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Tuning the topological features of quantum-dot hydrogen and helium by a magnetic field
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The topological charge of the spin texture in a quantum dot with spin-orbit couplings is shown analytically
here to be stable against the ellipticity of the dot. It is directly tunable by a single magnetic field and is related
to the sign of the Landé g factor. In a quantum-dot helium, the overall winding number could have a different
property from that of the single-electron case (quantum-dot hydrogen), since tuning the number of electrons
affects the winding number by the Coulomb interaction and the z component angular momentum 〈Lz〉. The
density profile and the spin texture influence each other when the Coulomb interaction is present. When 〈Lz〉 is
biased away from an integer by the spin-orbit couplings, the rotational symmetry is broken which induces strong
density deformation. The sign of the topological charge may also be reversed with increasing magnetic field.
These findings are of major significance since the applied magnetic field alone now provides a direct route to
control the topological properties of quantum dots.
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I. INTRODUCTION

Studies of topological spin textures have made great strides
in condensed matter physics [1]. The important role of spin-
orbit coupling (SOC) has been brought to the fore, in par-
ticular, since the discovery of the topological insulator [2,3].
It also plays a crucial role in various topological states in
nanoscale quantum systems. Basically, there are two impor-
tant concepts that govern the topological properties of the
states. One is that in momentum space the band structures
are topologically nontrivial, such as topological insulators
and topological superconductors. The other is that the states
contain topologically nontrivial structures in real space, such
as helical magnets [4,5], skyrmions in quantum Hall regime
[6,7], skyrmion lattice in noninteracting two subband GaAs
quantum well [8], etc. The topological band structure is able to
introduce special transport phenomena, while the topological
electron states in real space induced by the SOCs would be
important for spintroics and quantum information applications
[9–11]. We have recently found [12] that the spin fields are
vortices in a quantum dot (QD) (“artificial atom”) [13–18] in
the presence of SOCs [19–36], mostly at the single-electron
level. The vortices in real space apparently appear due to the
confinement induced translational symmetry breaking. The
topological features are distinguished by the competition of
the two SOCs: the topological charge of the spin field is 1
when the Rashba SOC is much stronger than the Dresselhaus
SOC; and −1 when the Dresselhaus SOC dominates the
system in a weak magnetic field (e.g., B � 1 T).

In this work we mainly focus on how the effects of the
Coulomb interaction and a single magnetic field change the
topological properties of the spin of the electrons in quantum
dots. In addition, comparison between the many-body states
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and the single-electron state is necessary for that purpose.
In order to be clearer about the topological properties of the
system, we introduce the winding number to describe the
topological charge of the spin field conveniently. So we can
analytically study the spin textures with different SOCs and
magnetic fields. Particularly, we prove analytically that the
topological charge is robust against the deformation of the
shape of the quantum dot, and is tunable in a single magnetic
field.

For the single electron case, by employing the perturbation
theory in terms of the magnetic field strength and the SOCs,
we show that the inversion of the topological charge, when
both of the Rashba and the Dresselhaus SOCs exist, is even
controllable by a single magnetic field. We further show that
the topological charge of the spin field with increasing of the
magnetic field has the opposite sign of the Landé g factor,
irrespective of the single-electron or many-electron states.
We note that the perturbation theory is valid in an arbitrarily
large magnetic field, since the perturbation terms always have
smaller energy scales than that of the unperturbative one.

In order to study the interacting system, we concentrate on
the two-electron QD for simplicity, namely the QD helium
[37,38]. We numerically calculate the energy spectrum and
the many-particle wave functions of the QD helium, by the
method of exact diagonalization. We consider the variation
of the expectation values of the z component of the angular
momentum and the spin 〈Lz〉 and 〈σz〉, respectively, versus
the magnetic field, in analogy to the phase transition theory.
However, as the system size is finite and no thermodynamic
limit is possible, we only mention about transitions of these
quantities. For instance, if the curve of 〈Lz〉(B) (〈σz〉(B)) is
not differentiable, then the discontinuous transitions occur
(akin to first-order transitions). If this curve is differentiable,
but with some clear plateaus developing, then the smooth
transitions occur (similar to a change to a second-order
transition).
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If there is no SOC in such a system, the spin field would
be trivial, only the z component of the spin exists, and 〈Lz〉
is quantized with increasing of the magnetic field. In fact,
the SOCs are able to turn the transition of Lz to second
order even in an isotropic dot, as Lz does not commute
with the SOCs. The rotational symmetry of the density may
be broken when 〈Lz〉 is no longer an integer. The system
becomes even more interesting if both spin and density are
controlled by the magnetic field or the electric field (Rashba
SOC is tuned by the electric field [39–43]). We thus report
here how the combination of the Coulomb interaction and
Rashba and Dresselhaus SOCs modify the spin textures of
these systems. Since the density profile and the spin textures
are closely dependent on and influence each other, we also
study the evolution of both density and spin with the magnetic
field.

We further explore the relations between the topological
charge of the spin field and 〈Lz〉 or 〈σz〉, which is controlled
by the external magnetic field. Quite remarkably, since the
topological features are directly tunable by the Landé g factor
and the number of electrons in our present approach, the sign
of the Landé g factor which is difficult to determine experi-
mentally [44] may be addressed by detecting the topological
features of the electrons properly.

The paper is organized as follows. In Sec. II we intro-
duce the Hamiltonians of the QD hydrogen and the QD
helium, and explicitly express the winding number to define
the topological charge of the in-plane spin field. We write
down the definition of the spin fields and the density which
will be studied in detail in the following sections. Then we
demonstrate that the topological charge is robust against the
ellipticity of the dots in Sec. III. We also derive the topological
charge to have the opposite sign of the Landé g factor in
strong magnetic fields, which can be verified numerically. In
Sec. IV we consider an InAs and a ZnO QD helium. We
study how the spin texture and the density distribution of the
electrons evolves with increasing of the magnetic field. Then
we study the relation among spin fields 〈Lz〉, 〈σz〉, and the
Coulomb interaction on the topological charge of the system
particularly. Finally, we conclude this work.

II. THE HAMILTONIAN AND THE WINDING
NUMBER OF THE SPIN FIELD

The single-electron Hamiltonian in a QD with SOCs is

H = P2

2m∗ + m∗

2

(
ω2

x x2 + ω2
y y2

) + �

2
σz + HSOC, (1)

HSOC = g1(σxPy − σyPx ) + g2(σyPy − σxPx ), (2)

where ωx and ωy describe the parabolic confinements in x
and y direction, respectively. σi is the Pauli matrix and the
strengths of the Rashba and Dresselhas SOCs are g1 and
g2, respectively. Pi = pi + eAi is the kinetic momentum. The
vector potential is chosen to be in the symmetric gauge A =
1
2 B(−y, x, 0) with the magnetic field B. The Zeeman coupling
is then � = gμBB, where g is the Landé factor. In fact, we can

rewrite the Hamiltonian in the form of

H = H0 + HLz
+ HSOC, (3)

H0 = p2

2m∗ + m∗

2

(
�2

xx2 + �2
yy2

) + �

2
σz, (4)

HLz
= eB

2m∗ (xpy − ypx ), (5)

where H0 describes a two-dimensional harmonic oscillator,
and HLz

is proportional to the z component of the angular
momentum Lz. In the following perturbative calculations,
H0 is the unperturbated Hamiltonian, and its eigenvectors
are chosen to be the basis in the numerical exact diagonal-
izations. We introduce the frequencies �x,y =

√
ω2

x,y + ω2
c/4

with the anisotropic confinement frequencies in two direc-
tions, and the cyclotron frequency ωc = eB/m∗. The confine-
ment lengths are Ri = √

h̄/(m∗ωi ), and the natural length are
�i = √

h̄/(m∗�i ). The eigenstate of the harmonic oscillator
with its eigenwave function ψnx,ny

(r), where nx,y are the
quantum numbers of the oscillator, is used as the basis of the
calculations.

If there is more than one electron in the QD, we need
to take the Coulomb interaction into account, which can be
written, in the second quantization [12,14,24,27],

HC = 1

2

∑
i, j,k,l

∑
s,s′

Vi, j,k,l c
†
i,sc

†
j,s′ck,s′cl,s, (6)

where c is the operator of an electron, s, s′ are the spin indices,
and i, j, k, l stand for the combination indices which contains
the x, y quantum numbers of the oscillator. For example, k =
(kx, ky), kx,y are the quantum numbers of the oscillator in x
and y directions, respectively. The Coulomb interaction matrix
element Vi, j,k,l is calculated numerically by a two-dimensional
integral,

Vi, j,k,l = 2

π

e2

ε
√

�x�y

(−1)| jx−kx |+| jy−ky|γ (ix, lx )γ (iy, ly)γ ( jx, kx )

× γ ( jy, ky)i|ix−lx |+|iy−ly|+| jx−kx |+| jy−ky|

×
∫

dxdy �(ix, lx, x)�( jx, kx, x)

× �(iy, ly, y)�( jy, ky, y)√
�y

�x
x2 + �x

�y
y2

, (7)

where ε is the dielectric constant and

γ (n, m) =
√

2min (n,m) min (n, m)!

2max (n,m) max (n, m)!
, (8)

�(n, m, x) = x|n−m|e− 1
4 x2

L|n−m|
min (n,m)

(
x2

2

)
. (9)

with the Laguerre polynomial L. We note that the integrand
is even (|ix − lx| + |iy − ly| + | jx − kx| + | jy − ky| is even),
otherwise the integral would be zero, which guarantees the
Coulomb interaction matrix element to be real.

We then exactly diagonalize the total Hamiltonian
HT = H + HC to obtain the wave function of the state that
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we would like to study. The selected state is supposed to be

|�〉 =
∑
{ j}

d j

∣∣( j1, s1), ( j2, s2), . . . ,
(

jNe , sNe

)〉
, (10)

where Ne is the electron number and d j is the coefficient
of the many-particle (or a single-particle) basis obtained
by the exact diagonalization. In the many-particle state
|( j1, s1), ( j2, s2), . . . , ( jNe , sNe )〉, ( jn, sn) are the indices for
the nth electron of the system, where jn is the combination
index containing the x, y quantum numbers of the oscillator
and sn is the spin index. The spin fields σμ(r) of such a state
can be defined generally by

σμ(r) =
∑
{i},{ j}

d∗
i d j

∑
k,l,s,s′

ψ
†
k,s(r)σμψl,s′ (r)〈(i1, s′

1), . . . ,

× (iNe, s′
Ne

)|c†
k,scl,s′ |( j1, s1), . . . , ( jNe , sNe )〉, (11)

and the density is given by

n(r) =
∑
{i},{ j}

d∗
i d j

∑
k,l,s

ψ
†
k,s(r)ψl,s(r)〈(i1, s′

1), . . . ,

× (iNe, s′
Ne

)|c†
k,scl,s|( j1, s1), . . . , ( jNe , sNe )〉. (12)

The wave function of ψk,s(r) = ψkx,ky,s(r) is a spinor, which
can be written explicitly for different spins, ψkx,ky,+(r) =
(ψkx ,ky (r)

0 ) and ψkx,ky,−(r) = ( 0
ψkx ,ky (r)).

In order to study the relation between the topological
charge and the environment of the QD, we explicitly define
the winding number

q = 1

2π

∮
dφ = 1

2π

∮
σx (r)dσy(r) − σy (r)dσx(r)

σx(r)2 + σy(r)2 , (13)

where φ(r) = arctan[σy(r)/σx(r)]. The route of the integral is
a closed path around a singularity of the φ field, then we can
find the winding number of this particular vortex. However,
in many-particle cases, there may be more than one vortices
in the QD. So it is also worth defining the overall winding
number (OWN) of which the path is chosen around the edge
and encloses all the possible vortices corresponding to more
than one singularity point of the φ field. The winding number
is directly related to the topological feature of the in-plane
spin field, and is therefore defined as the topological charge of
the system.

III. TOPOLOGICAL FEATURES RELATED TO
THE SIGN OF THE LANDÉ g FACTOR

In this work we mainly focus on how the Coulomb in-
teraction affects the topology of the system. But before that
we should determine some features in the single-particle case,
especially the topic on how the topological charge is varied by
the magnetic field. Then the many-body effect will be clear by
comparing the two cases.

We study the generic case of an anisotropic QD in a
magnetic field perturbatively. The unperturbed ground state of
H0 is determined by the sign of the Landé g factor if B > 0,

ψ
(0)
− = (ψ0,0 0)

T
for g < 0, or ψ

(0)
+ = (0 ψ0,0)

T
for g > 0.

The perturbation is then HLz
plus the SOCs. The wave func-

tions with the first-order corrections are

ψ
(1)
+ =

(
ψ0,0 + iW ψ1,1/2

(�1,x + i�2,x )ψ1,0 + (�∗
2,y + i�∗

1,y)ψ0,1

)
, (14)

ψ
(1)
− =

(
(�1,x − i�2,x )ψ1,0 + (�∗

2,y − i�∗
1,y)ψ0,1

ψ0,0 + iW ψ1,1/2

)
, (15)

where

�1,(x,y) = 1√
2(|�| + h̄�x,y)

(
−g1

eB

2
�x,y + g2i

h̄

�x,y

)
, (16)

�2,(x,y) = 1√
2(|�| + h̄�x,y)

(
−g2

eB

2
�x,y + g1i

h̄

�x,y

)
. (17)

W = h̄ωc

2
√

�x�y

�y − �x

−h̄(�x + �y)
, (18)

where W is the anisotropic parameter and describes the
anisotropy of the dot. Note that the wave functions are not nor-
malized, but the normalization does not change the winding
number. The in-plane spin fields can be calculated by Eq. (11),

σ±
x (r) =

[
G±

1,x

x

�x
+ G±

2,y

y

�y
∓

(
G±

2,x

x

�x
+ G±

1,y

y

�y

)
W

xy

�x�y

]
×ψ0,0(r), (19)

σ±
y (r) =

[
G±

2,x

x

�x
+ G±

1,y

y

�y
±

(
G±

2,x

x

�x
+ G±

1,y

y

�y

)
W

xy

�x�y

]
×ψ0,0(r), (20)

where

G±
1,(x,y) =

( ± 2h̄ − eB�2
x,y

)
g1

2(|�| + h̄�x,y)�x,y
, (21)

G±
2,(x,y) =

( ∓ 2h̄ − eB�2
x,y

)
g2

2(|�| + h̄�x,y)�x,y
. (22)

Note that �2
x,y = h̄/(m∗�x,y) < 2h̄/(m∗ωc) and eB�2

x,y < 2h̄,
then we have sgn[G±

1,(x,y)] = ±sgn(g1) and sgn[G±
2,(x,y)] =

∓sgn(g2).
Specifically, if only the Rashba SOC is present, then (see

the Appendix)

q = G±
1,xG±

1,y√
(G±

1,yG±
1,x )2

. (23)

Hence, q = 1 whatever the sign of g1 is, which means that
the sign of Rahsba SOC, or say the direction of the external
electric field, does not change the topological charge. In the
same manner, if only the Dresselhaus SOC is present, then
q = −1. Note that the calculation is based on an anisotropic
dot and the result is not related to the anisotropic coefficient
W . Therefore, the topological charge is analytically proven
to be robust against the ellipticity of the dot, which has been
studied only numerically in Ref. [12].

If both SOCs are present, the integral above becomes more
complex. We are still able to obtain that (see the Appendix)

q = sgn(G±
1,xG±

1,y − G±
2,xG±

2,y). (24)
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FIG. 1. The evolution of spin textures in dots with magnetic fields. Hereafter, the colors of the two-dimensional pictures represent the
density of the electron, which is defined by Eq. (12), and the arrows represent the in-plane spin field [σx (r), σy(r)]. The magnetic fields are
(a) B = 0.1 T and (c) B = 10 T for an InAs dot, and (b) B = 0.1 T and (d) B = 10 T for a ZnO dot. We consider Rx = 15 nm and Ry = 14 nm.
The SOCs are h̄g1 = h̄g2/2 = 10 meV nm for the InAs dot, and h̄g1 = 2h̄g2 = 5 meV nm for the ZnO dot. (e) The winding numbers of the
two cases.

Consequently, we conclude that the topological charge is still
q = ±1 when G±

1,xG±
1,y > G±

2,xG±
2,y or G±

1,xG±
1,y < G±

2,xG±
2,y,

respectively. Note that the sign of the topological charge is
not only related to either the strength or the sign of the SOC
g1,2. Only when the magnetic field is weak, the strength of the
SOC can determine the topological charge. But, surprisingly,
it is primarily determined by the sign of the Landé factor in a
strong magnetic field.

If we consider a strong magnetic field B → ∞, then
eB�2

x,y → 2h̄, so that G+
1,(x,y) → 0, G−

2,(x,y) → 0 and G−
1,(x,y) <

0, G+
2,(x,y) < 0. If g > 0, then q → sgn(−G+

2,xG+
2,y) = −1,

while q → sgn(G−
1,xG−

1,y) = 1 if g < 0. Hence, we obtain that

q = −sgn(g). (25)

It is safe to consider such a limitation B → ∞ in
the perturbation calculations. The energy scale of the
unperturbative Hamiltonian H0 is E0 = h̄�x/2 + h̄�y/2.
The energy scale of HLz is ELz = h̄ωc/2, and the
energy scale of HSOC is in the same order of ESOC =
h̄g1,2/�x,y + g1,2eB�x,y/2. We can then compare these energy
scales in the limit of B → ∞. It is obvious that ELz < E0

always, since 1
2ωc < �x,y =

√
ω2

c/4 + ω2
x,y . Moreover,

ESOC = g1,2
√

h̄m∗�x,y(1 + 1
2

ωc
�x,y

) < 2g1,2
√

h̄m∗�x,y, and
then ESOC/E0 → 0 when the magnetic field is very large
(�x,y → ∞).

On the other hand, in the perturbative states in Eqs. (14)
and (15), the corrections of the unperturbative states are � and
W shown in Eqs. (16)–(18). When B → ∞, the anisotropic
parameter is always W < 1, and the perturbation of the
SOCs HSOC providing the corrections in Eqs. (16) and (17)
also approach zero, �(1,2),(x,y) ∝ 1/

√
�x,y → 0. Indeed, when

B → ∞, the in-plane spin fields vanish and the spin textures
disappear. However, we can suppose a very large magnetic

field where the perturbation theory is valid and the spin
textures are still available.

The sign of the Landé factor (a difficult problem exper-
imentally [44]) may therefore be obtained by detecting the
topological charge. This important property in Eq. (25) is not
only valid in the single-electron case, but also works in the
two-electron case. We shall confirm this point below in the
numerical calculations.

The Landé factors of the two systems, InAs dot and ZnO
dot, have opposite signs. The unique properties of the later
system [45] have been explored only recently [46–50]. By
comparing the InAs quantum dots, and the ZnO dots, we could
determine how the Landé factor influences the topological
spin textures and the density profiles of the electrons. For the
InAs dot, the effective mass of electron is m∗

InAs = 0.042me,
Landé factor gInAs = −14, and the dielectric constant εInAs =
14.6. For a ZnO dot, the effective mass is m∗

ZnO =
0.24me, Landé factor gZnO = 4.3, and dielectric constant
εZnO = 8.5.

In these single-electron systems, we consider the case
when both SOCs are present. The numerical results are shown
in Fig. 1: with an increase of the magnetic field, we clearly
see how the spin textures evolve. In the InAs dot, if g1 >

g2, the topological charge is always q = 1. If g1 < g2, the
topological charge is q = −1 in a weak magnetic field B <

6.5 T, but q = 1 in a strong magnetic field due to the fact
that gInAs < 0 [Figs. 1(a) and 1(c)]. In a ZnO dot, if g1 < g2,
we have q = −1. But if g1 > g2, the topological charge is
q = 1 in a weak magnetic field B < 4.5 T, while it changes to
q = −1 in a strong magnetic field since gZnO > 0 [Figs. 1(b)
and 1(d)]. The important finding in Eq. (25) perfectly
agrees with our numerical studies (Fig. 1). We note that the
spin textures are topological trivial q = 0, when G±

1,xG±
1,y =

G±
2,xG±

2,y.
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FIG. 2. 〈Lz〉 of the two-electron states in (a) an InAs dot and
(b) in a ZnO dot with the Rashba SOC. The size of the two dots
is the same, Rx = Ry = 15 nm. The strengths of the SOC are h̄g1 =
h̄g2 = 20 meV nm for the InAs dot, and h̄g1 = h̄g2 = 5 meV nm for
the ZnO dot. (c) The density and the spin texture of the two-electron
InAs dot at B = 2.5 T, where 〈Lz〉 = −0.4867.

IV. QUANTUM-DOT HELIUM

If there is more than one electron confined in the dot, we
must consider the Coulomb interaction. Indeed, the Coulomb
interaction is not negligible and provides the various magnetic
signatures in the system. We would like to determine how
the Coulomb interaction affects the topological properties of
the many-electron dots. Therefore, we exactly diagonalize
HT = H + HC to obtain the electron density, the spin textures
〈Lz〉, as well as the winding number. The spin textures depend
on the density profile, and conversely, the density profile can
be modified by the spin textures. The density profile of the
ground state is closely related to 〈Lz〉. We study the relations
among those quantities in this section. For simplicity and
without loss of generality, we consider only the two-electron
case, viz. the quantum-dot helium.

In our exact diagonalization scheme, we keep the quantum
number of the harmonic oscillator nx, ny ∈ [0, 5], and so that
72 single-electron states are taken into account. This cutoff is
sufficient for the energy convergence.

A. Two-electron states in isotropic dots with one type of SOC

We consider the isotropic QD in this subsection. In such a
QD without the SOCs, 〈Lz〉 is quantized with the increase of
the magnetic field. 〈Lz〉 is always an integer and the system
has the rotational symmetry.

With either one of the SOCs (Rashba or Dresselhaus), 〈Lz〉
is not a good quantum number, and 〈Lz〉 is no longer an
integer, as shown in Figs. 2(a) and 2(b). The spin texture is
a single vortex with the topological charge q = ±1 in a mag-
netic field for a Rashba dot or a Dresselhaus dot, respectively.
The density profile is still rotationally invariant. The rotation
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FIG. 3. (a) 〈Lz〉 and (b) 〈σz〉 of the two-electron state in an InAs
dot with and without the SOCs. The strengths of the SOCs are h̄g1 =
h̄g2 = 20 meV nm. (c) 〈Lz〉 and (d) 〈σz〉 of the two-electron state in
a ZnO dot with and without the SOCs. The strengths of the SOCs
are h̄g1 = h̄g2 = 5 meV nm. The size of the two dots is the same,
Rx = Ry = 15 nm.

matrices for the Rashba SOC (UR) and the Dresselhaus SOC
(UD) are [12]

UR(θ ) =
(

cos θ sin θ

− sin θ cos θ

)
, UD(θ ) = UR(−θ ), (26)

where θ is the angle in the polar coordinate of the x-y plane,
are still valid to protect the rotational symmetry of the system
as well as the density of electrons if there is only one SOC
present. We show the 〈Lz〉 in terms of the magnetic field in an
InAs QD and in a ZnO dot with Rashba SOC in Figs. 2(a) and
2(b), respectively. The density profile and spin texture of the
InAs dot are shown when B = 2.5 T and 〈Lz〉 = −0.4867 in
Fig. 2(c).

B. Two-electron states in isotropic InAs dots with both SOCs

〈Lz〉 displays a smooth transition with the magnetic field
when both SOCs are present. Then the effective rotational
symmetry of the density can be broken, since the spin field no
longer has the rotational symmetry. It is therefore more inter-
esting to discuss in detail how the two SOCs and the Coulomb
interaction jointly influence the spin textures and then the
density profiles with increasing magnetic field. For simplicity,
we consider the case g1 = g2 in an isotropic dot only (Fig. 3).
The discontinuous transitions in 〈Lz〉 are smoothed out in
the presence of the SOCs as well. Strictly speaking, there is
no integer plateau of 〈Lz〉. However, we can still mark the
plateaus where the system shows 〈Lz〉 very close to being
integers. We also show 〈σz〉 in Fig. 3, since it is measurable
in an NMR experiment [51].

In the InAs dot without the SOC, no spin textures appear
and the density profile evolves from a dot to a ring as the
magnetic field increases, since 〈Lz〉 jumps from 0 to −3 when
the magnetic field increases up to 20 T. Due to the existence of
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FIG. 4. The density profiles of a two-electron InAs dot, Rx = Ry = 15 nm, with SOCs h̄g1 = h̄g2 = 20 nm meV. The colors stands for
the density n of the two electrons. The magnetic fields are (a) 1 T, (b) 3.7 T, (c) 6 T, (d) 12 T, (e) 17.5 T, (f) 18 T, and (g) 23 T. The Roman
numerals are corresponding to the states described in the text.

the confinement, the degeneracy of the Landau level is lifted,
and the Coulomb interaction mixes single-electron levels with
different angular momentum to quantize 〈Lz〉. When the SOCs
are present, spin textures appear to deform the density profile,
especially when 〈Lz〉 is in the region between two plateaus.

Since the spin textures are much richer in quantum-dot
helium than those in a single-electron dot (QD hydrogen),
we need to use the concept of the overall winding number
(OWN) which is equivalent to the total topological charge. It
can also be obtained by summing the topological charge for
each vortex in the system.

We consider here the dot with Rx = Ry = 15 nm, and SOCs
h̄g1 = h̄g2 = 20 nm meV. With an increase of the magnetic
field, the density profile, and spin textures evolve as follows
(or see the rainbow bar in Fig. 4):

(i) B = 0 T, the spin textures are canceled by the time
reversal symmetry. (ii) 0 < B < 2 T, the density profile and
spin textures are close to the single-particle case shown in
Fig. 4(a). 〈Lz〉 is in the first plateau 〈Lz〉 ≈ 0. (iii) 2 < B <

4.5 T, the spin textures are shown in Fig. 4(b). There are three
vortices located along the line x = −y, in which one with
q = 1 locates at the center and the other two with topological
charge q = −1 locate at (−0.4, 0.4) and (0.4,−0.4). The
OWN is thus obtained by summing all the three charges,
q = −1. The density is an elliptic dot stretched along x =
−y, since 〈Lz〉 is between the two plateaus. (iv) 4.5 < B <

15 T, the spin textures are shown in Fig. 4(c), there are still
three vortices: two have topological charge q = 1 [locate at
(0.5,0.5) and (−0.5,−0.5)] and the other has q = −1 at the
origin, but in the line of x = y. The OWN is changed to
+1. The density is again close to that of an isotropic dot,
since 〈Lz〉 is located on the plateau. (v) 15 < B < 17.3 T, the

three vortices merge toward the center, while the density is
again stretched but along the line x = −y, which is shown
in Fig. 4(d). (vi) Magnetic field around 17.5 T, where 〈Lz〉
is between two plateaus −1 and −3, the density is split into
two dots [Fig. 4(e)], i.e., significantly different from all the
other cases. Two vortices with q = 1 locate at the two density
dots, and one with q = −1 at origin. The OWN is thus 1.
(vii) 17.7 < B < 20 T, the split rings of density is shown in
Fig. 4(f). (viii) B > 20 T, the density is not split by the SOCs
[Fig. 4(g)], since 〈Lz〉 ≈ −3 is again back to the plateau, and
the OWN is still 1.

C. Two-electron states in isotropic ZnO dots with both SOCs

We now consider the ZnO dot where the Coulomb interac-
tion is much stronger than that for the InAs dot [49]. Without
the SOC, the density has a ring shape even at 〈Lz〉 = 0. With
the SOCs we are able to study how important the role of
Coulomb interaction is in splitting the density. Note that the
SOCs in ZnO is much weaker, so we consider h̄g1 = h̄g2 =
5 meV nm.

Just as in the case of the InAs dot, we find the following
spin-density textures with increase of the magnetic field up to
10 T (or see the rainbow bar in Fig. 4).

(i) B = 0, the spin textures are canceled by the time re-
versal symmetry. (ii) 0 < B < 0.2 T, the spin textures and the
density are close to that of the single-particle case [Fig. 5(a)].
(iii) 0.2 < B < 1.9 T [Fig. 5(b)]: 〈Lz〉 is between the two
plateaus 〈Lz〉 ≈ 0 and 〈Lz〉 ≈ −1. So the density splits and
meanwhile the spin textures split, two vortices with q = 1 at
(−0.8, 0.8) and (0.8,−0.8) and one vortex with q = −1 at
origin. The OWN is then 14. (iv) 1.9 < B < 2.5 T [Fig. 5(c)],
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FIG. 5. The density profiles of a two-electron dot, Rx = Ry = 15 nm, with SOCs h̄g1 = h̄g2 = 5 nm meV. The magnetic fields are (a) 0.1 T,
(b) 0.7 T, (c) 2.2 T, (d) 3 T, (e) 4 T, (f) 7 T, (g) 7.5 T, and (h) 9 T.

the OWN changes to q = −sgn(gZnO) = −1. The reason is
the same as for the InAs dot—the single-electron treatment.
(v) 2.5 < B < 3.8 T [Fig. 5(d)], the density starts to split
between the two plateaus 〈Lz〉 ≈ −1 and 〈Lz〉 ≈ −3. The den-
sity profile is similar to case (iii) but the topological features
are inversed, two vortices with q = −1 at (−0.6, 0.6) and
(0.6,−0.6) while one vortex with q = 1 at origin. The OWN
is −1. (vi) 3.8 < B < 4.5 T [Fig. 5(e)], the density profile
has a two-dot shape. The spin textures are not very regular,
but we can find that two vortices at the two dots are with
topological charge 1 and the third one is q = −1 at origin.
(vii) 4.5 < B < 7.3 T [Fig. 5(f)], the density merges to a split
ring, when 〈Lz〉 enters to a plateau. The spin textures are even
more complex, three vortices with q = −1 at (−0.8, 0.8),
(0,0), and (0.8,−0.8) and two vortices with q = 1 at (0.5,0.5)
and (−0.5,−0.5), so the OWN is q = −1. (viii) 7.3 < B <

8 T [Fig. 5(g)], the density splits to two dots again between
the two plateau between the two plateaus 〈Lz〉 ≈ −3 and
〈Lz〉 ≈ −5. The two vortices with q = −1 are associated with
the two density dots and one vortex with q = 1 at origin. (ix)
B > 8 T [Fig. 5(f)], the density merges to a split ring, again.
The OWN is −1, however, the details of the vortices in the
ring are not very clear in the figure.

D. Summary of the density evolution in the isotropic
QD helium with both SOCs included

Overall, the density profile evolves with the change of 〈Lz〉.
Generally for the density profile, whatever the material is,
the dot shape is stretched and the ring shape splits by the
SOCs when 〈Lz〉 is far away from an integer, while it merges

when 〈Lz〉 enters a plateau near an integer. The evolution of
the density profile with increase of magnetic field falls to a
split-merge cycle.

E. Coulomb interaction effects

The deformation of the density profile can be understood
as follows. When 〈Lz〉 is in the plateau, the many-body
state is basically composed by the eigenstates of Lz, |�〉 ≈
|n1, l1, s1〉|n2, l2, s2〉, where l1, l2 are the quantum number of
Lz and l1 + l2 = 〈Lz〉, n1, n2 are Landau level indices and
s1, s2 are the spin indices of the system. The density has
the rotational symmetry since 〈Lz〉 is still an integer and
Lz commutes with rotation with respect to the z axis. The
SOCs accompanied by the Coulomb interaction make the 〈Lz〉
deviate from the plateaus. Then the wave function may not
be so much related to two eigenstates of Lz with the same
phase (the wave function is given by the superposition of
many eigenstates of Lz with complex phases). Moreover, both
of the SOCs exist and neither UR nor UD protects the rota-
tional symmetry, since Lz ± σz/2 does not commutate with
the SOCs any more. So the rotational symmetry of the wave
function and the density can be broken. On the other hand,
the density deformation induces the changes of the Coulomb
interaction. When all these conditions combine together, the
density splitting occurs only when 〈Lz〉 is far away from the
integer plateau. If there is no Coulomb interaction, then no
mixing among single-electron levels appears, so that 〈Lz〉 →∼
−1 and no more transition happens, then the split-merge cycle
of the density deformation disappears. The noninteracting
picture is apparently incorrect in the many-particle cases.
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FIG. 6. (a) The OWN of the QD helium where Rx = Ry = 15 nm, h̄g1 = h̄g2 = 20 nm meV for the InAs dot, and Rx = Ry = 15 nm,
h̄g1 = h̄g2 = 5 nm meV for the ZnO dot. For comparison the OWNs of the QD hydrogen with g1 = g2 are also shown. The arrows show the
OWN reversed by the Coulomb interaction. (b) The OWN, (c) 〈Lz〉, and (d) 〈σz〉 for the InAs QD helium with tunable h̄g1 ∈ [0, 20] meV nm
and fixed h̄g2 = 20 meV nm. In comparison, (e) the OWN, (f) 〈Lz〉, and (g) 〈σz〉 of the ground state of the two noninteracting electrons are also
plotted.

We note that the topological features are tunable by adding
electron in the system. We consider an InAs dot with h̄g1 =
h̄g2 = 20 meV nm. The sign of the OWN is altered in the
QD helium by the many-body effect as shown in Fig. 6(a).
It is very interesting that the OWN is even related to 〈Lz〉.
The windows of inverse of the OWNs for the QD helium
(comparing with the cases of QD hydrogen) are open when
〈Lz〉 is converted from 0 to −1 and 〈σz〉 is converted from 0
to 2. When B < 2.8 T, the topological inversion is also related
to the region 0 < 〈σz〉 < 1 shown in Fig. 6(d), which provides
the clue of the indirect measurement of the topological charge.

In order to determine how the Coulomb interaction affects
the topological properties of the system, we compare the
interacting two-electron state and the noninteracting two-
electron state. We consider the fixed h̄g2 = 20 meV nm and
varied g1 in the InAs dot. The OWNs, 〈Lz〉, and 〈σz〉 of the
two interacting electrons states are indicated in Figs. 6(b),
6(c), and 6(d), respectively. The region of the inverse of the
topological charge, comparing with the single electron state
is basically covered by the region of the transition 〈Lz〉 =
0 → −1. As discussed above, the SOCs associated with the
Coulomb interaction change the wave function mostly in this
region between two plateaus of 〈Lz〉. Hence, it is mostly
possible to change the topological features in such regions.
The OWNs, 〈Lz〉, and 〈σz〉 of the two noninteracting electrons
are shown in Figs. 6(e), 6(f), and 6(g), respectively. The
Coulomb interaction significantly shifts and compresses the
regions of all of these quantities (OWNs, 〈Lz〉, and 〈σz〉).

We further note that when the magnetic field is strong, the
OWN should then be given by the single-particle case. The
contour of calculating the OWN is far away from the center
of the quantum dot, where the density of electrons is small
and the Coulomb interaction plays a less important role. The

SOCs determine the topological feature of the system, i.e.,
q → −sgn(g).

F. Two-electron states in anisotropic dots

We also study the more practical case: how the ellipticity
affects the spin-density profiles. First, we consider a slightly
strained dot, Rx = 15 nm and Ry = 14.9 nm. All the states
in Figs. 4 and 5 are unaltered. However, the spin textures are
slightly twisted and the density profile is rotated anticlockwise
toward the −x axis.

In Fig 7 the dot is strained seriously and without the SOC,
e.g., Rx = 15 nm, Ry = 10 nm. The density profile split into
two dots along the long axis when B > 4 T, where the plateau
of 〈Lz〉 disappears and 〈Lz〉 is far away from an integer. The
spin textures with only one SOC were reported earlier in
[12], the density cannot be rotated. With both SOCs, the spin
textures rotate the density clockwise slightly, <5◦.

V. CONCLUSION

In summary, we have shown that the winding number
(topological charge) uniquely depends on the sign of Landé
g factor of the material in a strong magnetic field, and in
the presence of both Rashba and Dresselhaus SOCs. We also
analytically demonstrate that this number is robust against
the ellipticity of the dot. With both SOCs present, the spin
textures can deform the density profile of the quantum-dot
helium, since the transition of 〈Lz〉 is smoothed. Between
two plateaus of 〈Lz〉, the rotational symmetry is broken. In
such regions, the dot-shaped density becomes stretched, while
a ring-shaped density is split, with the coupling of SOCs.
The topological features at the edge where the contour of
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FIG. 7. (a) 〈Lz〉 for the InAs quantum-dot helium Rx = 15 nm, Ry = 10 nm, with and without SOCs. The SOCs are g1 = g2 = 20 nm meV.
The density profiles of the quantum dot without SOC at (a) B = 0 T, (b) B = 3 T, and (c) B = 5 T. (d) The SOCs are coupled to such a dot at
B = 5 T. The white line is a guidance to eyes.

calculating the OWN is far away from the center follows the
rule of the QD hydrogen, q = −sgn(�) when the magnetic
field is sufficiently strong.

The Coulomb interaction accompanied by both SOCs can
reverse the sign of the total topological charge around the
region of the magnetic field where 〈Lz〉 : 0 → −1. A stronger
Coulomb interaction can make this topological transition
happen in a weaker magnetic field. Note that we consider
only two electrons in the system, more electrons and more
complex Coulomb interaction may change the topology in
a more significant way. It perhaps indicates that in other
topological nontrivial systems, the Coulomb interaction may
be also important and needs to be carefully treated.

The significance of these findings is that the topological
charge of the electron state is easily tunable by the perpendicu-
lar magnetic field alone if both SOCs are intrinsic, which thus
provides to control the topology of the system in spintronics
and quantum information.
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APPENDIX

We derive the topological charge explicitly shown in Eqs. (23) and (24) here. We use the short note G± = G in Eqs. (19) and
(20), and then the topological charge for a Rashba dot (g1 �= 0, g2 = 0) is

q = 1

2π

∮
σ R

x dσ R
y − σ R

y dσ R
x

σ 2
x + σ 2

y

= 1

2π

∮
[(G1,x cos θ + r2G1,yW cos θ sin2 θ )d (G1,y sin θ − r2G1,xW cos2 θ sin θ ) − (G1,y sin θ − r2G1,xW cos2 θ sin θ )

× d (G1,x cos θ + r2G1,yW cos θ sin2 θ )]/[(G1,x cos θ + r2G1,yW cos θ sin2 θ )2 + (G1,y sin θ − r2G1,xW cos2 θ sin θ )2],

where σ R
i is the spin field with g2 = 0 in Eqs. (19) and (20), and r =

√
x2 + y2. Then the topological charge is

q = 1

2π

∮ G1,xG1,y(1 + r4W 2 cos2 θ sin2 θ ) − r2W
(
G2

1,x cos2 θ + G2
1,y sin2 θ

)
(cos2 θ − sin2 θ )

(1 + r4W 2 cos2 θ sin2 θ )
(
G2

1,y sin2 θ + G2
1,x cos2 θ

) .

The integral is obtained by considering a circular contour of which the center is at the origin and the radius is r,

q = 1

2π

∫ 2π

0
dθ

G1,xG1,y

G2
1,y sin2 θ + G2

1,x cos2 θ
− 1

2π

∫ 2π

0
dθ

r2W cos (2θ )

(1 + r4W 2 cos2 θ sin2 θ )
= G1,xG1,y√

G2
1,y

√
G2

1,x

,

which is the same as Eq. (23). It is clear that the integral with W in the integrand vanishes, so the elliptical effect vanishes.
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For the Dresselhaus dot (g1 = 0, g2 �= 0), it is in the same way to obtain that q = −1. The charge is

q = 1

2π

∮
σ D

x dσ D
y − σ D

y dσ D
x

σ 2
x + σ 2

y

= 1

2π

∮
[(G2,y sin θ + r2G2,xW sin θ cos2 θ )d (G2,x cos θ − r2G2,yW cos θ sin2 θ ) − (G2,x cos θ − r2G2,yW cos θ sin2 θ )

× d (G2,y sin θ + r2G2,xW sin θ cos2 θ )/[(G2,y sin θ + r2G2,xW sin θ cos2 θ )2 + (G2,x cos θ − r2G2,yW cos θ sin2 θ )2],

where σ D
i is the spin field with g1 = 0 in Eqs. (19) and (20). Then

q = 1

2π

∮ −G2,yG2,x(1 + r4W 2 cos2 θ sin2 θ ) − r2W
(
G2

2,x cos2 θ + G2
1,y sin2 θ

)
(cos2 θ − sin2 θ )

(1 + r4W 2 cos2 θ sin2 θ )
(
G2

2,x cos2 θ + G2
2,y sin2 θ

)
= − 1

2π

∫ 2π

0
dθ

G2,yG2,x

G2
2,x cos2 θ + G2

2,y sin2 θ
− 1

2π

∫ 2π

0
dθ

r2W cos(2θ )

(1 + r4W 2 cos2 θ sin2 θ )
= − G2,xG2,y√

G2
2,y

√
G2

2,x

.

The general case with both SOCs reads

q = 1

2π

∮
σxdσy − σydσx

σ 2
x + σ 2

y

= 1

2π

∮ (
σ R

x + σ D
x

)
d
(
σ R

y + σ D
y

) − (
σ R

y + σ D
y

)
yd

(
σ R

x + σ D
x

)
(
σ R

x + σ D
x

)2 + (
σ R

y + σ D
y

)2 .

The denominator is (
σ R

x

)2 + (
σ R

y

)2 + (
σ D

x

)2 + (
σ D

y

)2 + 2σ R
x σ D

x + 2σ R
y σ D

y

= (1 + r4W 2 cos2 θ sin2 θ )[(G1,x cos θ + G2,y sin θ )2 + (G1,y sin θ + G2,x cos θ )2],

where

2σ R
x σ D

x + 2σ R
y σ D

y = 2(G1,xG2,y + G1,yG2,x ) sin θ cos θ (1 + r4W 2 sin2 θ cos2 θ ).

The nominator is (
σ R

x + σ D
x

)
d
(
σ R

y + σ D
y

) − (
σ R

y + σ D
y

)
d
(
σ R

x + σ D
x

)
= (

σ R
x dσ R

y − σ R
y dσ R

x + σ D
x dσ D

y − σ D
y dσ D

x

) + (
σ R

x dσ D
y + σ D

x dσ R
y − σ R

y dσ D
x − σ D

y dσ R
x

)
,

and

σ R
x dσ D

y = (G1,x cos θ + r2G1,yW cos θ sin2 θ )(−G2,x sin θ + r2G2,yW sin3 θ − 2r2G2,yW cos2 θ sin θ ),

σ D
x dσ R

y = (G2,y sin θ + r2G2,xW sin θ cos2 θ )(G1,y cos θ − r2G1,xW cos3 θ + 2r2G1,xW cos θ sin2 θ ),

σ R
y dσ D

x = (G1,y sin θ − r2G1,xW cos2 θ sin θ )(G2,y cos θ + r2G2,xW cos3 θ − 2r2G2,xW sin2 θ cos θ ),

σ D
y dσ R

x = (G2,x cos θ − r2G2,yW cos θ sin2 θ )(−G1,x sin θ − r2G1,yW sin3 θ + 2r2G1,yW cos2 θ sin θ ).

Then we have

σ R
x dσ D

y + σ D
x dσ R

y − σ R
y dσ D

x − σ D
y dσ R

x = − 1
2 r2W (sin 4θ )(G2,xG1,y + G2,yG1,x ).

It is straightforward to obtain

q = 1

2π

∫ 2π

0
dθ

(G1,xG1,y − G2,yG2,x )

(G1,x cos θ + G2,y sin θ )2 + (G1,y sin θ + G2,x cos θ )2
− 1

2π

∫ 2π

0
dθ

r2W cos(2θ )

(1 + r4W 2 cos2 θ sin2 θ )
.

The elliptic effect gives the same integral in any case of calculating the topological charge, which is zero. The topological charge
is

q = 1

π

∫ π

0

G1,xG1,y − G2,xG2,y

A + B cos t
dt = G1,xG1,y − G2,xG2,y√

(G1,xG1,y − G2,xG2,y)2
,

where

A = 1
2 G2

1,x + 1
2 G2

2,x + 1
2 G2

1,y + 1
2 G2

2,y, B =
√

1
4

(
G2

1,x + G2
2,x − G2

1,y − G2
2,y

)2 + (
G1,xG2,y + G2,xG1,y

)2
,

A2 − B2 = (G1,xG1,y − G2,xG2,y)2.

Finally, we obtain that the topological charge is equivalent to Eq. (24).
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