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Topologically protected wave packets and quantum rings in silicene
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We study chiral wave packets moving along the zero line of a symmetry-breaking potential of vertical electric
field in buckled silicene using an atomistic tight-binding approach with initial conditions set by an analytical
solution of the Dirac equation. We demonstrate that the wave packet moves with a constant untrembling velocity
and with a preserved shape along the zero line. Backscattering by the edge of the crystal is observed that appears
with the transition of the packet from K to K ′ valley or vice versa. We propose a potential profile that splits
the wave packet and next produces interference of the split parts that acts as a quantum ring. The transition time
exhibits Aharonov-Bohm oscillations in the external magnetic field that are translated to conductance oscillations
when the intervalley scattering is present within the ring. We study wave packet dynamics as function of the width
of the packet up to the limit of plane waves. In the stationary transport limit the conductance oscillation period
is doubled and the scattering density oscillates between the left and right arms of the ring as function of the
magnetic field. We demonstrate that this effect is also found in a quantum ring defined by the zero lines of the
symmetry-breaking potential in bilayer graphene.
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I. INTRODUCTION

In monolayer honeycomb materials, including graphene
[1], Xenes [2] (silicene [3,4], germanene [4,5], stanene [6]),
transition metal dichalcogenides [7], or bismuthene [8], the
Fermi level appears in two nonequivalent valleys of the Bril-
louin zone. In graphene ribbons [9] with zigzag edges there
is a strict correspondence between the valley state and the
direction of the current flow [10–12]. The valley protects the
chiral [13] electron transport from backscattering by long-
range potential disorder, which led to the valley electronics
[14,15] or application of the valley degree of freedom to
information processing [15–17].

In bilayer [18] and staggered monolayer graphene [19]
a topological confinement inside the sample, far from the
edges, was found [18,19] along a zero line of inversion-
symmetry-breaking potential. For bilayer graphene [20] this
potential is introduced by an electric field perpendicular to
the layers [18]. The bias opens the energy gap in the band
structure [20,21]. For an inhomogeneous electric field that
is inverted at the zero line in space, topologically protected
chiral currents have been found [18] confined in space to
a region of the electric field flip. The flip line provides a
one-dimensional confinement or quantum-wire-type channels
[22–25]. The one-dimensional confinement of currents is also
found in the quantum Hall conditions at the n-p junctions [26]
induced by electric fields. In contrast to the currents localized
at the n-p interface [27–29], the confinement in zero-line
channels does not require external magnetic field [18]. Note
that formation of an energy gap was also found in epitaxial
monolayer graphene due to the sublattice symmetry breaking
by the substrate [30]. However, the gap of this origin cannot
be easily inverted for the topological confinement.

A perpendicular electric field opens the energy gap for the
buckled Xenes monolayers [2,31,32], and an inversion of the

field induces topological confinement similarly as in bilayer
graphene [33]. In contrast to bilayer graphene, (i) in Xenes
the chiral energy level that passes from the valence to the con-
duction band is a linear function of the wave vector. In Xenes
a (ii) single topological state per current direction is present
instead of two as in bilayer graphene. As a consequence of (i)
and (ii) the wave packet formed at zero line in Xenes should
be stable against excitations and should travel with a constant
shape due to independence of the velocity on the wave vector.

In this paper we study the dynamics of the chiral wave
packets along the zero lines of the electric field in silicene
[2,34–39], the Xenes material for which the gating technol-
ogy is the most advanced, with a successful application for
the field effect transistor [40]. We find that the chiral wave
packets move with the Fermi velocity and the motion of
the topological packets is free from Zitterbewegung [41–44],
which is characteristic to the solution of the Dirac equation
and is found also for Weyl fermions in graphene [42,43,45].
Moreover, the topological electron packets move with a con-
stant shape, similarly to solitons, that in other conditions
require interaction with the environment—see the electron
solitons self-focused with interaction to the metal gates in
heterostructures [46] or the Trojan wave packets formed by
carefully prepared electromagnetic field [47,48].

We show that the chiral electron packets can be transferred
from one valley to the other by backscattering from the edge
of the crystal and we find that the packet appears in the
opposite valley in a restored shape. Potential profiles that act
as beam splitters and quantum rings [49] are proposed. An
interference of the split parts of the wave packet can be con-
trolled by external magnetic field threading the quantum ring.
The ring stores the wave packet for a time that is a periodic
function with the period the flux quantum. The Aharonov-
Bohm [50] conductance oscillations are also demonstrated
for the system with an intervalley scattering present. The
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topological rings are a new form of quantum rings for Dirac
electrons, with respect to previously considered systems with
structural confinement [51–55], mass confinement [56–58] or
the confinement at circular n-p junctions in the quantum Hall
conditions [59].

In the long wave packet limit, i.e., when the width of
the packet is comparable with the diameter of the ring, the
interference within the ring is translated into an imbalance of
the scattering density in the left and right arms of the ring that
becomes a periodic function with doubled Aharonov-Bohm
period. The result is also found in the stationary transport for
silicene and bilayer graphene.

This paper is organized as follows. In Sec. II we provide
an analytic solution to the Dirac equation for the topologi-
cally protected currents at the inversion of the electric field
(Sec. II A). In Sec. II B the solution of the continuum ap-
proximation (Sec. II A) is translated to atomistic tight-binding
description which naturally accounts for the intervalley scat-
tering, and the time stepping procedure is explained. In the
Sec. III we test the stability of the wave packet against the
intervalley transition (Sec. III A) and describe the Aharonov-
Bohm [50] oscillations of the electron storage time by the
ring (Sec. III B). Section III C describes the conductance
oscillations for intervalley scattering within the ring. The
long wave packet limit is discussed in Sec. III D, and the
limit is confronted with the standard calculation based on
the stationary electron scattering in Sec. III E. Section III F
shows the results of the Landauer approach for quantum rings
defined by the zero lines in bilayer graphene. Section IV
contains the summary.

II. THEORY

A. Chiral currents confined by the energy gap inversion

The chiral currents at the band inversion in silicene similar
to the ones in bilayer graphene [18] were found in Ref. [33].
For buckled monolayers as well as for bilayer systems the
energy gap can be tailored in space using multiple split gates
with inverted polarization. The idea of the local manipulation
of the energy gap by dual split gates was proposed for topo-
logical confinement [18] and pseudospin electronics in bilayer
systems [60–62].

Here, we consider a buckled silicene monolayer sand-
wiched in between top and bottom gates [Figs. 1(a) and 1(b)].
The gates are split, so that the electric field changes orientation
along the y axis (i.e., for x = 0). We model the potential at the
A sublattice using an arctangent function,

VA(x) = 2Vg arctan(x/λ)

π
. (1)

We assume that the silicene is embedded symmetrically be-
tween the gates, so that on the B sublattice we have VB(x) =
−VA(x) [Fig. 1(c)]. The potential bias between the sublattices
opens an energy gap in the band structure [31,32]. For poten-
tial of Eq. (1) the energy gap is inverted at x = 0 by the flip of
the electric field orientation.

For the wave function components defined on sublattices
ψ = (ψA, ψB)T the low-energy approximation to the atom-
istic tight-binding Hamiltonian reads [33]

Hη = h̄vF (kxτx − ηkyτy) + V (r)τz − ητzσztSO, (2)

FIG. 1. (a) Schematic side view of a silicene monolayer embed-
ded in a dielectric sandwiched between top and bottom gates with
the A sublattice on top (red dots in the inset) closer to a positively
VG > 0 biased top gate (red color) gated inducing a negative potential
energy for x < 0. (b) Top view of the system. The K ′ (K) valley
current flows leaving the negative (positive) potential energy on the
A sublattice on the left hand side. The flake has a zigzag (armchair)
termination at the edges with constant y (x). (c) The potential profile
on the A and B sublattices (right axis) and the wave function on the
A sublattice as calculated in the continuum approximation [Eq. (6)].
The blue solid (red dashed) lines show the wave functions with
the positive (negative) product of the valley index η and the spin σz

eigenvalue for λ = 4 nm and Vg = 0.2 eV. (d) The dispersion relation
calculated numerically.

where η is the valley index (η = 1 for the K valley and −1 for
the K ′ valley), τx, τy, and τz are the Pauli matrices in the sub-
lattice space, k = −i∇, the Fermi velocity vF is determined
by the nearest distance between Si atoms d = 2.25 Å and
the tight-binding hopping parameter t = 1.6 eV [4,36], vF =
3dt/2h̄. In Eq. (2) tSO = 3.9 meV is the intrinsic spin-orbit
coupling constant [4,36]. The intrinsic spin-orbit coupling is
diagonal in the basis of eigenstates of the z component of the
spin and σz = ±1 is treated as a quantum number.

With potential given by Eq. (1) the Hamiltonian com-
mutes with the ∂

∂y operator. The common eigenfunctions
of the energy and y momentum component can be put in

form ψky (x, y) = exp(ikyy)[ψky

A (x) ψ
ky

B (x)]
T

. The Hamilto-
nian eigenfunctions fulfill the system of equations

[VA(x) − E − ησztSO]	A(x)

ih̄vF
= (	 ′

B − ηky	B), (3)

[−VA(x) − E + ησztSO]	B(x)

ih̄vF
= (	 ′

A + ηky	A), (4)

where the prime stands for x derivative. We plug in Eqs. (3)
and (4) a relation 	B = i	A, i.e., a guess based on a numerical
solution that allows us to derive an analytical solution for
states localized near the zero-line area. A sum of the resulting
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equations relates the potential and the wave function

VA(x) − ησztSO = −h̄vF
∂

∂x
ln 	A(x). (5)

For the specific form of potential given by Eq. (1) the (un-
normalized) wave function is found by a standard integration
technique

	A = (λ2 + x2)
λVg

π h̄vF e(− 2Vgx
π h̄vF

arctan x
λ
+ ησztSOx

h̄vF
)
. (6)

The term x arctan(x/λ) in the exponent for low x introduces
a Gaussian-like dependence to the wave function and keeps it
localized near the band inversion area [Fig. 1(c)]. The average
value of 〈x2〉1/2 for λ = 1, 2, 4, 12, and 20 nm is 2.45,
2.87, 3.55, 5.45, and 6.83 nm, respectively. In presence of the
spin-orbit coupling the wave function is not ideally symmetric
with respect to the center of the gap inversion line: the term
including the spin-orbit coupling shifts the wave function at
left (right) of the inversion line for negative (positive) product
of valley index η and the σz eigenvalue. For the applied
parameters these shifts are not very strong – see the blue and
red lines in Fig. 1(c). In the calculations below we set σz = 1.

The energy of the states localized at the gap inversion can
be calculated by adding Eqs. (3) and (4) still with the relation
	B = i	A, which gives

E = −ηh̄kyvF . (7)

The entire dispersion relation calculated numerically with a
finite difference approach [63] is given in Fig. 1(d). The linear
band energy is independent of the Vg or λ which only affect
the transverse wave function localization at the energy gap
inversion line. Above the energy gap a continuous spectrum
is found with a parabolic in ky. Near the zero energy only the
localized reflectionless currents flow, and for Vg = 200 meV,
the gap is wide enough to make the currents stable at room
temperature. For the Fermi wave vector kF � 0.25 nm−1

(EF � 100 meV) the continuum appears still 100 meV above
the linear band.

The sign of the electron velocity within the linear band
v(ky) = 1

h̄ dE/dky = −ηvF depends on the valley index.
Hence, the transport at the inversion line is chiral, i.e., the
electron states of the valley K ′ (K) go up (down) along the
electric field flip line [Fig. 1(b)]. Generally, in the states
localized along the field flip the current in the K ′ (K) valley
flows with the negative (positive) potential at the A sublattice
at the left-hand side.

B. Chiral wave packets in the atomistic tight-binding approach

1. Atomistic Hamiltonian

Since the electron velocity in the linear chiral band is
independent of ky the wave packet localized at the flip of the
electric field should move with an unchanged shape along
the x = 0 line. The description of the electron wave packets
stabilized by the valley degree of freedom calls for an ap-
proach that takes into account the intervalley scattering. A
natural choice is the atomistic tight-binding approach. The
positions of the ions of the A sublattice rA

m = m1a1 + m2a2

are generated with the crystal lattice vectors a1 = a( 1
2 ,

√
3

2 , 0)
and a2 = a(1, 0, 0), where a = 3.89 Å is the silicene lattice

constant, and m1, m2 are integers. The B sublattice ions are
generated by rB

m = rA
m + (0, d, δ), with the vertical shift of

the sublattices δ = 0.46 Å. The coordinates of the center of
the valleys in the reciprocal space are Kη = ( 4πη

3a , 0) [35]. The
valleys for η = 1 (−1) are referred to as K (K ′).

We use the Hamiltonian [34,36,64]

HT B = −t
∑
〈m,l〉

pml c
†
mcl + itSOσz

∑
〈〈m,l〉〉

pmlνml c
†
mcl

+
∑

m

V (rm)c†
mcm + gμBB

2
σz, (8)

where 〈m, l〉 stands for the nearest-neighbor ions, 〈〈m, l〉〉
for the next-nearest-neighbor ions. For the potential V (rm)
we take VA(rm) or VB(rm). The sign νml = ±1 is plus (mi-
nus) for the next-nearest-neighbor hopping path via the com-
mon neighbor ion that turns counterclockwise (clockwise).

In Eq. (8) pml is the Peierls phase pml = ei e
h̄

∫ �rl
�rm

�A· �dl , where
�A = (0, Bx, 0) is the vector potential, and B is the value of
the magnetic field that is oriented perpendicular to the silicene
plane. The last term in Eq. (8) is the spin Zeeman term with
the Landé factor g = 2, and Bohr magneton μB.

2. Initial condition and the time-stepping

In the calculations to follow for the initial condition we
use the solution of the continuum Hamiltonian [Eq. (2)] and
localize the packet along the band inversion using an envelope
of form 1

1+ (y−y0 )4

D4

, with D = 80 nm and y0 that sets the center

of the packet. We set the valley momentum with a plane wave
and the K or K ′ coordinates. Accordingly, for the atoms of the
A sublattice we set as the initial condition

ψ
(
rA

m, t = 0
) = exp

[
i(Kη + ky) · rA

m

]
χ

(
yA

m

)
, (9)

where ky = (0, ky, 0) is the wave vector of the packet calcu-
lated with respect to the valley center, and 	A is given by
Eq. (6). For the atoms on the B sublattice we take

ψ
(
rB

m, t = 0
) = iη exp

[
i(Kη + ky) · rB

m

]
χ

(
yB

m

)
, (10)

where χ (y) = 	A(y)

1+ (y−y0 )4

D4

. We set ky = 0 unless stated otherwise.

We solve the Schrödinger equation on the atomic lattice
ih̄ ∂ψ

∂dt = Hψ , using the time step of dt = 10 atomic units or
dt = 2.418 × 10−4 ps. The wave function at the first step is
calculated with the implicit Crank-Nicolson scheme ψ (dt ) =
ψ (0) + dt

2ih̄ HT B[ψ (0) + ψ (dt )]. The subsequent time steps
are calculated with the explicit Askar-Cakmack scheme ψ (t +
dt ) = ψ (t − dt ) + 2dt

ih̄ HT Bψ (t ). In presence of the external
magnetic field the eigenstates of (3,4) need to be calculated
numerically [63]. However, for the discussed range of the
magnetic field (B < 1 T) and the applied narrow flip area
(λ = 4 nm) no significant difference between the numerical
eigenstates and formula of Eq. (6) used for the initial condition
were found in the wave packet evolution.

III. RESULTS

A. Wave packet motion

We first consider a square flake (x, y) ∈
[−300 nm, 300 nm] × [−300 nm, 300 nm] with a zigzag
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FIG. 2. Time evolution of the absolute value of the electron
packet (|φ|) backscattered by the zigzag (a) and armchair (b) edge of
the flake. The square flake has a zigzag edge at y = 300 nm (a) and
an armchair edge at x = 300 nm (b). The plots show the absolute
value of the wave function at the inversion of the energy band that
is introduced at x = 0 (a) and at y = 0 (b). For the zigzag edge the
wave packet is temporarily localized at the edge. The vertical fringes
observed at the backscattering result from the superposition of the
incoming and outgoing waves from the opposite valleys K and K ′.

edge at y = ±300 nm and and armchair edge at x = ±300
nm. The packet is set in the K ′ valley (η = −1) to make
it move upwards [to increasing y values—see Fig. 1(b)].
Figure 2(a) shows the cross section of the packet along the
x = 0 line. The packet indeed moves up in a stable form until
it reaches the zigzag edge of the flake.

The same result—as long as the packets does not reach
the edge—is obtained for the solution of the time dynamics
with the continuum Hamiltonian [by Eq. (2)]. The absence of
Zitterbewegung [41–44] for the wave packet that follows the
Dirac equation calls for a comment. The velocity operator is
obtained as v̂y = 1

h̄
∂Hη

∂ky
= −ητyv f [42]. For the Dirac equation

this operator does not commute with the Hamiltonian

(a)
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FIG. 3. (a) The average position in the y (black line, left axis)
direction for the wave packet scattered by the armchair edge of the
flake. The spread of the wave packet

√〈(y − 〈y〉)2〉 multiplied by 4
(blue line, left axis), and the average position at the x axis (right axis,
red line). The variation of 〈x〉 are due to the spin-orbit coupling and
the valley transitions that follow the backscattering by the edge [see.
Eq.(6)]. The electron spin is set at σz = +1. The parameters of the
system are the same as in Fig. 2(a), only the packet is started with the
initial average position at y0 = 100 nm. (b) The Fourier transform of
the packet calculated for the K ′ (red) and K valley (black).

[Hη, vy] 	= 0 which is usually invoked in the interpretation
of the trembling motion [42]. However, the wave function
localized at the zero line that follows the specific form used
in Sec. II A 	 = (	A, i	A)T happens to be an eigenfunction
of the v̂y operator, with the eigenvalue vy = −ηv f .
By, the Ehrenfest theorem for we have d

dt 〈	|v̂y|	〉 =
1
ih̄ 〈	|v̂yH − H v̂y|	〉 = 1

ih̄ (〈H v̂y	|	〉 − 〈	|H v̂y	〉) = 1
ih̄

(−ηv f 〈H	|	〉 + ηv f 〈	|H	〉) = 0, hence the constant
velocity of the packet.

B. Backscattering by the flake edge

The zigzag edge of the crystal supports edge localized
states. The incident packet couples to these states and in
Fig. 2(a) we find formation of a high peak of the absolute
value of the wave function (see the red region at the right edge
of the plot for t � 0.4 ps). The packet is backscattered and
moves to the left with a shape restored to its original form,
only in the opposite direction.

The average position 〈y〉, 〈x〉, and the size of the packet
along the junction �y ≡

√
〈(y − 〈y〉)2〉 is plotted in Fig. 3(a).

The system is the same as in Fig. 2(a) only the packet is started
at y0 = 100 nm. In Fig. 3(b) we additionally plot the square of
the absolute value of the Fourier transform of the wave packet
calculated for K and K ′ valleys,

ψ (k, t ) = 1

2π

∫
ψ (x, y, t ) exp(−ik · r)dr, (11)
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FIG. 4. The potential at the A sublattice for a quantum ring of
radius 100 nm. The potential at the B sublattice is assumed opposite.
The arrows indicate the orientation of the K ′ currents. The currents
in the K valley flow in the opposite direction.

for k = K−1 (i.e., the K ′ valley) and k = K1 (K valley).
We find that as the packet reaches the edge of the flake it
is scattered to the other valley that makes it travel in the
opposite direction. In Fig. 3(a) we can also see that the average
〈x〉 oscillates with a small magnitude which results from the
valley flips at the backscattering by the edge which changes
the sign of the exponent with tSO in the wave function (σz is
set to 1).

We find that the restoration of the chiral packet upon
scattering is observed for both the armchair and the zigzag
termination of the flake. For backscattering by the armchair
edge we rotated the potential within the flake by −π/2 angle.
The packet which is still started in the K ′ valley moves toward
larger x values until it reaches the edge [Fig. 2(b)]. Here
no peak of the wave function at the edge is observed since
the armchair termination does not support the edge localized
states [65].

C. Quantum ring

A form of a quantum ring with the chiral wave guides for
the electron flow can be defined with an engineering of the
electric field. For that purpose one needs a local inversion
of the electric field which requires additional top and bottom
gates in the system. Here we consider a circular area of radius
R, and set the model potential at the A sublattice to

VA = 4Vg

π2
arctan

(
r − R

λ

)
arctan

( x

λ

)
, (12)

where R = 100 nm is the circle radius with the center at the
origin and r =

√
x2 + y2 is the distance from the origin. The

potential at the A sublattice is plotted in Fig. 4. As above
we take VB(r) = −VA(r). Figure 4 shows also the direction
of the flow for currents in the K ′ valley—with the negative

(positive) potential at left (right) side of the current flow.
When the line of VA = 0 meets the ring at y = −100 nm
the K ′ current can go to either the left or the right arm
of the ring. This potential profile introduces a beam splitter
for the electron wave packet in this way. The central bar of the
ring is inaccessible for the K ′ current going up.

In quantum rings [49] Aharonov-Bohm [50] oscillations
of coherent conductance are observed that in the Landauer-
Büttiker [66] approach are explained as due to variation of the
electron transfer probability across the ring with phase shifts
accumulated from the vector potential of the magnetic field. In
the present system the electron backscattering from the ring is
prohibited by the topological protection of the valley current,
so the transfer probability of the chiral wave packet is 1 for
any magnetic field. However, we find that the time that the
electron spends within the ring changes due to the phase shifts
introduced by the vector potential.

In this section and in the rest of the paper we neglect the
intrinsic spin-orbit coupling (tSO = 0) that introduces a weak
asymmetry in the electron injection to the ring due to the
spin-valley dependent shift off the zero line [cf. Fig. 3(a) and
Eq. (6)]. The calculations for the quantum ring require long
leads to prevent return of the packet to the scattering area
upon reflection from the edge of the crystal. For long wave
packets the entire computational box is taken long up to 6 μm.
Systems these long are treated with the scaling method of
Ref. [67] for which the crystal constant is scaled as as = as f

with the hopping parameter ts = t/s f . In Hamiltonian Eq. (8)
ts replaces t , and as replaces a while the Si ions are generated
in the computational box. We use the scaling factor s f = 3 or
4 in the calculations for silicene below.

Figure 5(a) shows the snapshots of the simulation of the
packet transfer across the ring for B = 0. For t = 0 the packet
is started 350 nm below the center of the ring of radius
100 nm. The snapshots taken at 0.204 and 0.325 ps show that
the packet is split into two parts at the entrance to the ring. In
both the left and right arms of the ring the K ′ current moves
up leaving the negative potential at the A sublattice at the
left-hand side [see Fig. 4]. The split packets meet at the exit of
the ring [t = 0.568 ps and t = 0.689 ps] with the same phase
and the packet of its original size is restored [t = 0.810 ps].

Figure 6(a) shows the parts of the packet before (“b4,”
black lines) the ring, within (“in,” blue lines), as well as the
transferred part (“passed,” red lines) as a function of time. The
results for B = 0 that correspond to Fig. 5(a) are plotted with
the solid lines. For t = 0.75 ps the entire packet is transferred
above the ring.

Below we denote the magnetic field flux threading the
ring by � ≡ BπR2. For R = 100 nm the flux is equal to
the flux quantum �0 = h

e when B = 0.13167 T. In Fig. 5(b)
we plotted the snapshots of the simulation for B = 0.066 T,
which corresponds to � = �0/2. The parts of the packet that
meet at the exit (t = 0.6 ps) acquire a relative π phase due
to the Aharonov-Bohm effect. A node of the wave function
is formed at the exit to the upper channel. A nondestructive
interference is observed within the area below the exit from
the ring, which directs the packet to the internal bar within
the ring (t = 0.72 ps), i.e., to the only path where the K ′
current can go for the exit to the upper channel blocked by

085306-5



BARTŁOMIEJ SZAFRAN et al. PHYSICAL REVIEW B 100, 085306 (2019)

0.084ps

(a)

B
=

0 0.204ps 0.326 0.447 0.568 0.689 0.81

0.36ps

(b)Φ
=

Φ
0
/
2

0.6ps 0.72 0.924 1.056 1.176 1.296

FIG. 5. The snapshots of the time evolution of the wave packet for B = 0 (a) and B = 0.066 T (b), which corresponds to the magnetic
field flux across the ring of radius R = 100 nm � = BπR2 equal to half the flux quantum �0 = h/e, � = �0/2. The time from the start of the
simulation is given in picoseconds in the frames.
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FIG. 6. (a) The part of the wave packet before the ring (black
lines), inside the ring (blue lines), and above the ring (red lines)
for zero magnetic field (solid lines), half of the flux quantum (B =
0.066 T), and the magnetic field corresponding to the flux equal to
�0/8.5 (B = 0.0155 T). (b) The time at which less than 10% (blue
line), 50% (red line), and less than 75% of the electron density stays
within the ring as a function of the magnetic field flux through the
ring of radius R = 100 nm. Local extrema of the times are found
even and odd multiples of �0/2. (c) The part of the wave packet
inside the ring for the selected moments in time from the start of the
simulation.

the Aharonov-Bohm effect. The bar is transparent for the
K ′ current going down [Fig. 4]. The packet is split again
to the left and right arms of the ring at 0.924 ps. After the
second round the parts of the packet meet in phase 2π at the
exit and the packet smoothly leaves the ring [t = 1.176 ps,
t = 1.296 ps].

In Fig. 6(a) the results for half the flux quantum are plotted
with the dotted line. The packet is transferred to the exit with a
delay but completely and in a single move. For comparison in
Fig. 6(a) the results for the magnetic field of 0.0155 T which
corresponds to �0/8.5 are plotted with the dashed lines. Here
a part of the packet passes to the exit as fast as for B = 0, but
due to a phase difference at the exit a part of the packet stays
inside the ring and leaves it in portions at subsequent rounds,
which produces the steps in the dashed lines in Fig. 6(a).

In Fig. 6(b) we plotted the moments in time for which less
than 75%, less than 50% and less than 10% stays within the
ring as a function of the external magnetic field. The plot is
periodic with �0. The ring is emptied the fastest for the integer
and half quanta. The result of Fig. 6(a) for � = �0/8.5 (or
B = 0.0155 T) corresponds to a local maximum of the time
for which more than 10% of the packet stays within the ring.
Finally, Fig. 6(c) shows the part of the packet contained within
the ring for a fixed moment in time as a function of the
magnetic field. For t = 1 ps and 1.25 ps the ring-confined part
is locally maximal for the magnetic field corresponding to odd
multiples of half the flux quantum. For longer times these
maxima are turned into minima due to compensation of the
phase difference after the second round of electron circulation
[Fig. 5(b)] within the ring.

D. Intervalley scattering and conductance oscillations

For the potential profile plotted in Fig. 4 the transfer
probability can fall below 1 only provided that a intervalley
transition is present within the ring. The intervalley scattering
is introduced by potential variation that is short on the atom-
istic scale. For the modeling we introduced a point potential
defect of a Lorentzian form

Vd (r) = Vg

1 + (r − rd )2/l2
, (13)
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FIG. 7. The backscattering probability for a sharp perturbation to
the potential given by Eq. (13) as a function of the magnetic field flux
threading the ring of radius R = 100 nm. The red, green, and blue
lines correspond to ky = 0, 0.1/nm, and 0.15/nm, respectively. For
each value of ky two lines are plotted: the lower and upper bound to
the backscattering probability. The spacing between these two lines
is given by the probability density localized within the ring at the end
of the simulation (6.1 ps from the start).

where rd = (R, 0, 0), and Vg=7.2/s2
f eV and l =12a=4.7 nm.

In the scaling approach [67] the smooth potential that changes
slowly on the atomic scale, in particular, the one given by
Eqs. (1) and (12) stays invariant with s f . For the abrupt
short-range defect potential we found that scaling of Vg with s f

is necessary to keep the same effectiveness of the intervalley
scattering. The defect potential Vd enters with the same sign to
potential on both sublattices, as VA + Vd on sublattice A and
VB + Vd = −VA + Vd on sublattice B.

In presence of the defect, the results start to change signifi-
cantly with ky. The backscattering probability R as a function
of the external field is given in Fig. 7 for ky = 0, 0.1/nm, and
0.15/nm. For each value of ky two lines are plotted, which
are the minimal and maximal bound for the backscattering
probability. The difference between the two is determined by
the part of the electron packet that stays within the ring at the
end of the simulation (6.1 ps). R as a function of B is approx-
imately periodic with the period of flux quantum threading

the ring. The behavior of the electron packet is displayed in
Fig. 8 for B = 0 and ky = 0.1/nm. The packet is incident in
the K ′ valley. For t = 0.508 ps we spot the scattering center
near rd . A part of the packet passes across the defect moving
still in K ′ valley, and a larger part is backscattered and move
in the direction which is only allowed for the K valley. For t =
0.628 ps the K current reaches the entrance to the ring, a part
of it is backscattered to the input channel, and another goes
up along the bar. The electron packets of opposite valley meet
within the bar for t = 0.749 ps and 0.87 ps. For t = 0.991 ps
we can see recycling of currents for both the valleys: the K
valley current cannot pass to the output channel and the K ′
one to the input channel. The opposite valley currents meet
again, this time in the arms of the ring for t = 1.11 ps. For
t = 1.47 ps the packet distribution is similar to t = 0.87 ps,
only a smaller portion of the electron packet is still present
within the ring.

E. The limit of long wave packets

The wave packet dynamics in the limit of a large size of
the packet should approach the conditions of the stationary
electron flow. To study the limit of a plane incident wave we
consider a Gaussian envelope of the packet, i.e., in the initial
condition given by Eqs. (9) and (10) we set χ = exp[−(y −
y0)2/4σ 2]/(2πσ 2)1/4. The Fourier transform of the packet
produces the probability density with the standard deviation
of σk = 1

2σ
in the wave vector space.

We solve the time evolution and integrate the parts of the
packet in the left and right arms of the ring and in the center
bar over time as the packet transfers the ring. In Fig. 9 we
plot the results for increasing length of the packet in the
initial condition. The results for σ = 30 nm and σ = 60 nm
are nearly identical. The packet passes equally through the
left and right arms of the ring. The integrals in Figs. 9(a)
and 9(b) are periodic functions of the magnetic field with the
quantum of the flux threading the ring of radius R = 100 nm,
as above. An asymmetry of the electron transfer across the
arms appears for σ = 120 nm [Fig. 9(c)] and becomes very
strong for σ = 240 nm [Fig. 9(d)]. Moreover, as the result
of this asymmetry, the period of the integrals as functions
of the magnetic flux threading the ring of radius R doubles
and becomes equal to 2�0. For explanation of this effect
the solution of the stationary scattering problem of the next
subsection is helpful.
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FIG. 8. Snapshots of the electron density for B = 0, ky = 0.1/nm [the green lines in Fig. 7(a)]. The blue (green) arrows indicate the motion
of the parts of the packet moving in the K (K ′) valley. The time from the start of the simulation is given in picoseconds in the frames.
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FIG. 9. Probability density in the left (red dashed line) and right
(black line) arms of the ring and in the central bar (blue line)
integrated over time, for a Gaussian envelope of the wave packet in
the initial condition exp[−(y − y0 )2/4σ 2], with σ given in the figure.
The wave vector applied in the initial condition is ky = 0.01/nm.

F. Stationary electron flow

We solve the standard stationary quantum scattering prob-
lem for the Fermi level electron using the wave function
matching technique [68] for the atomistic tight binding Hamil-
tonian. We set EF = 6.4 meV for which the Fermi wave vector
is displaced by ky = 0.01/nm from the K ′ Dirac point at
B = 0. The integral over the scattering density in space is
plotted in Fig. 10(a). The result corresponds very well with
Fig. 9(d), only the features are more abrupt in the stationary
case, which is due to the presence of a finite range of ky in the
wave packet dynamics. The period of integrals is 2�0.

Figures 10(b)–10(d) show the scattering density for � =
0.91�0, 0.99�0, and 1.06�0, respectively. For 0.99�0

[Fig. 10(c)] the parts of the electron density passing through
both the arms of the ring meet in phase at the exit to the
ring, and the electron wave function does not enter the central
bar. However, for slightly different magnetic field [Figs. 10(b)
and 10(d)] a phase difference appears, the part of the wave

FIG. 10. Solutions of the stationary scattering problem for EF =
6.4 meV, which corresponds to the wave vector ky = 0.01/nm as cal-
culated with respect to the K ′ valley. (a) Scattering density integrated
over the left (red dashed line), the right (black line) arm of the ring,
and in the central bar (blue line). (b–d) The scattering density for
B = 0.12, 0.13, 0.14 T, that correspond to the flux of the magnetic
field threading the ring of radius 100 nm � = 0.91�0, 0.99�0, and
1.06�0, respectively. (e) Same as (a) only as a function of ky for
B = 0.075 T (� = 0.57�0). The horizontal bars show the segments
[ky − σk, ky + σk] with the standard deviation of the Gaussian packet
σk = 1

2σ
for σ = 30, 60, 120, and 240 nm, from top to bottom. (f)

Backscattering probability obtained for the defect potential given by
Eq. (13).

function is injected to the central bar from above, and the
interference within the ring promotes right or left arm of
the ring. In the extreme conditions of Figs. 10(b) and 10(d)
the electron circulates around a half of the entire ring, which
is the origin of the period doubling of the period on the flux
scale, as now the area for the magnetic field flux is halved.

In the time-dependent dynamics for short packets the injec-
tion to both the arms of the ring is nearly ideally symmetric.
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Figure 10(e) gives the integrals for the stationary flow for
� = 0.57�0 (i.e., B = 0.075 T) as a function of ky. The
scattering density switches very fast from the left to the right
arms of the ring. The horizontal bars at the top of the Figure
show the segments of ky from 0.01 1

nm ± σk = 0.01 1
nm ± 1

2σ
,

for σ = 30, 60, 120, and 240 nm (from top to bottom). Only
for large σ the asymmetry survives averaging over ky range
contained within the packet, hence the symmetric transfer for
shorter packets.

Figure 10(f) shows the backscattering probability R for the
ring with the defect given by Eq. (13). The conductance G =
(1 − R) e2

h has a period of 2�0 in terms of the flux threading
the entire ring, or the period of the oscillations corresponds to
the flux quantum threading half of the ring in consistence with
the period of the scattering density integrals of Fig. 10(a).

G. Quantum rings defined by zero lines in bilayer graphene

Qualitatively similar results for the transfer across the
quantum rings defined by the zero lines of the symmetry-
breaking electric field are found for the bilayer graphene.

For bilayer graphene we use the atomistic tight-binding
Hamiltonian spanned by pz orbitals,

H =
∑
〈i, j〉

(ti jc
†
i c j + H.c.) +

∑
i

V (ri )c
†
i ci, (14)

where V (ri ) is the external potential at the ith site at position
ri, and in the first term we sum over the nearest neighbors.
We use the tight-binding parametrization of Bernal stacked
layers [69], with ti j = −3.12 eV for the nearest neighbors
within the same layer. For the interlayer coupling, we take
ti j = −0.377 eV for the A-B dimers, ti j = −0.29 eV for skew
interlayer hoppings [69] between atoms of the same sublattice
(A-A or B-B type), and ti j = 0.12 eV for skew interlayer
hopping between atoms of different sublattices. The orbital
effects of the magnetic field are introduced by Peierls phase,
as in Sec. II B 1.

For simulation of the ring, we assume potential of the form
given by Eq. (12) on the upper sublattice and an opposite
potential on the lower sublattice [see Fig. 11(a)]. We set Vg =
0.2 eV, λ = 4 nm as above, but the radius of the ring is taken
equal to R = 50 nm. The magnetic field period corresponding
to the flux quantum threading the circle of this radius is 0.53 T.

The dispersion relation for armchair nanoribbon is dis-
played in Fig. 11(b). For calculations we take the the Fermi
energy is EF = 0.1 eV. For bilayer graphene we have two
energy bands instead of the single one moving up the ribbon
towards the ring. The integrals of the scattering density are
plotted in Fig. 11(c) and display the periodicity with � period
of 2�0, as found above for silicene.

To produce the backscattering we removed an atom of the
upper graphene layer from the center of the right arm. We
selected an atom that does not form a vertical dimer with
the lower layer. The backscattering probability—the sum of
probabilities for each of the incident subbands—is given in
Fig. 11(d) and display the periodicity corresponding to the
flux through half the ring, as found above for silicene.
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FIG. 11. (a) Schematics of the potential on the upper and lower
layers of bilayer Bernal stacked graphene. Blue and red colors
correspond to opposite sign of the potential. We consider an arm-
chair nanoribbon of width W = 49.2 nm, with 1604 atoms in the
elementary cell (on both layers). The zero line forms the ring of
radius R = 50 nm. The computational box in the ring area covers an
area of radius 74.5 nm. (b) The dispersion relation for the amrchair
nanoribbon feeding the current to the ring at B = 0. The dots indicate
the Fermi wave vectors at the bands with positive velocity for EF =
0.1 eV. acc is the nearest-neighbor distance for graphene. (c) Integral
of the scattering density in the left and right arms of the ring and
in the bar for EF = 0.1 eV. (d) Backscattering probability for a
vacancy: a carbon atom removed from the center of the right arm
from a position that does not form a vertical dimer with the bottom
layer.

IV. SUMMARY

We studied the dynamics of electron wave packets in
buckled silicene in inhomogeneous vertical electric field
that breaks the symmetry between the sublattices using an
atomistic tight-binding approach. We have demonstrated that
the line of the electric field flip in silicene supports a smooth
untrembling motion of unspreading wave packets that are
topologically protected from backscattering. We proposed a
form of a quantum ring that uses branching of the zero line to
split the wave packets and to make them interfere again. The
ring stores the packet for a finite time that can be controlled
with the external magnetic field. For short wave packets the
time spent by the electron in the left and right arms of the ring
is a periodic function of the flux with the period of the flux
quantum threading the ring. We found that for long packets,
close to the plane waves, the electron transport across the
rings becomes asymmetrical with an imbalance of the electron
transfer across the left and right halves of the ring. In conse-
quence the period of oscillations in terms of the magnetic field
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flux across the ring is doubled. This result is reproduced by
stationary scattering calculations. We demonstrated that the
same effect is found for rings defined in bilayer graphene. The
point defects produce backscattering probability that has a
period of the flux quantum threading the ring for short packets.
For long packets and in the stationary transport the period of
the backscattering probability is doubled.
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