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Hyperfine interaction for holes in quantum dots: k · p model
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We formulate the multiband k ·p theory of hyperfine interactions for semiconductor nanostructures in the
envelope function approximation. We apply this theoretical description to the fluctuations of the longitudinal and
transverse Overhauser field experienced by a hole for a range of InGaAs quantum dots of various compositions
and geometries. We find that for a wide range of values of d-shell admixture to atomic states forming the top of
the valence band, the transverse Overhauser field caused by this admixture is of the same order of magnitude as
the longitudinal one, and band mixing adds only a minor correction to this result. In consequence, the k ·p results
are well reproduced by a simple box model with the effective number of ions determined by the wave-function
participation number, as long as the hole is confined in the compositionally uniform volume of the dot, which
holds in a wide range of parameters, excluding very flat dots.
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I. INTRODUCTION

Hyperfine coupling between the spin of a hole localized in
a self-assembled quantum dot (QD) and the nuclear spins of
the atoms of the host materials has been a subject of intense
experimental [1–8] and theoretical [6,9,10] investigations in
recent years. The original reason for resurgence of interest
in this topic was the prospect of using hole spins as qubits
with long coherence times [1,2,8,11–14]. This was motivated
by the fact that dephasing of electron spins in QDs, being
an obstacle to their application as qubits for quantum infor-
mation processing purposes, is dominated by their hyperfine
(hf) interaction with the nuclear spins of the host material
[15–20], and the hole-nucleus coupling was expected to be
much weaker than the electron-nucleus one [9,10]. Experi-
mental confirmation of this expectation [1–5] opened the way
for using hole-spin qubits in applications, such as creation
of long-distance entanglement of hole spins [13], in which
their enhanced coherence time and good coupling to photons
(holding for both holes and electrons in self-assembled QDs
[21,22]) was helpful.

The dominating mechanism in the case of electron hf
coupling is the contact interaction [15,23]. While for a purely
s-shell state this interaction would be isotropic, lowering the
local symmetry leads to mixing of atomic shells in the Bloch
functions, which results in an anisotropy of the hf coupling
due to dipolar coupling to non-s atomic states [24–26], as in
the case of electron states in materials such as Si, in which
the states at the bottom of conduction bands have appreciable
non-s component [26]. On the contrary, the holes have very
small contribution of s states in their wave functions, and
therefore interact with nuclei only by weaker (approximately
by one order of magnitude [9]) and much more subtle dipole
couplings, which are sensitive to the details of their atomic
(or Bloch) wave functions. For non-s states, anisotropy can
be induced by symmetry breaking without shell mixing, by

modifying the hybridization of orbitals. In particular, breaking
the symmetry on the mesoscopic level by strong confinement
in the growth (z-axis) direction, lifts the degeneracy between
heavy-hole and light-hole states and leads to strong anisotropy
of the hole hf interaction. As a consequence, for purely heavy-
hole state, and for Bloch functions at the top of the valence
band being built only from atomic p-shell orbitals of the
atoms constituting the crystal, the hf interaction should be of
Ising character, with the interaction axis parallel to the growth
axis [9]. However, similar to the electron case, atomic shell
mixing, in particular the finite amplitude of d states at the
top of the valence band (i.e., the p-d hybridization), can give
rise to transverse couplings. Such couplings appear also in the
presence of finite heavy-light–hole mixing [3,9,10].

These general expectations were confirmed by experi-
ments, showing that the Overhauser field exerted by the nuclei
on the hole is about an order of magnitude smaller than the
one experienced by the electron in the same dot. In [1,2]
qualitative results showing that in InGaAs QDs the coupling
of holes to the nuclei is much weaker than that of electrons
were obtained from analysis of hole-spin initialization by op-
tical pumping, and coherent population trapping experiment,
respectively. In [3] photoinduced circular dichroism of an
ensemble of QDs was measured and, from its magnetic field
dependence, the value of dot ensemble average of transverse
Overhauser field experienced by the hole spin was estimated
to be ≈30 times smaller than the field experienced by the
electron spin, and theoretical estimates suggested that the
longitudinal coupling should be larger by a factor of about
2, implying rather weak anisotropy of the interaction. Direct
measurements of relative magnitudes of the Overhauser field
experienced by electrons and holes were then described in
[4,5], where nuclei in single InGaAs/GaAs and InP/GaInP
single QDs, respectively, were dynamically polarized, and the
resulting splittings of electron- and hole-spin states were mea-
sured. In both experiments the magnitude of the longitudinal
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hole Overhauser field was ≈−0.1 of the electron field, in
qualitative agreement with theoretical predictions [9]. It is
important to note, however, that the anisotropy of the hole
hf interaction was quantitatively characterized in experiments
concerning the same quantum dot only very recently in [8],
where a value of ∼1% of the longitudinal one was measured,
while the latter was about 10% of the electron hf interaction,
in agreement with previous experiments.

Clearly, the existing experiments do not paint a fully con-
sistent picture, and a number of open questions and contro-
versies need to be investigated. While the longitudinal (along
the QD growth axis) hole-nuclear interaction qualitatively
agreed with theoretical expectations, large discrepancies in
strength of transverse hyperfine interactions were reported,
with estimated values of transverse coupling ranging from
the same order of magnitude [3] to less than 1% of the
longitudinal one [8]. The origin of the transverse interactions
is also controversial: while initially heavy-light–hole mixing
was invoked [3,9,10] to explain its finite value, the presence
of finite admixture of d-symmetry states in states forming the
top of valence band in relevant III-V materials was suggested
to play a significant, or even possibly dominant, role [6].
Such a substantial admixture of atomic d states in the valence
band Bloch functions is in qualitative accordance with earlier
theoretical results [27–30]. However, as we show in this paper,
the admixture of d states used in [6] to explain the relative
magnitudes and signs of contributions to the longitudinal
Overhauser field coming from various atoms implies that the
equilibrium fluctuations of the transverse Overhauser field
should be comparable to those of the longitudinal one, leading
to an apparent qualitative contradiction with the results of [8].

It is important to note that with transverse hole hyper-
fine coupling being much smaller than the longitudinal one
(which, in turn, is lower by an order of magnitude than the
coupling for an electron), the coherence time of hole spin
polarized along the growth axis can be significantly enhanced
by application of large transverse magnetic field perpendicular
to this axis [8,9]. Understanding of physical origin of the
transverse coupling is thus important, as it would possibly al-
low for design of QDs (by varying composition/shape/strain,
etc.) with the best possible hole-spin coherence properties.

The motivation for this work is the observation that inter-
pretation of most experiments related to physics of carrier and
nuclear spins in QDs relies on simplified models of carrier
envelope wave functions (e.g., assuming the same envelope
shapes for holes and electrons) and all the multiband effects
(including the degree of heavy-light–hole mixing), and their
relation to QD shape. This includes works on carrier spin
coherence (which apart from nuclear effects show influence
of charge noise coupling to spin via electric-field-dependent
g factors [11,14]), creation of dynamic nuclear polarization
[4,5], and optical detection (through changes in Overhauser
field-induced spin splitting of electron and holes) of nuclear
magnetic resonance of different species of nuclei present in
the dot [31]. While such experiments were used to obtain new
information on structural properties and strain distribution in
QDs [31], the simplicity of some of the above-mentioned
assumptions casts a certain degree of doubt on the interpreta-
tion of measurement results. In light of the above-discussed
disagreements between distinct experiments, more careful

studies of hole states and the hyperfine coupling for holes are
clearly necessary.

The current state of the art in the theoretical modeling
of self-assembled semiconductor structures is to use either
atomistic methods [32–34] or multiband k ·p theories in the
envelope function approximation [35,36]. The latter has found
a vast range of applications due to its relatively low compu-
tational cost and high versatility. It offers reliable information
on the wave-function geometry and band mixing and allows
one to quantitatively relate the observed spectral features to
fine details of the nanosystem morphology and composition.
It can be used not only to compute the carrier states and the
resulting optical transitions [37], but also to model carrier-
phonon couplings [38] and to evaluate the spin-related proper-
ties, including g factors [39,40], the effects of spin-orbit cou-
pling [36,41], as well as phonon-induced spin relaxation and
dephasing [42,43]. Therefore, in terms of quantitative accu-
racy, a simple approach to hyperfine interactions lags behind
the current standards in the modeling of carrier wave functions
in semiconductor nanostructures and is not on a par with the
sophistication of experimental techniques used for the mea-
surements of the relevant quantities. It therefore seems useful
to develop a theory that would allow one to combine the hy-
perfine interaction with realistic modeling of wave functions.
Such a more general and accurate theory may be useful in
systems with compositional inhomogeneity and controllable
carrier localization, like double QDs, or with strong in-plane
anisotropy, where band mixing is relatively stronger [44].

The goal of this paper is to revisit the problem of calcu-
lation of the anisotropic Overhauser field acting on a hole
spin while employing a detailed realistic description of carrier
states in QDs. We derive a theoretical description of hyperfine
coupling for a carrier confined in a self-assembled semicon-
ductor QD based on the multiband wave function obtained
from the k ·p theory in the envelope function approximation,
taking into account d-wave admixture in the valence band
states. In this way, we provide a model of the hyperfine
interaction compatible with the standard k ·p modeling of
carrier states, which opens the way toward combining the
effects of hyperfine coupling with reliable modeling of other
characteristics of the QD system. As an application of the
formalism, we calculate the root-mean-square (rms) fluctu-
ations of the longitudinal and transverse Overhauser field
in InGaAs/GaAs QDs and compare the contributions to the
transverse field fluctuations from band mixing and d-wave
admixture to valence band states.

The paper is organized as follows. In Sec. II we derive
the general eight-band k ·p Hamiltonian for hyperfine inter-
actions. Next, in Sec. III we apply this formalism to the
fluctuations of the Overhauser field felt by a hole in a QD.
In Sec. IV we discuss the implications that our results have
on hole-spin decoherence and the status of experimental con-
troversies concerning hf interaction of holes, and in Sec. V we
summarize our findings. Technical derivations are collected in
the Appendix.

II. MULTIBAND HYPERFINE HAMILTONIAN

The hyperfine Hamiltonian describes the interaction of
the carrier with all the nuclei (labeled by α and located
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at Rα),

H = 3Ehf

∑
α

ζαA(r − Rα ) · Iα/h̄, (1)

where

Ehf = 2μ0

3π
μBμNa−3

B = 0.5253 μeV,

where μB and μN are Bohr and nuclear magnetons, respec-
tively, aB is the Bohr radius, μ0 is the vacuum permeability,
Iα is the nuclear spin, ζα defines the nuclear magnetic moment
for a given nucleus via μα = ζαμNIα , and

A(r) = a3
B

4h̄

[
8π

3
δ(r)S + L

r3
+ 3(r̂ · S)r̂ − S

r3

]
, (2)

with L and S denoting the orbital and spin angular momentum
of the carrier and r̂ = r/r. The first term in Eq. (2) is the Fermi
contact interaction between the carrier and nuclear spins, the
second term describes the coupling of the nuclear spin to
the electric current associated with the orbital motion of the
carrier, and the last one is the dipole interaction between the
nuclear and carrier spins.

Within the envelope function approach to the k ·p theory,
the wave functions are decomposed into contributions from
various bands λ with �-point Bloch functions uλ(r, s),

�ν (r, s) =
∑

λ

ψν,λ(r)uλ(r, s), (3)

where the envelopes ψν,λ(r) are assumed to vary slowly in
space (as compared to the lattice constant) and s denotes the
spin projection. Most commonly, an eight-band model is used
[41], explicitly representing two subbands of the conduction
band (belonging to the �6c representation of the bulk crys-
tal) and six subbands in the valence band (four-dimensional
�8v and two-dimensional �7v), with the coupling to other
bands represented by effective terms resulting from perturba-
tion theory. The eight envelope wave functions {ψν,λ(r)} are
commonly thought of as an eight-component “pseudospinor.”
Consequently, the Hamiltonian (or any other operator) in the
envelope function k ·p theory can be considered an 8 × 8 array
of operators Hλ′λ in the coordinate representation, such that
any matrix element of the original Hamiltonian is given by

〈ν|H |μ〉 =
∑
λ′λ

∫
d3r ψ∗

ν,λ′ (r)Hλ′λψμ,λ(r). (4)

The goal of this section is to apply the envelope function
approximation [Eq. (3)] to the hyperfine Hamiltonian (1) and
to write it in the form consistent with Eq. (4).

Starting from Eq. (2) and using Eq. (3), the matrix elements
of Ai are

〈ν|Ai(r − Rα )|μ〉 =
∑
λ′λ

∑
ss′

∫
d3r ψ∗

ν,λ′ (r)u∗
λ′ (r, s′)

× Ai,s′s(r − Rα )ψμ,λ(r)uλ(r, s), (5)

where Ai,s′s(r) denotes the matrix elements of Ai(r) with
respect to spin states. The Bloch functions are decomposed
into parts localized around the anion (A) and cation (C), that

are assumed to be normalized and nonoverlapping,

uλ(r, s) =
∑

i=A,C

a(λ)
i u(i)

λ (r, s),

where a(λ)
A,C are the contributions of the anionic and cationic

atomic orbitals to a given band. Next, we split the space
into primitive cells, which are further divided into two parts
surrounding the anion and the cation. The integration over
the whole space is then performed as integration over the
surrounding of each ion and summation over all the ions. We
use the fact that the envelope varies slowly, so that in the
vicinity of each ion it can be approximated by its value at the
ion position R. In this way we transfer Eq. (5) into

〈ν|Ai(r − Rα )|μ〉 = v
∑
λ′λ

∑
α′

ψ∗
ν,λ′ (Rα′ )Aα′α

i,λ′λψμ,λ(Rα′ ), (6)

with

Aα′α
i,λ′λ = 1

v

∑
ss′

∫
Vα′

d3r u∗
λ′ (r, s′)Ai,s′s(r − Rα )uλ(r, s), (7)

where v is the volume of the primitive crystal cell and Vα

denotes the volume surrounding the ion α (the arbitrariness
in choosing this volume is unimportant in view of the strong
localization of Bloch functions around the ions [6]). Since the
variation of the envelope functions is slow, the summation in
Eq. (6) realizes a coarse-grained integration over the whole
space. Thus, Eq. (6) brings matrix elements of the hyperfine
Hamiltonian (1) to the form of Eq. (4) with

Hλ′λ(r) = 3Ehfv
∑
α′α

δ(r − Rα )ζαAα′α
λ′λ · Iα/h̄. (8)

In order to evaluate Eq. (7) one needs a model of the
Bloch functions. Following [9], we choose to represent them
as combinations of normalized hydrogenlike functions f (i)

lm (r)
with definite rotational symmetry (l = s, p, d), characterized
by the orbital exponents ξl,α [45,46] that depend on the
nuclear species occupying the site α. Thus,

u(i)
λ (r, s) = √

v
∑
lm

c(λs)
lm f (i)

lm (r − ri ), (9)

where l = 0, 1, 2, m = −l, . . . , l . The valence band Bloch
functions are composed of p and d atomic orbitals, weighted
by the amplitudes αp and αd , respectively, with |αp|2 +
|αd |2 = 1. We suppress the principal quantum number n since
only one orbital of each symmetry is relevant for a given
atom. The coefficients c(λs)

lm for purely p-band (l = 1) states
can be found from angular momentum addition and are widely
available in the literature related to the k ·p method [41,47].
The extension to the d admixture follows immediately from
the explicit form of the basis functions of the F2 representation
of the Td point group, as given in [6].

The matrix element in Eq. (8) has two contributions: the
local, or short-range (SR) one, from the surrounding of the
ion in question (α′ = α) and the long-range (LR) one, from all
the other ions in the crystal (including the neighboring cations
for an anion and vice versa). The LR contribution has been
estimated to be negligible [9,10,25,26]. In the following, we
only take into account the SR contribution.
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The detailed derivation of the SR contributions, which
systematically extends the existing theoretical description
[3,6,9,24] to multiband wave functions, is given in the Ap-
pendix. The resulting matrix elements Aαα

i,λ′λ must have appro-
priate transformation properties, hence, they can be expressed
by the standard matrices used to define point-group invariants
when constructing the k ·p theory. In order to use this con-
venient notation, we split the array {Hλ′λ} into blocks corre-
sponding to the three irreducible representations spanning the
eight-band k ·p model

H =
⎛
⎝H6c6c H6c8v H6c7v

H8v6c H8v8v H8v7v

H7v6c H7v8v H7v7v

⎞
⎠, (10)

with

Hb′b = H†
b′b = Ehfv

∑
α

δ(r − Rα )a(b′ )∗
α a(b)

α ζαξ 3
s,αH̃ (α)

b′b (11)

(the index b labels blocks and we assume that a(λ)
α is the same

for all bands λ in a given block b), and find

H̃ (α)
6c6c = σ · Iα/h̄, (12a)

H̃ (α)
8v8v =

(
−8

5
M̃ (α)

p + 39

7
M̃ (α)

d

)
J · Iα/h̄

− 12

7
M̃ (α)

d J · Iα/h̄, (12b)

H̃ (α)
7v7v =

(
−4M̃ (α)

p + 2

7
M̃ (α)

d

)
σ · Iα/h̄, (12c)

H̃ (α)
6c8v = − 9√

5
M̃ (α)

sd (TxyIα,z + TyzIα,x + TzxIα,y)/h̄, (12d)

H̃ (α)
6c7v = 0, (12e)

H̃ (α)
7v8v = −

√
3

(
M̃ (α)

p − 15

7
M̃ (α)

d

)
T · Iα/h̄, (12f)

where M̃ (α)
p,d = |α(α)

p,d |2M (α)
p,d , M̃ (α)

sd = α
(α)
d M (α)

sd , the dimension-
less quantities Mp,d,sd characterize the geometry of the atomic
functions and are explicitly defined in the Appendix, σ =
(σx, σy, σz ) are Pauli matrices, J = (Jx, Jy, Jz ) are the matrices
of the four-dimensional ( j = 3

2 ) irreducible representation of
angular momentum J = (J3

x , J3
y , J3

z ),

Tx = 1

3
√

2

(−√
3 0 1 0

0 −1 0
√

3

)
,

Ty = −i

3
√

2

(√
3 0 1 0

0 1 0
√

3

)
, Tz =

√
2

3

(
0 1 0 0
0 0 1 0

)
,

and Ti j = TiJj + TjJi. Here, the equation for H̃8v8v reproduces
the result of [6].

From Eq. (12b) it is clear that for a purely heavy-hole
(hh) state the only flip-flop terms appear as a result of d-shell
admixture via the J3

i terms that reflect the lowered symmetry
of the crystal as compared to the full rotation group. As
we show in the Appendix, these terms originate from the
spin part of the dipole hyperfine coupling [the last term in
Eq. (2)]. Interband terms in the Hamiltonian lead also to
flip-flop processes induced by band mixing but, as we will
see below, this effect is much weaker.

III. HYPERFINE COUPLING FOR THE HEAVY-HOLE
GROUND STATE

In this section we apply the general formalism of Sec. II to
the ground-state Zeeman doublet of the nominally heavy-hole
state in a range of self-assembled QDs with varying size,
shape, and composition. We characterize the fluctuations of
the Overhauser field felt by the hole that is the key factor
determining the hyperfine-induced spin dephasing.

A. QD model and wave functions

The envelope functions for the QD ground state are com-
puted for a few series of QD structures with the eight-band k ·p
theory. In all the cases the composition of the QD is uniform
and corresponds to the stoichiometric formula InxGa1−xAs.
The QD is placed on a wetting layer of the same compo-
sition and thickness equal to the GaAs lattice constant a =
0.565 nm.

We account for the strain within continuous-elasticity ap-
proach [48]. We take into account the piezoelectric potential,
up to the second order in polarization [49]. The magnetic
field enters via Peierls substitution within the gauge-invariant
scheme, described in detail in [50]. The detailed description
of the model as well as parameters used in computations are
given in [36].

Recently, the exponents of the atomic basis functions were
related to measurable crystal properties [51] via tight-binding
calculations. However, the Slater orbitals commonly used in
the tight-banding models are inappropriate for calculating
the hyperfine effects, as they only capture the asymptotic
behavior of the wave functions away from the nucleus, and
are all zero (even those representing the s states) at the
position of the nucleus. Thus, although the results of [51]
show some promise for more accurate modeling of the Bloch
functions, for our purpose we still need to find an appropriate
parametrization of the wave functions. We do so by requiring
consistency with the available experimental and theoretical
data: the hole-to-electron ratio of Overhauser fields [6], Ga
and As wave functions at the nucleus [52], and d-shell ad-
mixture and anion-cation distribution in GaAs [30]. With the
scarce quantitative data available, the parametrization remains
to a large extent underdetermined. Based on the relations of
the Slater exponents [45,46,51], we arbitrarily set the s-shell
exponents for In the same as for Ga and assume ξp = 0.85ξs

for all atoms. The d-shell exponents are then determined from
the data of [6]. This parametrization is still to a large extent
arbitrary, and should be considered a starting point for further
improvements as new experimental and computational data
become available.

Table I lists the proposed values of the parameters rele-
vant for the modeling of Bloch functions as well as those
describing the hyperfine couplings (see Sec. II and Appendix):
nuclear spin quantum numbers, ζ coefficients and relative
abundances r for the nuclei of interest, the atomic wave-
function exponents ξ and the resulting M parameters, as
well as the d-state admixture amplitudes |αd |2 and cation-
anion distributions of charge density for the conduction and
valence bands (|a(cb)

C/A|2 and |a(vb)
C/A|2, respectively). At the bot-

tom of Table I we list the resulting values of the electron
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TABLE I. Nuclear [15] and atomic parameters.

69Ga 71Ga 113In 115In 75As

I 3/2 3/2 9/2 9/2 3/2
ζ 1.344 1.708 1.227 1.230 0.959
r 0.604 0.396 0.0428 0.9572 1
ξs 3.9 3.9 4.4
ξp 3.3 3.3 3.7
ξd 10.5 8.9 11.9
Mp 0.050 0.050 0.050
Md 0.33 0.20 0.33

Msd 0.048 0.034 0.049
|αd |2 0.20 0.50 0.05∣∣a(cb)

C/A

∣∣2
0.50 0.50∣∣a(vb)

C/A

∣∣2
0.35 0.65

A(e) μeV 41.9 53.2 38.2 38.3 42.9

hyperfine coupling constant A(e) = 2Ehf |aC|2ζ ξ 3
s for each

atom, which for Ga and As are very close to those determined
in [52].

The proposed model is a combination of a standard k ·p
approach to computing the envelope wave functions, and a
model of atomic wave functions that is necessary for the
calculation of the hyperfine couplings. Although the latter
must be done on the atomistic level, the k ·p model itself is not
atomistic and remains at the usual mesoscopic level: the strain
is treated within a continuous approach, and the standard
values of parameters are used, unrelated to the model of Bloch
functions used in the second stage. In the k ·p calculation,
alloying is taken into account in a coarse-grained manner, by
interpolating parameters according to the local composition
(virtual crystal approximation), while in the hf calculations
explicit counting of ions forces us to implement a particular
distribution of atoms and isotopes and to average over a few
realizations of the alloy disorder.

B. Effective Hamiltonian

We find the effective Hamiltonian describing the hyperfine
interactions in the heavy-hole ground state by projecting
Eq. (1) onto the two-dimensional space of the ground-state
doublet. We denote the eigenstates in the ground-state doublet
(as resulting from the k ·p diagonalization) by |↑〉 and |↓〉
(hence the two basis states are defined with respect to the
spin quantization axis) and define operators 
i corresponding
to Pauli matrices in this two-dimensional subspace 
z =
|↑〉〈↑| − |↓〉〈↓|, etc. The Hamiltonian given in Eq. (1) is
linear in the nuclear spins, hence, its projection on the two-
dimensional subspace can be written as

H = 1

2

∑
α

∑
i j

H(α)
i j (Iα,i/h̄)
 j, (13)

where

H(α)
i j = 3Ehfζαξ 3

s,α Tr[Ai(r − Rα )
 j].

This Hamiltonian has the form of a Zeeman Hamiltonian

H = 1
2 h · �,

with the quantity h, defining the Overhauser field, with com-
ponents given by

h j =
∑

α

∑
i

H(α)
i j Iα,i/h̄.

We assume here that the nuclei are in a thermal state without
any dynamical polarization. Except for unrealistically low
temperatures, this means that the nuclear density matrix is
maximally mixed. The mean square of a given component of
h is then given by

〈
h2

j

〉 =
∑
αα′

∑
ii′

H(α)
i j H(α′ )

i′ j 〈Iα,iIα′,i′ 〉/h̄2

= 1

3

∑
α

Iα (Iα + 1)
∑

i

(
H(α)

i j

)2
,

where the last equality assumes that angular momenta of
different nuclei as well as different components of nuclear
spin are uncorrelated.

In the simplest approximation, one considers a purely
heavy-hole wave function which occupies a region of uniform
composition and is the same for both spin orientations. Then,
by direct inspection of Eq. (12b) one finds

H(α)
ii = 2vEhf |ψ (Rα )|2ζαξ 3

s,αM
(α)
i ,

H(α)
i j = 0, i �= j

where

M(α)
x = M(α)

y = 9
7 M̃ (α)

d ,

M(α)
z = 12

5 M̃ (α)
p − 18

7 M̃ (α)
d .

Since M (α)
i depends only on the species of the ion α and

ψ (R) changes slowly, one can write for the ternary compound
InxGa1−xAs

〈
h2

j

〉 = 4E2
hfv

∫
d3R|ψ (R)|4

∑
i

Ii(Ii + 1)

3
qi

(
ζiξ

3
s,iM

(i)
j

)2
,

(14)

where i runs through all the nuclear species, qi = (a(hh)
C )4rix

for In isotopes, qi = (a(hh)
C )4ri(1 − x) for Ga isotopes, and

qi = (a(hh)
A )4 for As. The quantity

N =
[
v

∫
d3R|ψ (R)|4

]−1

is the effective number of the primitive cells encompassed by
the wave function (the wave-function participation number
[53]) which links the presented theory to the box model in
which the wave function is considered constant, with the value
1/

√
vN over a volume of N unit cells.

The analogous box-model formula for the electron, which
can be inferred directly from Eq. (12a), is

〈
h2

j

〉 = 4E2
hfv

∫
d3R|ψ (R)|4

∑
i

Ii(Ii + 1)

3
qi

(
ζiξ

3
s,i

)2
, (15)

with a(hh)
C and a(hh)

A in qi replaced by the conduction band
values a(e)

C and a(e)
A , respectively.
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FIG. 1. The dependence of the root-mean-square average of the
hole hyperfine field fluctuations for B = 8 T in the Faraday geometry
as a function of QD composition (a), size (b), height (c), and shape
(d). Squares show the fluctuations of the field component along
the growth (z) axis while circles represent the fluctuations of the
transverse components (averaged over the in-plane directions). Full
red symbols correspond to the model with a d-state admixture to the
valence band, while the open blue symbols show the values for purely
p-type states. The solid gray lines show the box model approximation
based on the inverse wave-function participation number, given by
Eq. (14). The green crosses in (a) show the results at B = 0.1 T. The
lower part of the vertical axis has been expanded for clarity.

C. Results and discussion

In this section we study the characteristic strength of
the coupling to longitudinal and transverse fluctuations of
the Overhauser field felt by a hole in the QD (nominally
heavy-hole) ground state. All the results are averages of 10
repetitions in order to account for the random alloying and
isotope distribution, resulting in a standard deviation of the
numerical result on the order of 1% of the average value.

Figure 1 shows the results for four series of structures with
different size and composition. The magnetic field is oriented
here in the growth direction (Faraday configuration), hence,
the z axis is along the symmetry axis of the structure. In
our discussion the notions of “longitudinal” and “transverse”
are related to the growth axis. Transverse fluctuations are
calculated as the average of fluctuations in two perpendicular
directions, 〈h2

⊥〉1/2 = 〈(h2
x + h2

y ))/2〉1/2.
In Fig. 1(a) we study cylindrically symmetric lens-shaped

QDs with base radius 21a = 11.9 nm and height h = 7a =
3.96 nm, and with uniform composition InxGa1−xAs, where
the indium content x changes from 0.1 to 1. Without d-state
admixture to the valence band and without band mixing,
a heavy hole couples only to longitudinal hyperfine field.
Band mixing induces weak coupling to transverse field (blue
open circles), up to a few percent of the longitudinal one.
A much stronger coupling, comparable to the longitudinal
one, appears as a result of d-state admixture (full red circles).
The strong dependence on the In content results from the
combination of the large nuclear angular momentum of this

element as compared to Ga, and increasing localization in
indium-rich QDs (the wave-function participation number N
decreases from 52 × 103 to 13 × 103 as x grows from 0.1 to
1). This dependence is much weaker in the case of transverse
coupling induced purely by band mixing. The gray solid lines
show the results obtained from Eq. (14). In order to relate our
multiband numerical wave functions to the simple theory, we
define here the wave-function participation number as

N ′ =
⎡
⎣v

∫
d3R

∣∣∣∣∣
∑

λ

|ψλ(R)|2
∣∣∣∣∣
2
⎤
⎦

−1

and average the result over the two hh states. The agreement
is very good, validating the box model with the wave-function
participation number as the effective number of primitive
cells. The results for the very weak field of B = 0.1 T (green
crosses) do not differ considerably from those at B = 8 T.
This is expected since in a self-assembled QD the in-plane
confinement scale (l0 ∼ 4 nm) is much smaller than the mag-
netic length (lB ≈ 9 nm at B = 8 T) and the resulting relative
field-induced correction to confinement ((l0/lB)4/8 based on
the Fock-Darwin model) is negligible.

Figure 1(b) presents results for a series of QDs with iden-
tical compositions x = 0.75, starting from the geometry as in
the previous case and then uniformly scaling each dimension
of the QD up by a factor up to 2 (the data are shown as a
function of the linear scaling factor). In Fig. 1(c) the lateral
size of the QD is kept fixed as in Fig. 1(a) and the height h
is varied. In Fig. 1(d) the QD is made elliptic by relatively
elongating the QD shape in plane by a fixed factor along the
(110) crystallographic axis while keeping the height and the
size in the other in-plane direction constant [so that elongation
factor equal to 1 corresponds to the geometry of Fig. 1(a)].
In all these cases the general dependence on the geometry
qualitatively follows the prediction of the box model with
the effective field fluctuations decreasing with the growing
system size. Quantitatively, however, the fluctuations of the
Overhauser field only approximately follow the expected scal-
ing as 1/

√
V , which is due to the fact that the wave function

shrinks slower than the QD when the size of the latter is
reduced. In Fig. 1(c) one can see discrepancy between the
numerical values and the predictions of the box model for very
flat QDs. This results from the leakage of the wave function
to the indium-free barrier.

As a reference, in Fig. 2 we show the rms fluctuations of
the Overhauser field for an electron in the same structures
as in Figs. 1(a) and 1(b). Both the relative anisotropy of the
hyperfine coupling, as well as the relative difference between
the results with and without d-shell admixture in this case are
at most on the order of 10−3, therefore, we show only the
results for the z component in the model with the admixture.
The values for the electron are five to seven times larger than
for the hole, with the electron-to-hole ratio slightly decreasing
as the In content grows. The results for the electron are
also very well reproduced by the box model using the wave-
function participation ratio. As the In content grows from 0.1
to 1, the latter decreases from 119 × 103 (more than twice the
value for the hole in the same structure) to 14 × 103 (nearly
equal to the hole value).
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FIG. 2. The dependence of the root-mean-square average of the
electron hyperfine field fluctuations for B = 8 T in the Faraday
geometry as a function of QD composition (a) and size (b). Only
the field component along the growth axis is shown. The solid gray
lines show the box-model approximation based on the wave-function
participation number.

Returning to the holes, one notes that for the amplitudes of
the d-state admixtures used here, the magnitudes of the lon-
gitudinal fluctuations with and without the d-state admixture
are very similar, which is, however, a coincidence. The de-
pendence of the Overhauser field fluctuations on the assumed
magnitude of d-shell admixture is shown in Fig. 3, where we
present the results of calculations with the d-shell admixture
magnitude for the nuclear species i set to |α(i)

d |2 = y|α(i0)
d |2,

where α
(i0)
d are the values listed in Table I and used in the

calculations presented above, and 0 < y < 1. The dependence
is nonmonotonic. In particular, y ≈ 0.5 corresponds to mutual
compensation of the p and d contributions to the coupling
to indium ions, which dominate the overall effect due to
their large nuclear momentum. As a result, the longitudinal
fluctuations of the effective field are suppressed.

As discussed above, in the strongly confined self-
assembled structure, the volume occupied by the wave
function depends very weakly on the magnitude and ori-
entation of the magnetic field. Therefore, one expects that
the fluctuations of the Overhauser field will not depend on
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FIG. 3. The dependence of the root-mean-square average of the
hyperfine field fluctuations on the magnitude of the d-shell admixture
assumed in the calculations. Squares show the fluctuations of the
field component along the growth (z) axis while circles represent
the fluctuations of the transverse components (averaged over the
in-plane directions). The admixtures for all the nuclei are scaled
from 0 to the values given in Table I. The solid gray line shows the
box-model approximation based on the wave-function participation
number, given by Eq. (14).
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FIG. 4. The dependence of the root-mean-square average of the
hyperfine field fluctuations as a function of QD composition in the
Voigt geometry with (a) and without (b) atomic d-shell admixture.
Circles and squares show the fluctuations along and perpendicular
to the magnetic field, respectively, at B = 8 T. Crosses in (a) show
the same results at B = 1 T. For comparison, the gray lines mark the
results for the Faraday geometry.

the orientation of the magnetic field. Figure 4(a) shows the
fluctuations of the Overhauser field in the Voigt geometry
(magnetic field along x). The transverse component of the
Overhauser field along the external magnetic field (the x
component, shown by circles) is indeed the same as the
transverse component in the Faraday geometry (shown by
a gray line). The fluctuations perpendicular to the magnetic
field (squares) now encompass the longitudinal (z) and the
other transverse (y) component. Again, they perfectly agree
with the corresponding average of these two components in
the Faraday geometry (gray line). In addition, we performed
computations in the Voigt geometry at B = 1 T, shown with
crosses in Fig. 4(a). It is clear that the results do not depend
on the field magnitude. In Fig. 4(b) we show analogous results
from a model assuming no d-shell admixture. As expected,
fluctuations perpendicular to the x direction are now much
stronger than the ones along the x axis.

IV. DISCUSSION

The two main consequences of our calculations are the
following. (1) The effects of band mixing on the magnitude
of Overhauser field fluctuations experienced by hole spin in a
self-assembled quantum dot are weak: for most of quantum
dot sizes, shapes, and compositions one can use a simple
single-envelope effective mass wave function to model the z
component of the Overhauser field. The magnitude of trans-
verse components of the Overhauser field due by band mixing
is <5% of the longitudinal one. (2) Inclusion of effects of
d-state admixture to the hole Bloch functions visibly affects
the longitudinal fields, and it has an enormous effect on the
transverse ones when one uses the amplitudes αd of d-state
admixtures similar to those inferred in [6] from isotope-
resolved measurements of the longitudinal Overhauser fields
caused by dynamically polarized nuclei. Most importantly, for
|αd |2 used in [6], and even for values up to 50% smaller,
the Overhauser field experienced by the hole spin is almost
isotropic.

Let us discuss the implications of the obtained results for
hole-spin dephasing in Faraday and Voigt configurations. In
Faraday configuration, the magnetic field B is along the z
growth axis of the quantum dot, and the hole spin is initialized
in superposition of up and down states along the z axis. We
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assume that the hole-spin splitting �E = gzμBB (where gz

is the g factor of the hole for B along the z axis) is much
larger than the transverse Overhauser fields, i.e., B
1 mT
assuming gz ≈1 and 〈h2

⊥〉1/2 �100 neV. Dephasing of a freely
precessing spin is then caused by averaging over a distribution
of Overhauser fields along the z axis (longitudinal field in the
terminology of this paper). The coherence in frame rotating
with �E frequency is

|Sx(t ) + iSy(t )| ∝ exp[−(t/τz )2]

with τz =
√

2/σz, where σz =〈h2
z 〉1/2. For typical value of σz ≈

100 neV we have T ∗
2 ≈9 ns.

In the Voigt configuration, with B along the x in-plane
direction and �E =gxμBB
σz (where gx is the in-plane hole
g factor), we consider a hole spin initialized in eigenstate
of Sz, a superposition of eigenstates of �ESx. Dephasing of
this superposition is caused by averaging over contributions
of hx to the precession frequency, but also over corrections
(h2

z + h2
y )/2�E to this frequency caused by transverse fields

[9,10]. In the Faraday configuration such corrections due to
h2

⊥/2�E were inefficient at dephasing compared to the linear
coupling to hz since 〈h2

⊥〉1/2 < 〈h2
z 〉1/2, and �E is larger by

a factor of about 10 due to anisotropy of hole g factor. In
the Voigt configuration the two mechanisms of dephasing can
compete, albeit only at small magnetic fields.

Let us first consider the case of almost-isotropic hole hf
interaction that we obtain using the d-state admixture pa-
rameters taken from [6]. In this case we have σz ≈150 neV
and σ⊥ ≡〈h2

⊥〉1/2 ≈ 100 neV. Dephasing due to averaging
over hx is described by a Gaussian decay with time constant
τx =√

2/σ⊥ ≈ 10 ns. On the other hand, dephasing due to
averaging over hz and hy fields is described by

|Sz(t ) + iSy(t )| ∝ 1

[1 + (t/τV )2]1/2
,

with τV ≈�E/σ 2
z (remember that σy ≈σz is considered now).

With gx ≈0.1, the half-decay time following from the above
expression is T1/2 =√

3τV ≈300 ns at B=1 T, and only at
fields <30 mT this time becomes shorter than τx ≈10 ns,
and the coherence is then limited by fluctuations of hz and
hy. At higher fields the decay is Gaussian with characteristic
timescale given by τx.

On the other hand, in the limit of no d-state admixture,
we have σ⊥ ≈5 neV, and the Gaussian decay due to hx fluc-
tuations occurs in about 200 ns. The mechanism of dephasing
due to second-order coupling to hz (with hy fluctuations being
now negligible compared to those of hz) leads then to the
following form of the coherence decay [9,10]:

|Sz(t ) + iSy(t )| ∝ 1

[1 + (t/τV )2]1/4
,

which results in half-decay time T1/2 ≈ 4τV . Assuming gx ≈
0.1 and σz ≈150 neV, for B=1 T we obtain T1/2 ≈ 700 ns,
and we see that for B�0.3 T the coherence decay should
be dominated by this mechanism, and it should be possible
to observe a characteristic 1/t2 tail of coherence decay when
t �200 ns. Finally, let us note that in [8] the measured values
of rms of Overhauser fluctuations were σz ≈60 neV and σ⊥ ≈
0.5 neV and in-plane g factor of the hole was gx ≈ 0.05

(actually 0.035 for one dot and 0.065 for another). These result
in coherence half-decay time due to hx fluctuations given by
T1/2 ≈ 2 μs at B=1 T, which means that this mechanism will
dominate over the Gaussian decay at fields already below a
Tesla.

The results that we have obtained using αd consistent with
[6] are in clear disagreement with observations presented
for the InGaAs quantum dot in [8], where a very small
value of transverse Overhauser field (smaller by about an
order of magnitude than the value that we predict for no d
admixture, only due to heavy-light–hole mixing) was inferred
from coherent population trapping experiment. Our results of
small importance of band mixing and good applicability of the
box-model approach to modeling of Overhauser field remove
a few possible sources of inaccuracies that could have played
a role in analysis of measurement results obtained in recent
years. This strengthens the significance of disagreement in
magnitudes of transverse Overhauser fields in InGaAs quan-
tum dots inferred from these two very different experiments.
Analysis in [6] is based on dynamic nuclear polarization
(DNP) and measurement of isotope-resolved contributions to
the longitudinal Overhauser shift. The isotope dependence of
signs of these contributions was explained there by invoking
a finite (and in fact quite substantial) admixture of d orbitals
in heavy-hole states, but the value of transverse Overhauser
field was not measured in that work. Such a measurement was
performed in [8], in which a possible reason for disagreement
with earlier experiments on dephasing of holes was suggested:
the structure used in [8] was carefully designed to exhibit
much less charge noise. It is now known that charge noise can
contribute to (or even dominate) hole dephasing dynamics,
due to electric-field dependence of hole g factor [8,14], so one
has to be careful when attributing observed dephasing to hf
interaction and using the measured coherence time to estimate
〈h2

z,⊥〉1/2. This, however, has no bearing on the experiment and
analysis of [6].

V. CONCLUSIONS

We have derived the eight-band k ·p Hamiltonian for hy-
perfine interactions, including a proposed parametrization of
Bloch functions consistent with the available experimental
data. This offers a general formalism that allows one to
include realistic multiband carrier wave functions, as obtained
from k ·p computations, in the calculation of hyperfine cou-
plings. Using this formalism, we have studied the effect of
fluctuations of the nuclear spin polarization on a hole in
the ground state of an InGaAs QD for a range of realistic
shapes and sizes, taking into account an admixture of atomic
d orbitals to the valence band Bloch functions as well as
band mixing. Our formalism can also be applied to problems
in which accurate modeling of carrier states is crucial, e.g.,
when the hyperfine-related effects are to be combined with
carrier-phonon couplings, compared with spin-orbit-induced
effects or studied in coupled structures where tunneling plays
a role.

One of the main results is the observation that in a wide
range of dots shapes and sizes, the realistic description of
carrier states, taking into account band mixing, envelope
functions leakage into the barrier, etc., has little influence
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on the root mean square of the Overhauser field fluctuations
experienced by the spin of the heavy hole confined in the dot.
These fluctuations can be well described using a “box” model
of wave function, with effective number of nuclei strongly
coupled to the hole being the only fitting parameter. Such
a description was known to hold well for electrons, and it
was widely used also for holes, but the justification of its
quantitative accuracy was lacking until now in the latter case.

For the transverse (with respect to the growth axis) fluctua-
tions of the Overhauser field, we have confirmed the relatively
small effect of band mixing as compared to the d-state ad-
mixture, at least for the magnitude of this admixture inferred
in [6] from isotope-resolved measurements of contributions
to the longitudinal Overhauser field. The latter may lead to
transverse fluctuations on the same order of magnitude as
the longitudinal ones. The dependence of the longitudinal
fluctuations on the amount of d admixture is strong and
nonmonotonic. In the light of the fact that a large variability in
the magnitude of both transverse and longitudinal fluctuations
was reported in experiments, these results suggest the need
for careful examination of dependence of the magnitude of
the d-state admixtures to wave functions localized close to
cation and anion cores (and also the spatial extent of the
relevant d orbitals, as it has a large influence on the value of
hf interaction), as a function of indium content (and possibly
strain) in InGaAs/GaAs QDs.
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APPENDIX: DERIVATION OF THE MATRIX ELEMENTS
OF THE HYPERFINE COUPLING

The main purpose of this Appendix is to rigorously derive
the matrix elements of the short-range multiband hyperfine
Hamiltonian as given in Eqs. (12a)–(12f). In the following, we
will focus on one selected nucleus located at R0 and the index
α will be suppressed. The three contributions to A in Eq. (2)
will be denoted, respectively, as Ac (the contact interaction),
Ao (the orbital part of the dipole interaction), and As (the spin
part of the dipole interaction).

For the general calculations to be performed, it is conve-
nient to use spherical tensor representation of various vectorial
and tensorial quantities that appear in the derivations. Before
we proceed to the technical derivations, let us note that this is
a natural language for discussing the hyperfine spin-flip selec-
tion rules. The essential part of the hyperfine Hamiltonian in
Eq. (1) is

A(r − R0) · I = −
√

3
∑
q1q2

〈1, 1; q1, q2|1, 1; 0, 0〉

× A(1)
q1

(r − R0)I (1)
q2

, (A1)

where the upper index denotes the rank of the tensor and, at
the same time, distinguishes the spherical tensor components
from the Cartesian ones, 〈 j1, j2; m1, m2| j1, j2; j, m〉 is the
Clebsch-Gordan coefficient, and the spherical components of
any vector V are defined in the standard way

V (1)
0 = Vz, V (1)

±1 = ∓Vx − iVy√
2

= ∓ 1√
2

V±.

The range of q1, q2 is not given explicitly upon assumption
that ill-defined Clebsch-Gordan coefficients are 0. Explic-
itly, A · I = A(1)

0 J (1)
0 − A(1)

−1J (1)
+1 − A(1)

+1J (1)
−1 = AzJz + (A−J+ +

A+J−)/2. The q = 0 term thus corresponds to the Ising cou-
pling. The q = ±1 terms account for spin flip-flop processes,
in which the carrier exchanges its spin with the nucleus. In
the simplest picture of hole states with definite angular mo-
mentum and composed exclusively of p orbitals, the contact
part Ac does not contribute to valence band hyperfine coupling
due to vanishing p-type wave functions at the position of the
nucleus. The other two terms can only contribute to diagonal
terms since the vector operator A cannot couple states with
mj = ± 3

2 , that is, differing by |�mj | = 3. Hence, in this
single-band approximation, only the Ising term appears for
heavy holes. However, symmetry reduction in a nanostructure
modifies this simple picture by mixing the states belonging to
different representations of angular momentum due to band
mixing as well as by admixing d-shell atomic orbitals to
valence band Bloch functions.

For the derivations we note that, by comparing Eq. (8)
with Eq. (11), the Hamiltonian blocks H̃b′b contain grouped
elements 3Aλ′λ · I/(h̄a(λ′ )∗aλ). We will now derive these el-
ements for each of the three contributions to the hyperfine
Hamiltonian.

1. Contact part

The contact part, i.e., the first term in Eq. (2), has
contributions only from the conduction bands (s-type
atomic orbitals, l = m = 0). One has ue↑(r,↑) = ue↓(r,↓) =√

va(cb)
α S(r)/

√
4π , ue↑(r,↓) = ue↓(r,↑) = 0, where Sα (r) =

4ξ 3
s /a3

B is the radial part of the atomic s-type wave function
for a given ion. Hence, using Eq. (7) transformed to spherical
tensor components, the contact interaction has the matrix
elements

A(1)
c,q;λ′λ = 2ξ 3

s

3h̄

(
S(1)

q

)
sλ′ sλ

,

where sλ is the spin projection of the electrons in band λ. From
the Wigner-Eckart theorem one finds

(
S(1)

q

)
s′s

=
√

3h̄

2

〈
1

2
, 1; s, q

∣∣∣∣1

2
, 1;

1

2
, s′

〉
.

Hence, the nonzero matrix elements of the spherical compo-
nents of the spin operator are

(
S(1)

0

)
↑↑ = −(

S(1)
0

)
↓↓ = h̄

2
,

−(
S(1)

+1

)
↑↓ = (

S(1)
−1

)
↓↑ = h̄√

2
.
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Collecting the elements of the 6c6c block and converting to
Cartesian components one finds Ac,i = ξ 3

s |a(cb)
α |2σi/3, hence,

H̃6c6c = 3Ac · I/(h̄|a(cb)
α |2) = σ · I/h̄, which proves Eq. (12a).

2. Orbital term of the dipole part

For the local term of Ao [the second term in Eq. (2)],
one substitutes the decomposition in Eq. (9) into Eq. (6).
The hydrogenlike orbitals flm(r) building the Bloch function
according to Eq. (9) are decomposed into their radial parts
R(r) and angular parts described by spherical harmonics
Yl,m(�). Taking into account that the components of the
angular momentum operator are diagonal in spin s and in the
total angular momentum l , one gets

A(1)
o,q;λ′λ(

a(λ′ )∗
α aλ

α

) = ξ 3
s

∑
lmm′s

Mllc
(λ′s)∗
lm′ c(λs)

lm 〈lm′|L(1)
q |lm〉,

where

Ml ′l = a3
B

4ξ 3
s

∫
dr r2R∗

l ′ (r)
1

r3
Rl (r).

Following [6] we denote M11 ≡ MpM22 ≡ Md, M02 = M20 ≡
Msd. The matrix elements 〈lm′|L(1)

q |lm〉 can be trivially calcu-
lated by elementary methods. However, a more compact and
uniform result is obtained via Wigner-Eckart theorem

〈lm′|L(1)
q |lm〉 = 〈l, 1; m, q|l, 1; l, m′〉√

2l + 1
〈l||L(1)||l〉.

The reduced matrix element is found by inspection of the
component q = 0, m = m′ where 〈l, 1; m, 0|l, 1; lm′〉 =
m/

√
l (l + 1) and obviously 〈lm|L(1)

0 |lm〉 = m, hence,
〈l||L(1)||l〉=√

l (l + 1)(2l + 1). Hence, the final formula
is

〈λ′|A(1)
o,SR,q|λ〉(

h̄a(λ′ )∗
α aλ

α

) = ξ 3
s

∑
lmm′s

Mllc
(λ′s)∗
lm′ c(λs)

lm

×
√

l (l + 1)〈l, 1; m, q|l, 1; l, m′〉. (A2)

We note that this matrix element is diagonal in l and van-
ishes for l = 0, hence, nonzero matrix elements appear only
within the valence band. Moreover, for the heavy-hole (hh)
bands, in the simple single-band approximation, the Bloch
functions are spin eigenstates with opposite spin orientation.
Since the orbital contribution is spin diagonal, in the single-
band, purely p-wave model of the hh band, this term yields
only a diagonal (Ising) coupling. This coupling is affected
by band mixing only in the second order since neither the
spin-down nor the m′ = 0,−1 spin-up admixture couple to the
leading-order (m = 1 spin-up) component of the nominally
spin-up hh state via the q = 0 tensor component (due to spin
conservation and m + q = m′ selection rule, respectively). A
d-shell admixture introduces a l = 2, m′ = −1 spin-up cor-
rection to the spin-up hh state (see the explicit compositions
of the Bloch states in [6]). This is not coupled to the leading-
order (l = 1) component of this state but couples to the same
(l = 2, m = −1) admixture, leading to a correction to the
Overhauser field in the quadratic order in αd .

In addition, with band mixing, the nominally + 3
2 (spin-up)

hh state (m′ = 1) may attain an admixture of the spin-down

light hole state with m′ = 0. According to Eq. (A2), this
admixture is coupled to the dominating component of the − 3

2
(spin-down) hh state (m = −1) via the q = 1 component of
the hyperfine coupling, thus leading to the appearance of spin
flip-flop terms in the Hamiltonian. The d-wave admixture to
hh Bloch functions is spin conserving, hence, it can only lead
to spin flip flops in combination with band mixing.

3. Spin term of the dipole part

The third term in Eq. (2) can be written in terms of
Cartesian components as

As,i =
∑

j

Ti jS j/h̄,

where

Ti j = a3
B

4

3xix j − r2δi j

r5

is a traceless, symmetric, second-order Cartesian tensor,
hence, its components form a second-order spherical tensor.
The spherical components of As are

A(1)
s,q = −

√
15

∑
q1,q2

〈2, 1; q1, q2|2, 1; 1, q〉T (2)
q1

S(1)
q2

,

where the spherical components of T (2) are constructed from
the first-order position tensor r (1) according to the tensor
multiplication rule

T (2)
q = a3

B

4r5

∑
q1,q2

〈1, 1; q1, q2|1, 1; 2, q〉r (1)
q1

r (1)
q2

= a3
B

4r3

√
8π

15
Y2,q(r̂),

and the overall factor has been determined by inspection.
The matrix element of T (2)

q between two hydrogenlike
orbitals is

∫
d3r f ∗

l ′m′ (r)T (2)
q flm(r) =

√
8π

15
Ml ′lG

m′qm
l ′2l , (A3)

where Gmm′m′′
ll ′l ′′ are Gaunt coefficients,

Gmm′m′′
ll ′l ′′ =

∫
d�Y ∗

l,m(�)Yl ′,m′ (�)Yl ′′m′′ (�)

= (−1)m

√
(2l + 1)(2l ′ + 1)(2l ′′ + 1)

4π

×
(

l l ′ l ′′
0 0 0

)(
l l ′ l ′′
m m′ m′′

)
,

and ( l l ′ l ′′
m m′ m′′) are Wigner 3- j symbols. From the parity

rule on the Gaunt coefficients l + l ′ + l ′′, even, and the
triangle rule |l − l ′′| � l ′ � l + l ′′, the only nonzero
contributions in Eq. (A3) are those with (l, l ′) =
(0, 2), (2, 0), (1, 1), (2, 2). Hence, nonzero matrix elements
appear within the valence band, and between the valence and
conduction bands.
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Upon substituting the result from Eq. (A3), along with the
decomposition in Eq. (9), to Eq. (7) one gets

〈λ′|A(1)
s,SR,q|λ〉

(h̄a(λ′ )∗
α aλ

α )
= −

√
8πξ 3

s

∑
lms

∑
l ′m′s′

Ml ′l

×
∑
q1,q2

〈2, 1; q1, q2|2, 1; 1, q〉

× Gm′q1m
l ′2l c(λ′s′ )∗

l ′m′ c(λs)
lm

(
S(1)

q2

)
s′s

. (A4)

The structure of this term is much more complicated than
that of the orbital contribution since the present term is not
diagonal in l and s. The Clebsch-Gordan coefficient requires
q1 + q2 = q, while the Gaunt and Mll ′ coefficients impose the
selection rules m′ = m + q1 and (l ′, l ) = (1, 1), (2,2), (0,2),
or (2,0).

We start with analyzing the corrections to the heavy-hole
Overhauser field Ising term q = 0. The three nonvanishing de-
compositions are now q1 = ±1, q2 = ∓1 and q1 = 0, q2 =
0. The contribution (l ′, l ) = (1, 1) yields the leading-order
(hh-hh) part of the Ising coupling (q1 = q2 = 0) as well
as coupling between components that differ by spin-orbital
angular momentum flip flop (e.g., m′ = 1, s′ = ↑ to m =
0, s′ = ↓). For the p-wave component, the latter is only
possible for light-hole states, hence, the resulting correction
must rely on light-hole admixtures to both hh states and is

therefore quadratic in band-mixing amplitudes. The contri-
bution (l ′, l ) = (2, 2) clearly involves d-wave contributions
to both states and is therefore always quadratic in the d-
wave amplitude αd . It contains the contribution from the
leading-order component of the hh state as well as the spin-
orbital flip-flop couplings between light-hole components of
the hh state, which are, additionally, quadratic in band mixing.
The term with (l ′, l ) = (0, 2) couples the conduction band
(cb) admixture to the d-wave component of the leading-
order contribution of the hh state. It is, therefore, linear
in αd but one should remember that the cb admixture is
very small.

In addition, band mixing and d-wave contributions to
Bloch functions generate terms with q = ±1 in the Hamilto-
nian, that is, flip-flop couplings between the hh states and the
nuclei. For instance, for (l ′, l ) = (1, 1), there is a contribution
from the q1 = 0, q2 = 1 term, coupling the leading-order
contribution to the hh state (m = 1, spin up) with a light-hole
admixture to the other hh state (m = 1, spin down), which is
linear in band mixing and therefore should be much larger
than the band-mixing corrections to the Overhauser term.
Another such coupling appears for (l ′, l ) = (2, 2) and q1 = 2,
q2 = −1. This one couples the m = 1 spin-down and m = −1
spin-up components, that is, the d-wave components of the
leading contribution to the two opposite hh states.

Equation (A2) together with Eq. (A4), upon converting to
Cartesian components and explicit evaluation, yield the matrix
representation used in Eqs. (12b)–(12f).
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