation field BC, which represents a characteristic field pe-
riod of the conductance fluctuations. The correlation field BC

is defined by the autocorrelation function F (BC) = 1/2F (0),
where F (�B) = 〈�G(B + �B)�G(B)〉B [38,39]. The phase-
coherence length is estimated from the correlation field us-
ing BC = γ 	0/lϕd , where d denotes the diameter of the
nanowire and γ = 0.42 [40]. Approach (iii) makes use of the
weak localization effect. In the case of quasi-one-dimensional
transport in a weakly disordered regime, the phase coherence
can be obtained from the WL magnetoconductance at low
magnetic fields [10–12]:

�G(B) = − 2

L

e2

h

[
1

l2
ϕ

+ 1

3

d2e2B2

h̄2

]−1/2

. (4)

Figure 2(b) shows exemplarily the magnetoconductance cor-
rection due to the weak localization effect for sample A
for various temperatures at low magnetic fields. The solid
lines represent the fits based on the theoretical model for
the one-dimensional weak localization effect [40]. The small
modulations arise from the UCF which are also present in this
magnetic field range. The extracted phase-coherence lengths
l WL
ϕ for temperatures between 2 and 40 K are depicted in

Fig. 2(c) for samples A and H. The decrease of the phase-
coherence lengths with increasing temperature is proportional
to ∼T −0.20 and ∼T −0.23 for samples A and H, respectively.
Thus the nanowires show a slightly weaker temperature
dependence of lϕ than the T −1/3 law predicted by theory
[11], which is typically observed for quasi-one-dimensional
transport in semiconducting nanowires [5,7,9,10,20,41]. Fig-
ures 3(a) and 3(d) show the magnetotransport measurements
for various measurement currents of nanowires A and B,
respectively. The amplitude of the UCF decreases with in-
creasing measurement current, whereas the pattern of the
conductance fluctuations, and hence the correlation field BC,
does not change significantly. Also, the reduced conductance
at small magnetic fields due to the weak localization effect is
not affected by increasing measurement currents. The phase-
coherence lengths lϕ determined by the three approaches are
plotted as a function of the applied current on a double-
logarithmic scale in Figs. 3(b) and 3(e). At low currents a
good agreement between the values of lϕ determined by the
three approaches is obtained. However, while l BC

ϕ and l WL
ϕ

are independent of the applied current, the value of l rms
ϕ

decreases with increasing current. It should be noted that
the phase-coherence length is solely determined by inelastic
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FIG. 2. (a) Current-voltage characteristic for samples A and B. (b) Magnetoconductance correction due to the weak localization effect for
sample A for various temperatures at low magnetic fields. The solid lines represent the fits according to Eq. (4) for one-dimensional transport.
(c) Extracted phase-coherence length l WL

ϕ in a temperature range between 1.7 and 40 K.

scattering events, i.e., if an electron scatters inelastically,
phase coherence will be lost. As the occurrence of inelastic
scattering events is independent of the applied current in the

investigated transport regime (i.e., eV ≈ Ec ≈ kBT ), phase
coherence should also be independent of current. This
statement is in accordance with the constant values of l BC

ϕ

FIG. 3. (a) Magnetoconductance of nanowire A for measurement currents between 100 nA and 1000 nA. (b) Phase-coherence lengths lϕ
determined by the three approaches. (c) Measured values of rms(�G) as a function of current and theoretical predicted decay of the rms values
for nanowire A. The inset shows the values l rms

ϕ,corr obtained for l rms
ϕ using our revised theoretical description. (d)–(f) Corresponding results for

nanowire B.
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and l WL
ϕ within the experimental uncertainty for the current

range studied, but not with a decreasing l rms
ϕ . Furthermore,

lϕ determined by all three approaches should decrease with
increasing temperature in the same manner as shown by us
for similar nanowire samples [10]. Thus the decrease of the
phase-coherence length l rms

ϕ with increasing Imeas cannot be
due to Joule heating, i.e., as, for example, l WL

ϕ decreases with
increasing T as shown for samples A and H in Fig. 2(c), but
is independent of Imeas in Figs. 3(b) and 3(e). The same holds
for l BC

ϕ .
In the following, we explain which mechanism needs to

be included to the existing description of approach (i) in
order to achieve agreement with the other two approaches for
extracting lϕ , i.e., to avoid the alleged reduction of the phase-
coherence length l rms

ϕ with increasing current in the analysis
of the experimental data. If Vdc is the applied bias voltage
for a system where lϕ > L and temperature broadening is
negligible, the number of uncorrelated energy intervals that
contribute to the electron transport will be given by N =
Vdc/Vc, with the correlation energy Ec = eVc = h̄D/l2

ϕ . Each
energy interval contributes to the fluctuations by an amount
∼(e2/h)Vc [24]. Therefore, the current is a random function
of the applied voltage Vdc [21]:

Idc = 〈I〉 + �Idc · δα, (5)

where �Idc is the amplitude of the correction to the classical
Ohmic current 〈I〉 and δα is a random function of Vdc with
rms(δα) = 1. Larkin and Khmel’nitski derived the amplitude
as �Idc ∼ (e2/h)(VdcVc) [21]. Thus the total conductance G is
given by

G = Idc

Vdc
= 〈I〉

Vdc
+ �Idc

Vdc
· δα (6)

= 〈G〉 + e2

h

(
Vdc

Vc

)−1/2

· δα. (7)

According to the second term on the right hand side one
obtains that the magnitude of the conductance fluctuations
rms(�G) decreases with increasing bias voltage, i.e., with the
number of uncorrelated energy intervals N , assuming that Vdc

is larger than Vc:

rms(�G) ∝ e2

h

(
Vdc

Vc

)−1/2

. (8)

We discuss a system with a phase-coherence length lϕ smaller
than the systems length L. Thus we can consider the sys-
tem to be divided into a series of L/lϕ uncorrelated seg-
ments of length lϕ , each with a voltage drop per segment
of V in

dc . The voltage drop over the entire system is then
given by Vdc = V in

dc · L/lϕ . According to Beenakker and van

Houten [12] the conductance fluctuations of a series of in-
dependently fluctuating segments is given by rms(�G) ∝
(lϕ/L)3/2 · rms(�G1), where rms(�G1) are the root mean
square of conductance fluctuations of a single segment. In
the regime described above, every segment of length lϕ fluc-
tuates independently with rms(�G1) ∝ (e2/h)(V in

dc /Vc)−1/2.
Consequently, the magnitude of the conductance fluctuations
rms(�G) of the entire system scales as

rms(�G) ∝ e2

h

(
lϕ
L

)3/2(V in
dc

Vc

)−1/2

(9)

∝ e2

h

(
lϕ
L

)3/2
(

h̄D

e l2
ϕ V in

dc

)1/2

(10)

∝ e2

h

l1/2
ϕ lJ
L3/2

(lJ � lϕ ). (11)

Here, we propose a current length scale lJ =
√

h̄D/eV in
dc ,

where D = h̄2(3π2n)2/3μ/(3 me e) is the diffusion constant,
in analogy to the thermal length lT proposed by Lee, Stone,
and Fukuyama [28], who described the influence of finite
temperature on the rms(�G) in a similar fashion. At finite
temperatures, the energy range kBT around the Fermi energy
divides into kBT/Vc uncorrelated energy intervals leading to
this averaging effect and thus to less pronounced UCF at
higher temperatures. Lee et al. included this effect in the
theoretical description of rms(�G) by introducing the ther-
mal length lT = √

h̄D/kBT [12,28]. This is the length two
interfering electron paths traverse with the energy difference
�E = kBT until they have to be considered uncorrelated [12].
Taking this thermal averaging into account for an intermediate
regime (where lT ≈ lϕ) rms(�G) is given by an interpolation
formula

rms(�G) = α
e2

h

(
lϕ
L

)3/2
[

1 + β

(
lϕ
lT

)2
]−1/2

, (12)

with α = √
6 and β = 9/2π . In order to explain the reduction

of the phase-coherence length l rms
ϕ with increasing current

density for a similar regime where lJ , lT ≈ lϕ , that is eV in
dc ≈

Ec ≈ kBT (see also Table I.), we modified the existing formula
(12) to account for both effects in the intermediate regime:

rms(�G) = α
e2

h

(
lϕ
L

)3/2
[

1 + β

(
lϕ
ltot

)2
]−1/2

, (13)

with l−1
tot = l−1

T + l−1
J . The rms(�G) values of the conduc-

tance fluctuations at 1.7 K of nanowires A and B are plotted
in Figs. 3(c) and 3(f), respectively. The solid lines represent
the modeling of the current dependence of rms(�G) using
Eq. (13) with the above given ltot as well as with ltot = lJ
only, where thermal averaging was neglected. For nanowire A,
the modeled curve with l−1

tot = l−1
T + l−1

J is in good agreement
with the experimentally determined rms(�G) values, which
indicates that both thermal averaging and bias induced av-
eraging need to be considered for nanowire A at 1.7 K. For
nanowire B, the experimentally determined rms(�G) values
are for small current densities in good agreement with the
modeled curve for ltot = lJ and for higher current densities
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TABLE I. Overview of important experimental parameters for samples A and B.

Sample L (nm) d (nm) R2P
RT (k�) n/1018 (cm−3) μ (cm2V−1s−1) D (cm2s−1) le (nm) l2K

T (nm) l1μA
J (nm)

A 401 135 2.94 5.85 78 3.07 2.85 37.1 21.6
B 375 90 10.60 3.00 78 1.94 2.26 29.5 14.3

in good agreement with the curve for l−1
tot = l−1

T + l−1
J . The

thermal length lT is about 37.1 and 29.5 nm for nanowires A
and B, respectively. The lengths lJ for nanowire A range from
55.8 to 21.6 nm and for nanowire B from 36.9 to 14.3 nm
for applied currents of 150 to 1000 nA, respectively. (See also
Table I.)

The phase-coherence length l rms
ϕ,corr as a function of current

obtained using Eq. (13) with l−1
tot = l−1

T + l−1
J are shown in

the insets of Figs. 3(c) and 3(f). Although the values of
l rms
ϕ,corr show some random fluctuations, they are to a good

approximation constant within the range of currents applied
and in good agreement with l WL

ϕ and l BC
ϕ . Furthermore, the

carrier concentration n and mobility μ obtained from the
theoretical model [Eq. (13)] are in good agreement with those
determined by Seebeck measurements as reported previously
[10]. For both nanowires, a mobility of about 78 V s/cm2

was determined, while a carrier concentration of 5.85 ×
1018 cm−3 and 3.00 × 1018 cm−3 was obtained for nanowires
A and B, respectively. These values result in a conductivity of
7507 S m−1 for nanowire A and 3005 S m−1 for nanowire B,
which are in good agreement to the measured conductivities
at low temperatures.

IV. CONCLUSION

We demonstrate the reduction of the magnitude of univer-
sal conductance fluctuations rms(�G) with increasing current
density in nanowires. The bias-induced reduction of the UCF
amplitude is attributed to an increased number of uncorre-
lated energy intervals contributing to the electron transport at
high current densities. Introducing a current-dependent length
scale lJ in analogy to the thermal length lT proposed by
Lee et al. allows us to modify the theoretical analysis of
rms(�G) such that the extracted phase-coherence lengths are
in agreement with those extracted by other methods from
the same set of magnetoresistance data. Having achieved this
consistent description, this also offers a way of determining
or verifying carrier concentration and carrier mobility data of
mesoscopic semiconducting nanowires at low temperatures.
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