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Berry curvature acts analogously to a magnetic field in the momentum space, and it modifies the flow of charge
carriers and entropy. This induces several intriguing magnetoelectric and magnetothermal transport phenomena
in Weyl semimetals. Here, we explore the impact of the Berry curvature and orbital magnetization on the
thermopower in tilted type-I and type-II Weyl semimetals, using semiclassical Boltzmann transport formalism.
We analytically calculate the full magnetoconductivity matrix and use it to obtain the thermopower matrix for
different orientations of the magnetic field (B), with respect to the tilt axis. We find that the tilt of the Weyl nodes
induces linear magnetic field terms in the conductivity matrix, as well as in the thermopower matrix. The linear-B
term appears in the Seebeck coefficients, when the B field is applied along the tilt axis. Applying the magnetic
field in a plane perpendicular to the tilt axis results in a quadratic-B planar Nernst effect, linear-B out-of-plane
Nernst effect, and quadratic-B correction in the Seebeck coefficient.
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I. INTRODUCTION

Weyl semimetals (WSMs) host relativistic massless
fermionic quasiparticles in the vicinity of the Weyl nodes
which always come in pairs of opposite chirality [1–4]. Their
existence has been demonstrated in several materials [5–9]
where either time-reversal or space-inversion symmetry is
broken. Unlike their relativistic counterparts, in crystalline
systems the Weyl quasiparticles can also break Lorentz invari-
ance. Consequently, their dispersion can be tilted in a specific
direction [10–18]. Depending on the degree of the tilt, these
WSMs can be classified as type I or type II. In a type-I WSM,
the Fermi surface encloses only one kind of carriers, and has
a vanishing density of states at the Weyl point. In contrast, a
type-II WSM has nonvanishing density of states at the Weyl
point, and the Weyl point appears at the intersection of an
electron and a hole pocket.

Interestingly, the Weyl nodes act as a source or sink
of Berry curvature (BC), which in turn acts as a fictitious
magnetic field in the momentum space [19,20]. This leads
to the possibility of several interesting transport phenomena
in isotropic and tilted WSMs [21–35]. Several of these have
also been experimentally demonstrated [5,7,35–48]. For in-
stance, negative magnetoresistivity (MR) [21,24] has been
observed in several WSM candidates including the TaAs
family [37,38,44] and in WSMs induced magnetically from
three-dimensional Dirac semimetals [5,7,40]. The anomalous
Hall effect [49] predicted to exist in time-reversal symmetry
(TRS) broken WSMs [34,50] has been recently seen in ZrTe5

[45]. The corresponding effect in thermopower, the anoma-
lous Nernst effect in WSM [29,33], has been demonstrated in
Cd3As2 [42], NbP [35], and Ti2MnX [47]. Chiral magnetic
effect, a chiral anomaly induced phenomena [22,23,30] has
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been reported in ZrTe5 [51]. The BC induced planar Hall
effect, where the current response is measured in the plane of
electric and magnetic field, has also been predicted in WSMs
[52,53] and multi-WSMs [54,55] and experimentally demon-
strated in WSMs [46,48]. More recently, linear magnetic field
dependence in both the MR and Hall responses is predicted to
exist in tilted WSMs [56–58].

Motivated by these recent studies, in this paper we explore
the BC induced magnetothermopower in tilted type-I and
type-II WSMs: the Seebeck and the Nernst coefficients (SCs
and NCs, respectively). Our analytical calculations for the
full conductivity and thermopower matrix are based on the
Berry-connected-Boltzmann-transport formalism and include
the effect of the orbital magnetic moment (OMM) [20].
The Seebeck effect captures the electric response along the
temperature gradient while the Nernst effect captures the
electric response perpendicular to the temperature gradient.
The conductivity and the thermopower are connected by the
Mott relation [see Eq. (4)] even in the presence of OMM
correction [59]. Thus the magnetothermopower broadly fol-
lows the magnetoelectric response, leading to the expectation
of phenomena such as negative Seebeck effect and planar
Nernst effects in WSMs. A similar kind of phenomenon is
known to exist in ferromagnetic systems [60,61] where spin
dependent scattering induces a transverse velocity component
in the charge carriers [62].

In this paper, we have calculated the electrical conduc-
tivity and thermopower matrix to explore the BC induced
magnetotransport in type-I and type-II WSMs. We have ex-
plicitly included the previously ignored impact of OMM
in all our calculations. Although the electrical conductivity
matrix is well explored (excluding OMM), the BC induced
thermopower and the impact of the tilt on it is relatively
unexplored, and this is the primary focus of this paper. In
particular, we predict the following BC induced phenomena:
(1) linear-B as well as quadratic-B dependent SCs, (2) the
existence of quadratic-B planar Nernst as well as linear-B
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out-of-plane Nernst response, (3) negative longitudinal (paral-
lel electric and magnetic field) MR and positive perpendicular
(perpendicular electric and magnetic field) MR in WSMs.
The rest of the paper is organized as follows: In Sec. II
we present the phenomenological equation of charge current
and establish the relation between charge conductivity and
thermopower. This is followed by a detailed discussion of
the full magnetoconductivity matrix for type-I and type-II
WSMs in Sec. III, and MR in Sec. IV. We discuss various
aspects of the thermopower matrix in Secs. V, VI, and VII.
We summarize our findings in Sec. VIII.

II. THERMOPOWER IN PRESENCE OF
BERRY CURVATURE

Within the linear response theory, the phenomenologi-
cal transport equation for the electrical current je is given
by [63]

je
i = σi jE j + αi j (−∇ jT ). (1)

Here, Ej and ∇ jT are the external electric field and tempera-
ture gradient applied along the jth direction, σi j denotes the
elements of electrical conductivity matrix (σ̃ ), and αi j are
the elements of thermoelectric conductivity matrix (α̃). These
transport coefficients are calculated by doing a Brillouin zone
sum over the relevant physical quantities, involving only
the occupied states. In this paper, we use the semiclassical
Boltzmann transport formalism to calculate the magnetocon-
ductivity and magnetothermopower. The details of the Berry-
connected-Boltzmann-transport formalism are discussed in
Appendix A. The general expressions for BC induced con-
ductivity and thermopower are presented in Eqs. (A10) and
(A11), respectively.

The thermopower for an open circuit system is defined by
setting je

i = 0 in Eq. (1). In this scenario, the electric field
generated by a temperature gradient is given by

Ei = νi j∇ jT, where ν̃ ≡ σ̃−1 α̃. (2)

The diagonal elements νii denote the SCs whereas the off-
diagonal elements νi j (i �= j) are the NCs. It turns out that
in the low-temperature limit (kBT � μ), BC induced ther-
mopower can also be expressed in terms of the electrical
conductivity using the Mott relation [59]. The Mott relation
[63,64] yields

αi j = −π2k2
BT

3e

∂σi j

∂ε

∣∣∣∣
ε=μ

. (3)

Using Eq. (3) in Eq. (2), the thermopower matrix can be
expressed solely in terms of the electrical conductivity matrix
as [63,64]

ν̃ = −π2k2
BT

3e
σ̃−1 ∂σ̃

∂ε

∣∣∣∣
ε=μ

. (4)

Further, to explicitly track the magnetic field depen-
dence analytically, we express σi j = σ

(0)
i j + σ

(1)
i j + σ

(2)
i j +

O(B3) and αi j = α
(0)
i j + α

(1)
i j + α

(2)
i j + O(B3). Here the su-

perscripts denote zeroth-order (Drude and anomalous), lin-
ear, and quadratic magnetic field terms, respectively. In the
next section, we calculate the magnetoconductivity matrix
for tilted WSMs, including the OMM corrections. Since the
tilt axis (we consider ẑ) breaks the TRS for each node,
the two cases in which B is applied parallel and perpen-
dicular to ẑ result in different forms of the conductivity
matrix.

III. MAGNETOCONDUCTIVITY IN TYPE-I AND
TYPE-II WSMs

The low-energy Hamiltonian, for each of the chiral nodes
of a tilted WSM is given by [65]

Hs(k) = h̄Cskz + sh̄vF σ · k. (5)

Here, s denotes chirality, Cs (vF ) is the tilt (Fermi) velocity,
and σ = (σx, σy, σz ) are the Pauli matrices. In this paper, we
consider a WSM with a pair of oppositely tilted nodes such
that C−s = −Cs. The degree of the tilt of the Weyl nodes can
be quantified by the ratio of the tilt and the Fermi velocities:
Rs = Cs/vF . The above dispersion corresponds to the type-I
class of WSMs in the regime |Rs| < 1 and the type-II class in
the regime |Rs| > 1.

The BC can be easily calculated from Eq. (A3) to be �λ
s =

−λsk/(2k3), where λ = +1 (λ = −1) denotes the conduction
(valence) band. The OMM can be calculated from Eq. (A4)
and can be expressed in terms of the BC [66],

mλ
s = λevF k�λ

s = −sevF
k

2k2
. (6)

Both the BC and the OMM are independent of the tilt velocity.
Furthermore, the OMM, and the resulting velocity correction
are identical for both the bands.

The impact of the tilt on the magnetoconductivity in
type-I and type-II WSMs was explored in Ref. [58]. Here,
we generalize those results to include the effect of the OMM.
The conductivity matrix can be expressed as the sum of
contributions in the absence and presence of a magnetic field:
σ̃ = σ̃D + σ̃B, such that σ̃B vanishes as B → 0 and σ̃D is the
Drude conductivity. For the scenario in which B ⊥ ẑ, and the
magnetic field is confined in the x-y plane (planar geometry),
we find that the conductivity matrix has this general form for
both type-I and type-II WSMs:

σ̃B =
⎛
⎝σ

(2)
⊥ + 	σ (2) cos2 φ 	σ (2) sin(2φ)/2 σ

(1)
t cos φ

	σ (2) sin(2φ)/2 σ
(2)
⊥ + 	σ (2) sin2 φ σ

(1)
t sin φ

σ
(1)
t cos φ σ

(1)
t sin φ σ (2)

z

⎞
⎠. (7)
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Here, φ is the angle of the magnetic field with respect to the
x axis. See Appendix B for the details of calculation of σ̃D.
Here, σ12 = σxy denotes the planar Hall conductivity and in
addition there are new linear-B terms such as σ13 = σxz and
σ23 = σyz, which were discussed in Ref. [58].

For the other case of B ‖ ẑ, the general form of the conduc-
tivity matrix has a diagonal form [58],

σ̃B =
⎛
⎝σ

(1)
l + σ

(2)
l 0 0

0 σ
(1)
l + σ

(2)
l 0

0 0 σ
(1)
lz + σ

(2)
lz

⎞
⎠. (8)

Here, the diagonal components have linear-B dependence
induced by the tilt. The analytical expression of the dif-
ferent conductivity components is presented in the sections
below where we have presented results including the OMM.
However, to explicitly highlight the impact of the OMM,
we have presented the general expressions in terms of γ , in
Appendix C.

A. Type-I WSMs

For the B ⊥ ẑ case, the magnetoconductivity is given by
Eq. (7), where the conductivity coefficients σ

(2)
⊥ , σ (2)

z , and
	σ (2) are proportional to B2. In type-I WSMs, including the
OMM, these are explicitly given by

	σ (2) =
∑

s

(
6 + 7R2

s

)
σ0; σ

(2)
⊥ = −

∑
s

2σ0, (9)

σ (2)
z = −

∑
s

(
2 − 8R2

s

)
σ0, (10)

where we have denoted the quadratic dependence as

σ0 ≡ e2τ

8π2

h̄v3
F

15μ2

(
eB

h̄

)2

. (11)

These terms are finite even in the limit of Rs → 0 and are
even-function of Rs. Thus, the contributions from a pair of
oppositely tilted nodes just adds up. Note the opposite sign of
	σ (2) and σ

(2)
⊥ and this will manifest in the perpendicular MR

(φ = π/2) being positive, and the longitudinal MR (φ = 0)
being negative, as discussed in the next section.

In addition to these quadratic-B terms, there are linear-
B dependent off-diagonal conductivity components as well
(σxz, σyz ∝ σ

(1)
t ∝ B). These terms arise solely due to the tilt

of the Weyl nodes (which breaks the TRS for each node),
and vanish in the limit of Rs → 0. These linear-B components
are σ (1)

xz = σ (1)
yz (π/2 − φ) = σ

(1)
t cos φ, where σ

(1)
t can be ex-

pressed as

σ
(1)
t =

∑
s

sσ1

2R2
s

[
2Rs

(
1 − 2R2

s

) + Fδs
]
. (12)

In the above equation, we have defined F ≡ 1 − R2
s and,

σ1 = e2τ

(2π )3

πvF

h̄

eB

h̄
and δs = ln

(
1 − Rs

1 + Rs

)
.

Note that the contributions for the oppositely tilted nodes
simply add up and the overall sign of this component depends
on the details of tilt configuration.

For the B ‖ ẑ configuration, the conductivity matrix is
given by Eq. (8). As the matrix structure shows, in this case

the longitudinal conductivities have a linear-B dependence in
addition to the quadratic-B one. The quadratic-B correction
perpendicular to the tilt is σ

(2)
l = σ

(2)
⊥ = −∑

s 2σ0, whereas
along the tilt axis, it is given by

σ
(2)
lz =

∑
s

(
4 + 5R2

s

)
σ0. (13)

The linear-B term in σxx = σyy and σzz is given by

σ
(1)
l = −

∑
s

sσ1

R2
s

(2Rs + δs); σ
(1)
lz = −

∑
s

sσ1(2Rs). (14)

We emphasize that all the linear-B conductivity discussed
in this section is ∝σ1, in which there is no explicit μ de-
pendence. This is primarily a consequence of �k ∝ 1/k2 in
WSMs. The only μ dependence of σ1 arises from the energy
dependence of the scattering timescale τ .

B. Type-II WSMs

The low-energy model Hamiltonian of Eq. (5) corresponds
to the type-II class in the regime |Rs| > 1. In this regime,
the Fermi surface of the Weyl node comprises “unbounded”
electron and hole pockets. Hence both the bands take part in
transport. And to truncate the “unbounded sea” of the charge
carriers, we need to introduce a cutoff in the momentum space
along the radial direction (�k). In real materials, this is akin
to the bandwidth of the system. For simplicity, we present all
the conductivity terms only upto first order in kF /�k ≡ 1/�̃k ,
and assume μ > 0 without the loss of generality.

First, we will consider the planar geometry. In this case
the form of the conductivity matrix is given by Eq. (7), with
various elements given by

	σ (2) = 2
∑

s

K
(
30R8

s + 35R6
s + 50R4

s − 9R2
s − 2

)
, (15)

σ
(2)
⊥ =

∑
s

K
(
5R6

s − 60R4
s + 25R2

s − 2
)
, (16)

σ (2)
z = 2

∑
s

K
(
15R8

s + 65R6
s − 35R4

s − R2
s + 4

)
, (17)

where K ≡ σ0
16|Rs|5 . Note that the tilt induced corrections occur

as even powers of Rs, implying the addition of contributions
from the oppositely tilted nodes. The linear-B correction in
the out-of-plane off-diagonal conductivities can be written as
σ (1)

xz = σ (1)
yz (π/2 − φ) = σ

(1)
t cos φ. Here,

σ
(1)
t =

∑
s

sσ1

2R4
s

sgn(Rs)
[
2 + R2

s − 5R4
s − FR2

s δ
1
s

]
, (18)

and we have defined

δ1
s = ln

(
R2

s − 1
) + 2 ln �̃k. (19)

Now, we consider a magnetic field along the direction of
the tilt (B ‖ ẑ). The linear-B correction to the longitudinal
component in the x-y plane, σxx = σyy, is given by

σ
(1)
l = −

∑
s

sσ1

R4
s

sgn(Rs)
[
3R2

s − 1 − δ1
s R2

s

]
. (20)

The linear-B correction to σzz is given by

σ
(1)
lz = −2

∑
s

sσ1

R4
s

sgn(Rs)
(
2R4

s − 2R2
s + 1

)
. (21)
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FIG. 1. (a) MR for type-I WSMs (R = 0) as a function of
the angle between E and B for the planar geometry. The planar
MR [MRxx (φ)] varies as cos2 φ (blue lines). The longitudinal MR
[MRxx (φ = 0)] is negative irrespective of OMM correction. The
perpendicular MR (MRzz) becomes positive on including the OMM
(solid red line). (b) MR as a function of tilt (R) for the configuration
R− = −R+ = R. The longitudinal MR remains negative (blue lines)
while the perpendicular MR changes sign at a certain critical R value,
beyond which it remains negative (red lines). Here, we have used the
following parameters: μ = 0.1 eV, vF = 106 m/s, and B = 4 T.

The quadratic-B correction to σxx and σyy is given by

σ
(2)
l =

∑
s

σ0

8|Rs|5
(
4 − 25R2

s + 5R6
s

)
. (22)

The corresponding term for the σzz component is given by

σ
(2)
lz =

∑
s

σ0

2|Rs|5
(
20R6

s − 5R4
s + 5R2

s − 2
)
. (23)

Having obtained the full conductivity matrix for tilted WSMs,
now we discuss tilt and OMM dependence of the MR—the
quantity generally probed in experiments.

IV. MAGNETORESISTIVITY

The resistivity matrix is obtained by inverting the con-
ductivity matrix. The corresponding MR is given by MRii =
ρii(B)/ρii(0) − 1. Below we discuss the longitudinal and per-
pendicular MR for the two cases of B ⊥ ẑ and B ‖ ẑ.

For the case of planar geometry, using Eq. (7) we obtain
the planar resistivity to be

ρxx = ρD − ρ
(2)
⊥ + [(

ρ
(1)
t

)2
ρz

D[ρD]−2 − 	ρ (2)
]

cos2 φ. (24)

Here, we have defined the Drude resistivity in the x-y plane
as ρD = 1/σD, and along the z axis as ρz

D = 1/σ z
D. Addition-

ally, we have defined the following: ρ
(2)
⊥ = σ

(2)
⊥ /σD

2, ρ
(1)
t =

σ
(1)
t /σD

2, and 	ρ (2) = 	σ (2)/σD
2. It is evident from Eq. (24)

that the planar MR [MRxx(φ)] is anisotropic and varies as
cos2 φ on changing the planar B direction with respect to
the x axis. In Fig. 1 we have plotted the MR with φ and tilt
factor. We have used dotted lines for conductivities without
the contribution of OMM (γ = 0) in our plots. Note that the
longitudinal MR [MRxx(φ = 0)] is negative irrespective of
inclusion or exclusion of the OMM and the degree of the tilt of
the WSM. However, the perpendicular MR [MRxx(φ = π/2)]
becomes positive on including the OMM terms (γ = 1) for
isotropic WSMs shown in Fig. 1(a). For the out-of-plane
perpendicular MR (MRzz), we obtain the resistivity to be

ρzz = ρz
D − ρ (2)

z + (
ρ

(1)
tz

)2
ρD[ρz

D]−2. (25)

−4 −2 0 2 4
B (Tesla)

−0.01

0.00

0.01

M
R

(a) xx

zz

0.0 0.3 0.6 0.9
R

−0.2

−0.1

0.0

0.1

xx

zz

(b)

FIG. 2. MR of type-I WSMs for the case of B ‖ R with tilt
configuration of Fig. 1. (a) The magnetic field dependence of the MR.
Note that MRxx and MRzz have a linear-B contribution for a finite
tilt (here R = 0.015), leading to an asymmetry in the MR curves
about the B = 0 line. (b) Variation of MR as a function of the tilt
parameter R at B = 4 T. Note that the inclusion of OMM correction
forces perpendicular MR (MRxx) to be positive (solid blue line),
while longitudinal MR (MRzz) remains negative with or without
OMM correction (solid or dashed red line, respectively). Here the
parameters used are identical to those of Fig. 1.

Here, we have defined ρ (2)
z = σ (2)

z /σ z
D

2 and correction due
to the linear-B Hall conductivity component as ρ

(1)
tz =

σ
(1)
t /(σ z

D)2. The OMM correction forces the out-of-plane per-
pendicular MR to be positive (solid red line) for WSMs with
small tilt—as shown in panels (a) and (b) of Fig. 1.

For the other case of B ‖ ẑ, we calculate resistivity along
the tilt direction from Eq. (8), and it is given by

ρzz = ρz
D − ρ

(1)
lz + (

ρ
(1)
lz

)2
[ρz

D]−1 − ρ
(2)
lz . (26)

Here we have defined ρ
(1)
lz = σ

(1)
lz /(σ z

D)2 and ρ
(2)
lz =

σ
(2)
lz /(σ z

D)2. Evidently, in this case the longitudinal MR,
MRzz, will have linear-B contribution for a tilted WSM, while
its absolute value depends on the degree of the tilt, starting
with a negative value for an isotropic WSM. This linear-B part
gives rise to an asymmetry in the MR curve as B goes from
negative to positive [see Fig. 2(a)]. Note that the inclusion
of OMM does not change the sign of longitudinal MR. The
expression for ρxx is given by

ρxx = ρD − ρ
(1)
l + (

ρ
(1)
l

)2
[ρD]−1 − ρ

(2)
l . (27)

Here, we have defined ρ
(1)
l = σ

(1)
l /σ 2

D and ρ
(2)
l = σ

(2)
l /σ 2

D.
Similar to the case of ρzz, ρxx also has linear-B contributions
leading to asymmetric MR curves around the B = 0 line
shown in Fig. 2(a). However, unlike the case of longitudinal
MR, the perpendicular MR, MRxx, changes sign on including
the OMM and reverses from negative to positive as shown in
Fig. 2(b).

Our findings for isotropic WSM that the longitudinal MR
is negative, while the perpendicular MR is positive, are con-
sistent with the experimental MR results reported in Dirac
semimetals [7,40] and isotropic WSMs [37,44]. We empha-
size that the inclusion of OMM is crucial to capture the correct
sign of the perpendicular MR.

V. THERMOPOWER IN WEYL SEMIMETAL

In this section we calculate the magnetic field dependent
thermopower at low temperature using the Mott relation [59].
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FIG. 3. Various components of thermopower in the planar geometry for the type-I class with tilt configuration R− = −R+ = R. (a) The
cos2 φ dependence of the planar SC including (solid line) and excluding (dashed line) the OMM correction. (b) The dependence of the
out-of-plane SC with the tilt parameter. Note that the inclusion of OMM correction (solid line) changes the sign of the B dependent contribution
from negative to positive, up to a critical R. (c) The angular dependence of the planar NC (νxy ∝ sin 2φ) and the out-of-plane NC (νxz ∝ cos φ).
(d) The B dependence of the longitudinal and the out-of-plane transverse SC, which results in a negative and a positive Seebeck effect,
respectively. We have used the parameters of Fig. 1 and R = 0.3.

Let us first consider the case B ⊥ ẑ. Since α̃ ∝ ∂μσ̃ , the
thermoelectric conductivity matrix retains the form of Eq. (7),
and it is given by

α̃B =
⎛
⎝α

(2)
⊥ +	α(2) cos2 φ 	α(2) sin(2φ)/2 α

(1)
t cos φ

	α(2) sin(2φ)/2 α
(2)
⊥ +	α(2) sin2 φ α

(1)
t sin φ

α
(1)
t cos φ α

(1)
t sin φ α(2)

z

⎞
⎠.

(28)

The different thermoelectric conductivity elements in the
matrix are connected to the corresponding elements in the
conductivity matrix of Eq. (7) via the Mott relation [Eq. (3)].
At first glance it seems that the out-of-plane Hall compo-
nents (αxz and αyz ∝ α

(1)
t ) are zero for type-I WSMs as the

corresponding elements in the electrical conductivity matrix
are independent of the Fermi energy. However, the scattering
timescale is generally dependent on the Fermi energy, and
this would lead to a finite linear-B term in the thermoelectric
conductivity matrix as well. Another possibility is that the
deviations from the linear model, for example in a lattice
model, can also lead to finite linear-B contribution. Similar
physics is seen in the case of the finite anomalous Nernst
response in a tight-binding model of WSMs [29], even though
the anomalous Hall coefficient is independent of the Fermi
energy in the isotropic low-energy model of WSM [27].

The thermopower matrix can now be calculated by using
Eqs. (7) and (28) in Eq. (2). The SC in the planar configuration

can be expressed in the form νyy = νxx(π/2 − φ), where

νxx − νD = ν
(2)
⊥ + 	ν (2) cos2 φ. (29)

Here, we have defined νD = αD/σD as the usual Drude co-
efficient calculated in Appendix B and the magnetic field
dependent coefficients are given by

ν
(2)
⊥ = σ−2

D

(
σDα

(2)
⊥ − αDσ

(2)
⊥

)
, (30)

	ν (2) = 1

σ 2
D

[
σD	α(2) − αD	σ (2) + (

σ
(1)
t αD − α

(1)
t σD

)σ
(1)
t

σ z
D

]
.

(31)

The out-of-plane SC (along the z axis) can be expressed as
νzz = νz

D + ν (2)
z , where νz

D ≡ αz
D/σ z

D is the Drude contribution
along the tilt axis and the corresponding quadratic-B correc-
tion is given by

ν (2)
z = 1

(σ z
D)2

[
σ z

Dα(2)
z − αz

Dσ (2)
z + (

σ
(1)
t αz

D − α
(1)
t σ z

D

)σ
(1)
t

σD

]
.

(32)

For the planar configuration, we obtain the coefficient for the
planar Nernst effect,

νyx = 	ν (2) sin φ cos φ. (33)
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FIG. 4. Same as Fig. 3, but for a type-II WSM. (a) The φ

dependence of νxx . (b) The tilt dependence of νzz has contributions
from electrons as well as holes. Here the sign reversal in νzz from
negative to positive arises from the sign of the Drude component
reversing at large R (see Fig. 7). This is a direct consequence of the
hole carriers dominating the transport on increasing the WSM tilt.
(c) The φ dependence of planar (νxy, purple curve) and out-of-plane
(νxz, green curve) NCs. Note the phase difference of π in the νxz

response between a type-I and a type-II WSM. (d) The B induced
part of the SC has opposite signs for the longitudinal νxx (φ = 0)
and the out-of-plane transverse νzz components. Here, we have used
the parameters of Fig. 1 and the tilt parameter R = 1.5 and cutoff
�̃k = 10.

This has an identical angular dependence on the planar angle
between E and B to that of the planar Hall effect. In addition
to the planar Nernst effect, we find the out-of-plane linear-B
NCs, and are given by νxz = ν

(1)
t cos φ = νyz(π/2 − φ), with

ν
(1)
t = 1

σ z
D

(
α

(1)
t σ z

D − σ
(1)
t αz

D

σD

)
. (34)

The angular dependence of the planar SC (νxx ∝ cos2 φ) is
shown in Fig. 3(a) for type-I WSMs and in Fig. 4(a) for type-II
WSMs. The relative phase difference between the two classes
is due to the opposite sign of Drude conductivity shown in
Appendix B. The planar NC (νxy ∝ sin 2φ) and the out-of-
plane NC (νxz ∝ cos φ) are highlighted in Figs. 3(c) and 4(c),
for type-I and type-II WSMs, respectively. Again we find a
relative phase difference in the linear-B NC between the two
classes. However, this is not due to the Drude conductivity but
due to the “tilted over” nature of the type-II WSM. The inclu-
sion of an OMM has a significant impact on the perpendicular
SCs (magnetic field perpendicular to temperature gradient).
It reverses the sign of the B-induced contribution in the νzz

for the type-I WSM from negative to positive up to a critical
tilt parameter, beyond which it retains its negative value [see
Fig. 3(b)]. This is reminiscent of the sign change also seen in
the perpendicular MR in Fig. 1(b). Note that the sign reversal
of νzz(B)/νzz(0) − 1 in Fig. 4(b) for R ≈ 3.1 arises from the
corresponding sign change in the Drude component, νz

D, as
shown in Fig. 7.

In the presence of BC, the magnetic field suppresses the
longitudinal SC [νxx(φ = 0)] resulting in what is termed as
a negative Seebeck effect. At the same time, it enhances the

−4 −2 0 2 4
B (Tesla)
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−
1
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R
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FIG. 5. SCs of type-I WSMs for B ‖ R with tilt configuration
R− = −R+ = R. (a) The B dependence of the SCs at R = 0.015. The
linear-B terms in the νxx and νzz expressions lead to the asymmetry
in the SC curves as B changes from positive to negative. (b) The
tilt dependence of the SCs at B = 4 T. The longitudinal SC (νzz) is
negative irrespective of OMM correction (red lines). Note that the
inclusion of the OMM correction has a significant impact on the
perpendicular SC (νxx) as evident from the difference between the
dashed (excluding OMM) and the solid blue lines (including OMM).
We have used the parameters of Fig. 1.

perpendicular SC (νzz) for a type-I WSM, as shown
in Fig. 3(d). This kind of negative longitudinal See-
beck effect and positive perpendicular Seebeck effect
has been experimentally observed in the magnetically in-
duced isotropic WSM phase in Cd3As2 [67] and NbP
[68]. Our calculations predict that for a type-II WSM,
the sign of both the longitudinal and the perpendicu-
lar SC change as compared to the type-I class, as indi-
cated in Fig. 4(d). This is because of the sign change
of the corresponding Drude components as discussed in
Appendix B.

For the case of B ‖ ẑ, the thermoelectric conductivity ma-
trix can be written as

α̃ − α̃D =
⎛
⎝α

(1)
l + α

(2)
l 0 0

0 α
(1)
l + α

(2)
l 0

0 0 α
(1)
lz + α

(2)
lz

⎞
⎠. (35)

Using Eqs. (8) and (35) in Eq. (2) yields the thermopower
matrix. For this configuration, since both σ̃ and α̃ are diago-
nal, the thermopower matrix has no off-diagonal terms, i.e.,
no Nernst response. The diagonal components are given by
νxx = νyy and

νxx = νD + ν
(1)
l + ν

(2)
l , (36)

νzz = νz
D + ν

(1)
lz + ν

(2)
lz . (37)

Here, we have defined the linear-B correction along the x axis
to be

ν
(1)
l = σDα

(1)
l − αDσ

(1)
l

σ 2
D

, (38)

and the quadratic-B correction in Eq. (36) reads as

ν
(2)
l = 1

σ 2
D

[
α

(2)
l σD − αDσ

(2)
l + (

σ
(1)
l αD − α

(1)
l σD

)σ
(1)
l

σD

]
.

(39)
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FIG. 6. Same as Fig. 5, but for type-II WSM. (a) B dependence of
the SCs at R = 2. The linear-B terms in νxx dominate its behavior for
small B with a negative slope, as shown (solid blue line, including
OMM). (b) The tilt dependence of the SC at B = 4 T. Note that
for a given R, the signs of 	νxx (B)/νxx (0) and 	νzz(B)/νzz(0) are
opposite. The sign reversal in each of them is a consequence of the
corresponding Drude components flipping sign. This in turn occurs
as different carriers start dominating the transport as shown in Fig. 7.
We have used the parameters of Fig. 4.

The linear- and quadratic-B correction along the z direction
can be generated from the above two equations simply by re-
placing the x component of σ ’s and α’s by their z components.

Interestingly, the SCs have a linear-B dependence, arising
from TRS breaking tilt. This is reminiscent of linear-B terms
also appearing in MR. The tilt and B dependence of the
longitudinal SCs for type-I WSMs is shown in Fig. 5, while
the same for type II is shown in Fig. 6. Evidently the OMM
plays an important role, reversing the sign of the perpendicular
SC (νxx) in type-I as well as type-II WSMs. Furthermore,
in the case of a type-II WSM the linear-B component of
νxx dominates for small B, and the corresponding curve for
νxx(B)/νxx(0) − 1 is almost linear in Fig. 6(a), with a negative
slope.
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FIG. 7. (a) The Drude (B = 0) component of the SC (νxx), show-
ing the contribution of the conduction and the valance bands sepa-
rately. It reverses sign from positive to negative, as the contribution
from the holes (valance band states) starts to dominate. (b) The Drude
component of the SC (νzz) highlighting the contribution from the
different bands. All the components are scaled by the isotropic Drude
counterpart, νD. (c) and (d) show the flip in sign of the inverse of
the Drude components 1/νxx and 1/νxx , which is also reflected in
Fig. 6(b).

VI. LIMITING CASES: R → 0 AND R → 1

In this section, we summarize our results for different
components of thermopower in the asymptotic limit of no
tilt, R → 0, and critical tilt, R → 1, which is called a type-
III WSM, and serves as the boundary between type I and
type II. To be specific, we work with the tilt configuration
R− = −R+ = R with R > 0, though the results are similar
for the other configuration as well. We will consider three
specific cases: (a) vanishing tilt, R → 0, (b) tilt tending to
R → 1 − 0+ from below, and (c) tilt tending to R → 1 +
0+ from above. We present linear-B results in Table I and
quadratic-B results in Table II.

The linear-B correction to the thermopower is of the order
of −π2

3e (k2
BT )ν1, where we have defined

ν1 ≡ σ1

σ 0
D

α0
D

σ 0
D

= 3

μ

h̄2v2
F

2μ2

eB

h̄
. (40)

The quadratic-B correction is of the order of −π2

3e (k2
BT )ν0,

where ν0 is defined as

ν0 ≡ σ0α
0
D − α0σ

0
D(

σ 0
D

)2 = − 4

5μ

(
h̄2v2

F

2μ2

eB

h̄

)2

. (41)

Interestingly, we find that all the B-linear terms tabulated in
Table I vanish as R → 0 as well as R → 1.

VII. EFFECT OF CHIRAL ANOMALY

So far in this paper, we have discussed the thermopower
due to intranode scattering and the effect of BC. In this
section, we estimate the effect of internode scattering as
the origin of nontrivial thermopower in type-I WSMs. In-
ternode scattering stabilizes the chiral anomaly in WSMs
leading to different chemical potential in different Weyl nodes
[24,58,69]. For calculating charge conductivity and the ther-
moelectric coefficient due to internode scattering of a tilted
WSM, we borrow the formalism from Ref. [56].

For the case of B ⊥ ẑ, we calculate the charge conductivity
matrix due to chiral anomaly to be

σ̃B =

⎛
⎜⎝

σ (2)
ca cos2 φ σ (2)

ca sin φ cos φ 1
9σ (1)

ca cos φ

σ (2)
ca sin φ cos φ σ (2)

ca sin2 φ 1
9σ (1)

ca sin φ
1
4σ (1)

ca cos φ 1
4σ (1)

ca sin φ 0

⎞
⎟⎠.

(42)

Note the difference in the matrix structure in Eq. (42) from the
intranode contribution given in Eq. (7). For the case of B ‖ ẑ,
the only nonzero component is σzz and it is given by

σzz =
(

1

4
+ 1

9

)
σ (1)

ca + σ (2)
ca . (43)

In Eqs. (42) and (43), we have defined (for γ = 1)

σ (2)
ca = e2τv

18π2 h̄

e2v3
F

μ2
B2 and σ (1)

ca = −2
e2τv

π2h̄

evF

h̄
RB. (44)

Note that both these coefficients are proportional to the in-
ternode scattering time τv as expected. Furthermore, while
the σ (2)

ca term solely arises from the chiral anomaly inducing
E · B term, the σ (1)

ca term primarily arises from the tilted nature
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TABLE I. The Berry curvature, OMM (γ = 1), and tilt induced B-linear correction to thermopower. Only nonzero corrections are listed
below. We have defined the dimensionless thermopower, ν

(1)
i j = ν1ν̃

(1)
i j , and ν1 is defined in Eq. (40). We have neglected terms of the order of

x
f (x)2 for the type-III class, and x′

g(x′ ) and 1
g(x′ )2 for the type-II class to obtain a simpler form of thermopower.

Type I (R → 0 + |R|) Type III (|R| → 1 − x) Type II (|R| → 1 + x′)
ν̃

(1)
i j = ν̃

(1)
ji O(R) O(x) O(x′)

ν̃
(1)
lz ≈ −2R ν̃

(1)
lz ≈ − 2

3 f (x) (2 − 8x) ν̃
(1)
lz = − 4

3g(x′ ) ; g(x′) ≡ 2 + ln(2x′�̃2
k )

(B ‖ ẑ)
ν̃

(1)
l ≈ 2

3 R ν̃
(1)
l ≈ 4

3 f (x)x; f (x) ≡ log 2
x − 2 ν̃

(1)
l ≈ 4

3 [g(x′) − 3]x′

(B ⊥ ẑ) ν̃
(1)
t ≈ − 4

3 R ν̃
(1)
t ≈ − 4

3 x ν̃t ≈ 4
3 x′

of the WSM and it vanishes as R → 0. The Fermi energy
dependence of both the linear and quadratic terms in Eq. (35),
is identical to the corresponding intranode contributions. As a
consistency check, we note that if we ignore the OMM correc-
tion in σ (2)

ca , then its numerical prefactor changes from 1/18 to
1/4, and σ (2)

ca becomes identical to Eq. (17) in Ref. [24].
Using these coefficients and the Mott relation [valid in

the limit μ/(kBT ) � 1], we can calculate the correction to
thermopower due to the chiral anomaly. For B ⊥ ẑ, the ther-
mopower matrix is given by

ν̃B =

⎛
⎜⎝

ν (2)
ca cos2 φ ν (2)

ca sin φ cos φ 1
9ν (1)

ca cos φ

ν (2)
ca sin φ cos φ ν (2)

ca sin2 φ 1
9ν (1)

ca sin φ
1
4ν (1)

ca cos φ 1
4ν (1)

ca sin φ ν (2)
ca,z

⎞
⎟⎠.

(45)

Similarly, for B ‖ ẑ, the only nonzero component of ther-
mopower is given by

νzz =
(

1

4
+ 1

9

)
ν (1)

ca + ν (2)
ca,zz. (46)

The quadratic-B correction to the thermopower matrix due to
internode scattering can be written, in units of −π2

3e (k2
BT ), with

ζ ≡ h̄2v2
F

2μ2
eB
h̄ , as

ν (2)
ca = − 8

3μ
ζ 2 τv

τ

(
1 − 3

τv

τ
R2

)
, ν (2)

ca,z = 8

μ
ζ 2

(τv

τ
R
)2

.

(47)

ν (2)
ca,zz = − 2

9μ
ζ 2 τv

τ

(
4 − 169

τv

τ
R2

)
. (48)

Similarly, the linear-B correction, in units of −π2

3e (k2
BT ), can

be expressed as

ν (1)
ca = 24

μ
ζ

τv

τ
R. (49)

We emphasize that this linear-B correction in thermopower, is
one of the significant findings of this paper. It primarily arises
due to the tilted nature of the WSM and vanishes as R → 0.

Given that the internode scattering involves relatively large
momentum transfer as compared to the intranode scattering
timescale [24,56], generally we have τv � τ . Additionally,
since the internode scattering terms [Eqs. (47) and (49)] are
∼τv/τ times than the intranode scattering terms, the contri-
bution of the internode scattering terms will dominate in the
thermopower as well as in the electrical conductivity.

VIII. CONCLUSIONS

The presence of the BC and OMM in WSMs influences the
flow of charge carriers as well as entropy in the presence of a
magnetic field. This manifests as several interesting magne-
toelectric and magnetothermal transport properties in WSMs.
Since the Weyl nodes always come in pairs in a WSM, both
the intranode and internode scattering play an important role
in determining the electrical conductivity and thermopower.
In this paper, we have primarily focused on the impact of the
BC and OMM on the thermopower due to intranode scattering
in a tilted WSM, and briefly discussed the effect of the
internode scattering timescale. Our analytical calculations of
the full conductivity and thermopower matrix are based on the
BC-connected semiclassical Boltzmann transport formalism,
and explicitly include the effects of the OMM. The latter
modifies the energy dispersion of the Bloch electrons which
also manifests in the modified velocity of carriers, as well as
in the Fermi function. However, the Mott relation connecting

TABLE II. The Berry curvature, OMM, and tilt induced quadratic-B correction to the thermopower. Only nonzero corrections are listed
below. We have defined the dimensionless thermopower, ν

(2)
i j = ν0ν̃

(2)
i j , and ν0 is defined in Eq. (41). We have neglected terms of the order of

x
f (x)2 for type-III class, and x′

g(x′ ) and 1
g(x′ )2 for type-II class to obtain a simpler form of thermopower.

Type I (R → 0 + |R|) Type III (|R| → 1 − x) Type II (|R| → 1 + x′)
ν̃

(2)
i j = ν̃

(2)
ji O(x) O(R) O(x′)

ν̃
(2)
l = 8

3 x ν̃
(2)
l ≈ 8

3 x′
(B ‖ ẑ) ν̃

(2)
l = 2; ν̃

(2)
lz = −4

ν
(2)
lz = − 4

f (x)2 [ 3
2 f (x)ν0 − 4

9
ν2

1
ν0

D
] + 74

3 f (x) ν0x ν̃
(2)
lz ≈ − 6

g(x′ )

ν̃ (2)
z ≈ 2 ν (2)

z ≈ − 4
3 f (x) (3ν0 − [17ν0 + 2

3
ν2

1
ν0

D
]x) ν̃ (2)

z ≈ − 4
g(x′ )

(B ⊥ ẑ)
	ν̃ (2) ≈ −6; ν̃ (2)

⊥ ≈ 2 	ν (2) ≈ − 4
9 [39ν0 − ν2

1
ν0

D

2
f (x )]x; ν̃

(2)
⊥ ≈ 8

3 x 	ν̃ (2) ≈ − 4
3 13x′; ν̃

(2)
⊥ = 8

3 x′
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the conductivity matrix to the thermopower matrix remains
intact on including the effects of the OMM.

We find that the OMM has a significant impact on the
perpendicular MR in WSMs. Consistent with experiments,
our calculations show that the longitudinal MR (B ‖ E) in
isotropic WSMs is always negative, while the perpendicular
MR (B ⊥ E) is positive on including the effect of the OMM.
However, in tilted WSMs, the perpendicular MR can also
flip sign to become negative for the large tilt parameter [see
Fig. 1(b)].

In a type-I WSM, for the case of B ⊥ ẑ, we find that
increasing the magnetic field reduces the longitudinal SC,
giving rise to a negative Seebeck effect in analogy with
negative MR [see Fig. 3(d)]. For the perpendicular SC we find
it to be positive for small tilt parameters, but it reverses sign
for large tilt parameters. Analogous to the planar Hall effect,
we also find the existence of a planar Nernst effect, which has
an angular dependence νxy ∝ sin(2φ). Additionally, we also
find a linear-B out-of-plane Nernst response in WSMs with a
finite tilt. For the other case of B ‖ ẑ, we find the conductivity
and the thermopower matrix to be diagonal, with tilt induced
linear-B terms in the longitudinal as well as perpendicular
components. This manifests in an asymmetry in the MR and
SC curve around the B = 0 line, as shown in Figs. 5 and 6.

For the case of a type-II WSM, the scene is a bit mixed up,
owing to the contributions of both electron and hole carriers
for all energies. We find that even in the absence of a magnetic
field, the Drude SC can be positive or negative depending
on the tilt (see Fig. 7). For the case of B ⊥ ẑ in a type-II
WSM, we find that in contrast to the case of a type-I WSM,
the longitudinal SC is positive while the perpendicular SC is
negative. The angular dependence of the planar (νxy ∝ sin 2φ)
and the out-of-plane Nernst effect (νxz ∝ cos φ) is the same
for type-I and type-II WSMs. For the other case of B ‖ ẑ,
we find that the linear-B terms dominate the νxx for small
magnetic fields. We expect similar effects (such as planar
Peltier effect and linear-B out-of-plane Peltier effect, among
others) to also arise in the diagonal and the off-diagonal
coefficients corresponding to the Peltier effect.

Additionally, we have also explored the impact of intran-
ode scattering and chiral anomaly on the electrical conductiv-
ity and thermopower matrix in tilted WSMs. Remarkably, we
find that the intranode scattering and chiral anomaly in tilted
WSMs also lead to B-linear terms in the electrical conductiv-
ity as well as in the thermopower matrix. Furthermore, as the
conductivity and thermopower matrix ∝τv and since τv � τ ,
the internode contribution dominates.
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APPENDIX A: BERRY-CONNECTED BOLTZMANN
TRANSPORT FORMALISM

The Boltzmann transport formalism for magnetotransport
works well for relatively small magnetic fields where the

effects of Landau quantization can be ignored. The equa-
tions of motion (EOM) approach works well in the regime
where several Landau levels are occupied: h̄ωc � μ, with
μ denoting the chemical potential, and ωc is the cyclotron
frequency. In addition, the relaxation time approximation for
the non-equilibrium distribution function (NDF) works well
in the regime vF τ � l , where vF is the Fermi velocity, τ

is the relaxation timescale and l ≡ √
h̄/eB is the magnetic

length for cyclotron motion [57] with B as the magnetic field.
For WSMs, the Fermi velocity is found to be in the range of
105–106 m/s [35]. The Fermi energy and scattering time are
found to be of the order of a few meV and 0.1 ps, respectively
[70].

1. Semiclassical transport with Berry curvature and orbital
magnetic moment

The EOM describing the dynamics of the center of the
carrier wave packet (location at r, and having the Bloch wave
vector k) in a given band is given by [20,71,72]

ṙ = Dk

[
ṽk + e

h̄
(E × �k ) + e

h̄
(ṽk · �k )B

]
, (A1)

h̄k̇ = Dk

[
−eE − e(ṽk × B) − e2

h̄
(E · B)�k

]
. (A2)

Here −e is the electronic charge and and we have defined
Dk ≡ [1 + e

h̄ (B · �k )]−1. The band velocity is given by h̄ṽk =
∇kε̃k, where ε̃k = εk − mk · B is the electronic dispersion
modified by the intrinsic OMM. The modified band veloc-
ity can now be expressed as ṽk = vk − γ vm

k , where vm
k =

1
h̄∇k(mk · B), and the factor of γ = 0/1 is introduced to keep
track of the OMM dependent corrections.

The BC modified group velocity in Eq. (A1) has two
interesting effects: the E × �k term gives rise to the intrinsic
anomalous Hall effect [49,73], while the (ṽk · �k )B term
gives rise to the chiral magnetic effect in the presence of
nonzero chiral chemical potential [26]. In Eq. (A2), the first
two terms are the well-known Lorentz force, whereas the third
(E · B)�k term manifests the effect of the chiral anomaly
leading to negative MR [24] in WSMs. The modified EOM
also changes the phase-space volume by a factor Dk. To
compensate for this, such that the number of states in the
phase-space volume element is preserved, we have dk →
dk/Dk. This factor needs to be incorporated whenever the
wave-vector summation is converted in an integral over the
Brillouin zone in the presence of the BC [74,75].

The three-component BC and the intrinsic OMM can be
obtained from their respective tensors via the relation Aa =
εabcAbc, where εabc is the antisymmetric Levi-Civita symbol.
The corresponding Berry tensor is given by [76,77]

�ab
n = −2

Im[〈n|∂kaH|n′〉〈n′|∂kbH|n〉]
(εn − εn′ )2

, (A3)

where n is the band index with H|n〉 = εn|n〉. Similarly, the
OMM tensor is given by [76,77]

mab
n = − e

h̄

Im[〈n|∂kaH|n′〉〈n′|∂kbH|n〉]
εn − εn′

. (A4)

The dynamics of the NDF gr,k is described by the Boltzmann
kinetic equation. In the steady state the NDF kinetic equation
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for each node is given by [63]

ṙ · ∇r gr,k + k̇ · ∇k gr,k = Icoll{gr,k}, (A5)

where the right-hand side is the collision integral. In the
relaxation time approximation, Icoll{gr,k} = − gr,k− feq

τk
, where

feq ≡ feq(ε̃k, μ, T ) = (eβ(ε̃k−μ) + 1)−1 is the equilibrium
Fermi-Dirac distribution function with β−1 ≡ kBT . The scat-
tering timescale τk is the effective intranode relaxation time
which we consider to be constant (τk → τ ) for simplicity.

Note that in an anisotropic tilted WSM, the scattering
timescale should be anisotropic. However, for simplicity, we
will consider the scattering timescale to be isotropic, and
the anisotropy of the band structure will appear only in the
modified anisotropic velocities, and the anisotropic Fermi
surface.

Substituting Eqs. (A1) and (A2) in Eq. (A5), we obtain
an approximate steady-state NDF, up to first order in E and
∇T :

gr,k = feq +
[

Dkτ

(
−eE − (ε̃k − μ)

T
∇rT

)
·
(

ṽk + eB(ṽk · �k )

h̄

)](
− ∂ feq

∂ε̃k

)
. (A6)

Note that in this paper, our primary focus is on the BC-connected conductivity and we have not included the impact of the
Lorentz force terms in modifying the NDF [26,78] in Eq. (A6). The Lorentz force contribution to conductivity proportional to
eB
μ

τv2
F and its effect is more prominent in scenarios when the magnetic field is perpendicular to the transport direction. The

corresponding BC contribution is proportional to eB
μ2 h̄v2

F (for intranode scattering) in the electrical conductivity, and its impact is
more when electric and magnetic fields are parallel. A direct comparison between the Lorentz force terms and the BC induced
terms is not feasible, as far as the MR is concerned. We refer the reader to Ref. [79] for an excellent discussion on this issue, and
proceed below with the discussion on the BC induced conductivity.

Armed with the equation of motion and the NDF, we now proceed to calculate current. In the presence of a finite OMM, the
total local current can be expressed as [64]

jloc = −e
∫

[dk]D−1ṙ gr,k + ∇r ×
∫

[dk]D−1mk feq. (A7)

Here we have used the shorthand [dk] = dk/(2π )d , with d being the dimension of the system. The additional second term arises
from the intrinsic OMM of individual carriers, and can be physically attributed to the rotating dynamics of the finite width Bloch
wave packet. However, the “magnetization current” is not observable in conventional transport measurement. Consequently, the
transport current is defined as [64,80]

jtr = jloc − ∇r × M(r), (A8)

where M(r) is the total orbital magnetization in real space. The magnetization for a given chemical potential (μ) and T is given
by M = −∂F/∂B|μ,T , where F is the grand-canonical potential defined as [64]

F = − 1

β

∫
[dk]

(
1 + e

h̄
B · �k

)
ln[1 + e−β(ε̃k−μ)]. (A9)

Note that in Eq. (A8), the curl in the real space will involve temperature gradients, and the second term gives rise to the anomalous
thermoelectric Hall effect.

2. Electric and thermoelectric conductivity

Using Eqs. (A1), (A6), and (A9) in Eq. (A8) yields the following general expression for the BC dependent part of the electrical
conductivity tensor:

σ total
i j = −e2

h̄

∫
[dk]εi jl�

l
k feq + e2τ

∫
[dk]Dk

[
ṽi + eBi

h̄
(ṽk · �k )

][
ṽ j + eBj

h̄
(ṽk · �k )

](
− ∂ feq

∂ε̃k

)
. (A10)

Here ṽ j denotes the jth component of ṽk, and εi jl is the Levi-Civita antisymmetric tensor. Similarly, the BC dependent part of
the thermoelectric conductivity tensor can be explicitly obtained to be

αtotal
i j = kBe

h̄

∫
[dk]εi jl�

l
kξk − eτ

∫
[dk]Dk

(ε̃k − μ)

T

[
ṽi + eBi

h̄
(ṽk · �k )

][
ṽ j + eBj

h̄
(ṽk · �k )

](
− ∂ feq

∂ε̃k

)
. (A11)

In Eq. (A11) we have defined

ξk = β(ε̃k − μ) feq + ln[1 + e−β(ε̃k−μ)]. (A12)

While Eq. (A11) can be evaluated separately, in the low-
temperature limit (kBT � μ) it can also be obtained from
Eq. (A10) by using the Mott relations [63,64] which also hold

in the presence of the BC and OMM. In fact the validity of
the Mott relation including the OMM correction has also been
proved recently, in a more general setting, in Ref. [59].

The first term on the right-hand side of Eqs. (A10)
and (A11) denote the anomalous Hall effect [49,50,81] and
the anomalous thermoelectric effect [27,64], respectively. In
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WSMs, the anomalous Hall conductivity, σ A
xy has been shown

to be linearly proportional to the internode separation [27].
The anomalous thermoelectric conductivity αA

xy was shown
to be zero [27] in a linearized model but finite for a lattice
model [29,82]. The finite contribution in αA

xy in a lattice model
originates from band curvature effects beyond the linear
dispersion. In the case of a tilted WSM, described by a linear
dispersion, αA

xy is finite for both the type-I and the type-II class
of WSMs [33].

In the last term in Eqs. (A10) and (A11), one of the anoma-
lous velocity terms arises from the E · B term in Eq. (A2), and
the other from the NDF. For parallel electric and magnetic

fields, this is what leads to NMR [21,24], which is quadratic
in the magnetic field, and is a relatively well established
transport signature [5,37]. This term also leads to the planar
Hall effect [52,53], in which a Hall voltage is generated in the
plane of the electric and magnetic fields, as long as they are
not parallel or perpendicular to each other.

Expanding Eqs. (A10) and (A11) in powers of B (expan-
sion of Fermi function [71]), the zeroth-order, linear, and
quadratic-B components of the transport coefficients can be
expressed as [63] σ

(o)
i j ≡ L0(o)

i j and α
(o)
i j ≡ − 1

eT L
1(o)
i j , where

o = {0, 1, 2} refers to the order of magnetic field. For the
first-order terms we find

Lp(1)
i j = e2τ

∫
[dk]

[
(ε − μ)p

([ e

h̄
(viB j + v jBi )(v · �) − e

h̄
� · Bviv j − γ

(
viv

m
j + v jv

m
i

)]
(− f ′

0)

− γ viv j (m · B)(− f ′′
0 )

)
− δ(p − 1)(γ m · B)pviv j (− f ′

0)

]
. (A13)

Here p = 0 (or 1) for the electric (or thermoelectric) conductivity. Similarly, the quadratic terms can be expressed as [71]

Lp(2)
i j = e2τ

∫
[dk]

[
(ε − μ)p

([
viv j

( e

h̄
� · B

)2
− e

h̄
� · B

{ e

h̄
(viB j + v jBi )v · � − γ

(
viv

m
j + v jv

m
i

)}

+
(

eBi

h̄

eB j

h̄
(v · �)2 − γ

{ e

h̄

(
vm

i B j + vm
j Bi

)
(v · �) − e

h̄
(viB j + v jBi )(vm · �) + vm

i vm
j

})]
(− f ′

0)

− γ
[ e

h̄
(viB j + v jBi )(v · �) − (

viv
m
j + v jv

m
i

) − viv j
e

h̄
� · B

]
(m · B)(− f ′′

0 ) + γ

2
viv j (m · B)2(− f ′′′

0 )

)

− δ(p − 1)(γ m · B)p
([ e

h̄
(viB j + v jBi )(v · �) − (

viv
m
j + v jv

m
i

) − viv j
e

h̄
� · B

]
(− f ′

0) − viv j (m · B)(− f ′′
0 )

)]
. (A14)

The last term in both Eqs. (A13) and (A14) only contributes to
αi j (p = 1). As an additional consistency check, it is straight-
forward to derive the Mott relations separately for linear-B and
quadratic-B terms using Eqs. (A13) and (A14).

APPENDIX B: DRUDE CONDUCTIVITIES

In this section we calculate Drude conductivities of tilted
WSMs [58,65]. The diagonal components of conductivity in
the absence of a magnetic field are called the Drude conduc-
tivities. For the type-I class, Drude conductivity is given by
σ (0)

xx = σ (0)
yy , where

σ (0)
xx =

∑
s

3σ 0
D

4R3
s

[
2Rs

(1 − R2
s )

+ ln

(
1 − Rs

1 + Rs

)]
. (B1)

Drude conductivity along the z direction is given by

σ (0)
zz =

∑
s

3σ 0
D

2R3
s

[
−2Rs − ln

(
1 − Rs

1 + Rs

)]
. (B2)

In the limit Rs → 0 (ideal WSM), the Drude conductivity is
equal in all three directions and is given by

σ 0
D = 4π

3

e2

h

μ2τ

h2vF
. (B3)

For the type-II class a finite cutoff in momentum space (�k)
is unavoidable to calculate the conductivities. This determines

the Drude conductivity along the x direction as

σ (0)
xx =

∑
s

3σ 0
D

4|Rs|3
[

3 − R2
s

R2
s − 1

+ (
R2

s − 1
)
�̃2

k − δ1
s

]
. (B4)

The same along the z direction is given by

σ (0)
zz =

∑
s

3σ 0
D

2|Rs|3
[
3 − R2

s + (
R2

s − 1
)2

�̃2
k + δ1

s

]
. (B5)

These expressions of Drude conductivities are exact as there
are no approximations due to large cutoff.

Now we discuss the Drude thermopower. The Drude ther-
mopower for isotropic WSM, using Eqs. (4) and (B3), calcu-
lated to be

ν0
D = −2π2

3

kB

e

kBT

μ
. (B6)

Note that for a constant relaxation time the Drude SC is
scattering time independent. It is evident that for μ > 0, the
Drude coefficient is negative and for μ < 0 it is positive,
showing the electron and hole type of carriers, respectively.
For the tilted type-I class, the Drude coefficient is identical
to the isotropic one but for the type-II class, since the Fermi
energy comes along the cutoff, we find considerable effect
due to tilt. As in type-II WSMs both the bands contribute
and the contributions are opposite in nature, we expect the
Drude SC to be zero for equal contribution, which we get in
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our calculation for large tilt factor limit as shown in Fig. 7.
We have shown the contribution of both the bands. For the
xx components the valence band dominates in flow of entropy
[see Fig. 7(a)] whereas for zz components the conduction band
dominates [see Fig. 7(b)].

APPENDIX C: EXPRESSIONS WITH γ

Type-I WSM. For B ⊥ ẑ, the conductivities for the type-I
class are given by

σ
(2)
⊥ =

∑
s

(1 − 3γ )σ0, (C1)

	σ (2) =
∑

s

[
7 + 13R2

s − γ
(
1 + 6R2

s

)]
σ0, (C2)

σ (2)
z =

∑
s

[
1 + 7R2

s − γ
(
3 − R2

s

)]
σ0. (C3)

Here, the factor γ = 1 (0) explicitly keeps track of the terms
arising from the presence (absence) of the OMM [83]. The
corrections due to the OMM (the γ dependent terms) tend to
suppress the conductivities. Most importantly the inclusion of
the OMM in the conductivity changes the sign of σ

(2)
⊥ . The

linear-B correction to the transverse conductivity is given by

σ
(1)
t =

∑
s

sσ1

6R4
s

[
2Rs

{(
3 − 2R2

s

)
(γ − 1) + 3R2

s

(
1 − 2R2

s

)}
+3Fδs

(
γ − 1 + R2

s

)]
. (C4)

For B ‖ ẑ, the quadratic corrections are given by

σ
(2)
l =

∑
s

(1 − 3γ )σ0; σ
(2)
lz =

∑
s

[
8 + γ

(
5R2

s − 4
)]

σ0.

(C5)

The linear-B term in σxx = σyy is given by

σ
(1)
l =

∑
s

sσ1

6R4
s

[
2Rs

{(
3 − 2R2

s

)
(γ − 1) − 6γ R2

s

}
−3δs

{(
R2

s − 1
)
(γ − 1) + 2γ R2

s

}]
. (C6)

For σzz, the linear-B correction is given by

σ
(1)
lz =

∑
s

sσ1

3R4
s

[
2Rs

{(
3 − 5R2

s

)
(1 − γ ) − 3R4

s

}
+3F2δs(1 − γ )

]
. (C7)

Type-II WSM. First, we will consider the planar geometry
(B ⊥ ẑ). In this case the form of the conductivity matrix is
given by Eq. (7), and the elements of the conductivity matrix
are given by

	σ (2) =
∑

s

K(AR − γAM), (C8)

σ
(2)
⊥ =

∑
s

K(BR − γBM), (C9)

σ (2)
z = 2

∑
s

K(DR − γDM), (C10)

where K ≡ σ0
16|Rs|5 . For the planar components (responses in

the x-y plane) of the conductivity, we have defined the follow-
ing polynomials of Rs:

AR = 2
(
1 − R2

s + 5R4
s + 125R6

s + 30R8
s

)
, (C11)

AM = 2
(
3 + 8R2

s − 45R4
s + 90R6

s

)
, (C12)

BR = (
1 − 5R2

s + 15R4
s + 5R6

s

)
, (C13)

BM = 3
(
1 − 10R2

s + 25R4
s

)
. (C14)

For the σzz component, we have defined the following polyno-
mials of Rs:

DR = ( − 2 + 11R2
s − 25R4

s + 65R6
s + 15R8

s

)
, (C15)

DM = 2
( − 3 + 6R2

s + 5R4
s

)
. (C16)

The linear-B correction in the out-of-plane off-diagonal
conductivities can be written as σ (1)

xz = σ (1)
yz (π/2 − φ) =

σ
(1)
t cos φ. Here,

σ
(1)
t =

∑
s

sσ1

6R4
s

sgn(Rs)
[(

11 − 24R2
s + 21R4

s

)
(γ − 1)

+ 3γ
(
2 + R2

s − 5R4
s

) − 3Fδ1
s

(
γ − 1 + R2

s

)]
. (C17)

Now, we consider a magnetic field along the direction of
the tilt (B ‖ ẑ). The linear-B correction to the longitudinal
component in the x/y plane, σxx = σyy, is given by

σ
(1)
l =

∑
s

sσ1

6R4
s

sgn(Rs)
[(

11 − 9R2
s

)
(γ − 1) − 6γ

(
3R2

s − 1
)

−3δ1
s

{(
R2

s − 1
)
(1 − γ ) − 2γ R2

s

}]
. (C18)

The linear-B correction to σzz is given by

σ
(1)
lz =

∑
s

sσ1

3R4
s

sgn(Rs)
[(

17 − 27R2
s + 6R4

s

)
(1 − γ )

−6
(
1 − 2R2

s + 2R4
s

) + 3δ1
sF2(γ − 1)

]
. (C19)

The quadratic-B correction to σxx and σyy is given by

σ
(2)
l =

∑
s

σ0

8|Rs|5
[( − 2 + 5R2

s + 5R6
s

) + 6γ
(
1 − 5R2

s

)]
.

(C20)

The corresponding term for the σzz component is given by

σ
(2)
lz =

∑
s

σ0

2|Rs|5
[(

1 − 5R2
s + 15R4

s + 5R6
s

)
+ γ

( − 3 + 10R2
s − 20R4

s + 15R6
s

)]
. (C21)
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