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Pseudodrag of a polariton superfluid
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The drag of half-light half-matter quasiparticles, exciton-polaritons, by an electric current is a peculiar
mechanism of light-matter interaction in solids. While an ideal superfluid is protected from being dragged by its
zero viscosity, here we argue that the state of the superfluid polariton condensate formed by nonresonant optical
pumping can be controlled by the electric current. The proposed mechanism is based on the stimulated relaxation
of moving uncondensed excitons dragged by the electric current. The stimulated relaxation process favors the
formation of a moving condensate in a quantum state that is characterized by the lowest condensation threshold.
We also show that the electron-mediated inelastic scattering of the reservoir excitons to the condensate leads to
the transfer of nonzero mean momentum to the electron gas, thus contributing to the electric current. We predict
the generation of circular electric currents in a micropillar cavity in the presence of nonresonant laser pumping

at normal incidence.
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I. INTRODUCTION

A superfluid state of matter is characterized by zero vis-
cosity, hence it is perfectly protected from being perturbed
by a weak external force. This protection constitutes one of
the main experimental signatures of conventional superfluids
such as liquid helium [1,2]. However, this paradigm needs
to be carefully reconsidered if applied to driven-dissipative
superfluid systems. In particular, optically pumped bosonic
condensates of exciton-polaritons (or simply polaritons) in
semiconductor microcavities represent such nonequilibrium
systems, where several phenomena consistent with superfluid-
ity have been experimentally demonstrated. Polaritons are hy-
brid quasiparticles arising due to the strong coupling between
excitons and photons. Polaritons obey bosonic statistics, and
they may undergo a transition into a condensed phase. In
this phase, the polariton fluid demonstrates dissipationless
propagation with a subsonic velocity through a weak defect,
which manifests its superfluid behavior [3,4].

One would naturally expect that in the subsonic regime,
the polariton superfluid should not be perturbed by an electric
current flowing either in the same quantum well or in the
neighboring conducting layer. On the other hand, coupling is
possible for noncondensed polaritons that do not belong to
the superfluid. Recently, Berman and coauthors [5] predicted
the existence of mutual drag between the normal fraction of
a polariton gas and the electric current. Such a drag effect is
mediated by the long-range interaction between the excitonic
component of polaritons and charge carriers, leading to the ap-
pearance of the flow of the normal polariton fraction induced
by the electric current and vice versa.

Indications of the drag of a polariton superfluid by a current
were reported in the recent experimental work in Ref. [6],
demonstrating that the speed of a superfluid polariton flow
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is sensitive to the magnitude and the direction of the electric
current flowing in the same quantum well. Although the
particular mechanism governing the detected effect remains
unclear, the observed phenomenon indicates that the interac-
tion between the polaritons and the carriers is not limited only
to the conventional Coulomb drag of the normal fraction.

In this paper, we show theoretically how an electric current
can affect the propagation of a polariton superfluid. The
mechanism that governs this effect is related to the usual drag
of the normal excitonic component. We demonstrate that the
flow of noncondensed excitons (exciton-polaritons) leads to
the formation of the condensate with nonzero momentum.

It is well known that a driven-dissipative polariton con-
densate, which is formed by the nonresonant pumping, does
not necessarily occupy the lowest-energy stationary state. In
fact, the state of the condensate is determined by the balance
between the gain and the losses that defines the threshold of
polariton lasing [7]. If the exciton reservoir moves, the gain
is changed with respect to the static case, and the condensate
may be formed in a moving state as well.

In particular, if the exciton reservoir is dragged by the
electric current, the wave vector of the forming condensate
will depend on the direction and strength of the current.
This effect is phenomenologically equivalent to the drag of a
superfluid. However, the predicted phenomenon is not a direct
drag effect, strictly speaking. It is mediated by the excitonic
reservoir. That is why we shall refer to it as a pseudodrag
effect.

II. THE MODEL SYSTEM

To be specific, we consider an optical microcavity contain-
ing both an undoped quantum well and a conducting layer
that confines a free-electron gas. The polariton condensate
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is created in the microcavity by nonresonant laser pumping.
This kind of pumping implies excitation of high-momentum
excitons, which then relax in energy, feeding the condensate
at the bottom of the lower polariton branch [8].

We start with the semiclassical kinetic equations [8] for the
polariton occupation N of the quantum state characterized by
a wave vector k:

dNe = Pc — (T + W )M + W N + D, (D)

where P describes the generation of particles in state k by
incoherent pumping, ' is the decay rate to the exterior of
the microcavity, and W*' = 3", Wik (N + 1) and W™ =
> 1 Wi kNy are the outgoing and incoming rates for the k
state due to scattering to and from the Kk’ states, respectively.
The single-polariton rates Wx_. i account for the cumulative
effect of polariton-phonon, polariton-electron, and polariton-
polariton interactions.

Describing the condensation dynamics, we assume that
at the initial moment in time the pump Py is switched on,
starting the competition between the states with different k
for the particles created by the pump. The mode with k = k.,
which wins this competition, accumulates a macroscopically
large number of polaritons, thereby manifesting the formation
of the condensate. In what follows, we attempt to determine
the growth rates of the polariton modes, which govern the
condensate formation.

First, we neglect the transitions of particles from the
lower-energy states to the reservoir, since these transitions are
unlikely at low temperatures. Thus the outgoing rate W,>"* for
the k state corresponds to the downward transitions only, and
W =3 <k Wi—k (N + 1). In the parabolic region of
polariton dispersion, one can approximate W" ~ yk?, where
the factor y is defined by the relaxation mechanism [9,10].

Next, we note that the pump P feeds mainly the ex-
citonlike large wave-vector states. These excitons form an
incoherent reservoir with a particle concentration N,, and
they are responsible for the pumping of the lower-energy
polariton states with the rate Wki“. With the same accuracy, the
k dependence of the incoming rate is assumed to be parabolic.
For static reservoir, it is natural to assume that the k =0
state has the maximum gain and Wkin o (1 — sk?). Then, if the
reservoir is in motion characterized by the mean wave vector
k,, we can write

WM = r(k)N,, r(k) ~ ro[l —s(k — k,.)’]. (2
The parameter s in this expression can be estimated by assum-
ing that excitons in the reservoir obey the Boltzmann statistics.
We shall also assume that the wave-vector dependence of
the scattering probability is governed by the characteristic
scattering cross section dependent on the thermal de Broglie

27 h?
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Boltzmann constant [11]. We estimate s = Atzh ~ 0.058 umz
for the exciton mass me ~ 0.1my and at the temperature
T ~1K.

To account for the superfluid dynamics, we supplement
the rate equations (1) with the generalized Gross-Pitaevskii
equation for the condensate wave function W, similar to [12],

wavelength of the scatterer Ay, = where kg is the

which in our case takes into account the k dependencies of the
gain and the loss rates:

v =DV — i A, (32)
N, =P — [T, + ROW)IN, =V - J,. (3b)

Here H = —%VZ + o¢C|\IJ|2 + a,N,, with mp, being the
polariton mass and the o, and «, terms describing the energy
shifts due to interaction of polaritons between themselves
and with reservoir excitons, respectively. The gain-dissipation
term with D =1 /2 (N,# —I") is given by the gain opera-
tor 7 = r(—iV) and the dissipation operator = Iy —yV?,
where I'y is the radiative loss rate, which is taken identical
for all the states at the bottom of the lower polariton branch.
In Eq. (3b), the term P accounts for the effective pumping
of the reservoir, and I', describes the reservoir decay rate.
We impose the local conservation of the number of polaritons
in the process of their relaxation to the condensate, so that
the corresponding reservoir depletion rate is given by R(V) =
1/2(W* W + WiATw*).

The last term in Eq. (3b) provides the continuity of the
mass flow in the presence of a spatially inhomogeneous
current J, = IK,N,/mex of reservoir excitons. The reservoir
flux can be created either by the exciton density gradient or
by the external force, in particular by the Coulomb drag. The
value of the exciton current is dependent on the exciton and
carrier densities as well as on their relative velocity. Namely,

hk,
J,=—DVN, + A(v - )nN,., )
Mex
where D is the exciton diffusion coefficient, A is the drag
coefficient, and v and n are the drift velocity and the surface
density of the carriers.

The drag coefficient A can be estimated from Ref. [5]
to be A~ 1.1 x 1072 cm? for the case of the conduct-
ing layer represented by the n-doped GaAs quantum well
with n =10"" cm~? and the electron mobility [13] u =
103 cm?>V-1ls™l

III. POLARITON PSEUDODRAG EFFECT IN A
MICROCAVITY STRIPE

A remarkable manifestation of the pseudodrag effect could
be found in the double-layer system embedded in a microcav-
ity stripe; see Fig. 1(a). We shall consider a one-dimensional
exciton-polariton condensate excited by homogeneous non-
resonant continuous-wave laser pumping.

The voltage applied at the metal contacts [6] induces
the electric current in the conducting layer, which drags the
reservoir excitons in the second quantum well with the mean
wave vector

k, = —§j, &)

defined by Eq. (4), with j = —env being the electric current
density. Here the factor & = mexA/[he(1 + An)] for the con-
sidered parameters is equal to 5.4 x 103 A~'. This implies
that for a d = 4 um stripe width, the reservoir flow with k, =
1 um™~! can be induced by an electric current of I = jd ~
—7.4 nA. This value agrees with the recent experimental
studies of the drag effect in a polariton wire structure [6].
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FIG. 1. The pseudodrag effect in an electrically biased microcavity stripe. (a) The sketch of the structure. (b) The distribution of the gain
N,r(k) (solid) and the loss rate I"(k) (dashed) in reciprocal space at the reservoir densities below threshold (orange curve), at the threshold
(green), and above threshold (red). The mean wave vector of the reservoir is k., = 1.35 um~!. The shaded domain shows the net gain G(k) at
the pump power corresponding to the red curve. (c) The polariton dispersion. (d) The dynamics of the condensate formation in the reciprocal
space. P = 2P, o, = 6 peV um?, and k, = 1.35 um~', where P = I'oI", /ro. The white dashed line follows the position of the mean
condensate wave vector. (e) The condensate spectra at three different moments in time. For each curve, the spectrum maximum is normalized
to unity. (f) The dependence of the condensate wave vector k. on the electric current flowing through the stripe of d =4 pum width. Blue
crosses, orange squares, and green diamonds show the data obtained with Egs. (3). The dynamics was simulated with noisy initial conditions,
and the data were averaged over 50 realizations for each point. Gray points indicate the predictions of Egs. (1). The gray line corresponds to
Eq. (8). (g) The dependence of k. on the pump power P for different values of the electric current / with &, = 6 eV wm?. For all panels,
Io=0.05ps™,y =7.5x 1073 um?ps~', ro = 0.01 ps~' um?, T, = 5T, and &, = 2cx..

The condensate steady state reads W = Woe ™"+~ where
x is the coordinate along the stripe, and the wave vector k.
is selected during the condensate formation governed by the
k-dependent growth rate

G(k, 1) = 2W; ' DW = N,(t)r(k) — T'(K), (6)

where I'(k) = [y + yk2.

The principles of the k-selective mechanism of the conden-
sate formation are described below. As the pump P switches
on, the reservoir population starts growing. The condensate
builds up provided that the reservoir density reaches the
threshold value [see the green curve and the red points in
Figs. 1(b) and 1(c)]:

A+ /A?+4yTys

2ros

N = , @
where A =Tps — y(1 — skrz). Above the threshold, P >
[',N® a wide band of polariton states [the shaded region in
Fig. 1(b)] is amplified at the initial stage of the condensate
formation—see Figs. 1(d) and 1(e).

However, as the condensate population increases, the reser-
voir becomes depleted because of the term R(W) in Eq. (3b).
Simultaneously, the amplification band maximum shifts to-
ward smaller k resulting in the drift of polaritons in reciprocal
space—Fig. 1(e). The analysis of the condensation dynamics
predicted by Eqs. (3) (see the Appendix) demonstrates that in

the limit of no interactions (o, = 0), the reservoir eventually
relaxes to its threshold value (7), which corresponds to the
condensate state with

SI'QN;hkr

k= S0 & 8
sroN® + y ®

Therefore, the condensate momentum shown in Fig. 1(f)
grows with the electric current since Kk, o I; see Eq. (5). The
same result can be obtained from the kinetic equations (1) as
well (see the Appendix). Besides, Eq. (8) is valid not only for
the case of a microcavity stripe but for two-dimensional (2D)
polariton condensates as well. Note that the energy relaxation
of polaritons is taken into account in the present theory by
the parameter y, which encodes the increase of the outgoing
(escape) rate of polaritons with increasing momentum. This
leads to effective friction, so that k. decreases with y (see the
Appendix).

In the nonlinear regime, the parametric scattering between
polariton modes caused by polariton-polariton interactions
leads to the reduction of the condensate momentum, as
Fig. 1(f) illustrates. The higher the value of the interac-
tion strength «,, the stronger the decrease of the conden-
sate momentum with respect to the limiting value predicted
by Eq. (8); see the orange squares and green diamonds in
Fig. 1(f). The condensate momentum demonstrates also a
weak dependence on the pump power; see Fig. 1(g).
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FIG. 2. Generation of the circular electric current supported by the electron-mediated exciton scattering. (a) A pillar microcavity with the
embedded two-layer system. The condensate density N, distribution is sketched at the top surface of the micropillar. (b) A schematic illustration
of the electric current generation mechanism. (c) The dependence of the electric current / and the corresponding magnetic field H at the center

of the quantum-well plane on the condensate density N.,.

IV. POLARITON WHIRL PRODUCING A CIRCULAR
ELECTRIC CURRENT

So far, we neglected the back action of the exciton-
polariton subsystem on the electron gas. This action is
twofold. First, due to the inverse Coulomb drag effect [5,14],
the exciton flow induces an electric current in the conducting
layer. This effect can be accounted for in a similar way to

Eq. (4):

. Ik,

Jdrag = _V< - V)ner 9
Mex

where v is the drag coefficient and we consider again the n-

doped conducting layer.

Besides this, there is the stimulated electron-assisted scat-
tering of excitons from the reservoir to the condensate. Each
act of electron-assisted scattering transfers the momentum
sk = h(k, — k) to the electron gas. This momentum trans-
fer can be described in terms of a force acting on a single
electron:

/N, R(¥)
F=p—""—ok, (10)

where N,R(WV) is the scattering rate defined in Eq. (3b), and
the factor 8 < 1 accounts for the part of the total number
of electron-mediated scattering events. Then, the current jgcy
induced by the electron-mediated scattering can be calculated
using the classical Drude theory of conductivity:

jscat = _UhkNrR(\y)’ (11)

where o = hifu, which for the considered parameters and
B=0.05is0 =5.26 x 1072 C um?.

Note that both discussed mechanisms are capable of induc-
ing an electric current at zero voltage. However, in contrast
to the Coulomb drag effect, the electron-mediated scattering
induces the current, which is dependent on the state of the
polariton superfluid. It allows for nontrivial manifestations
of the effect. For instance, a spectacular property of the
exciton-polariton condensates is its ability to form a persistent
circular current or vorticity. Once such a circular current is
created, its nonzero angular momentum is partially transferred
to the electron gas, producing a circular current as Fig. 2(b)
schematically shows.

Let us study these phenomena in detail. Although polariton
condensates carrying nonzero angular momenta were ob-
tained in many different configurations [15,16], to be specific
we focus on the system shown in Fig. 2(a). We shall assume
that the double-layer system is embedded in a cylindrical
microcavity pillar, where the formation of a ring-shaped con-
densate carrying the persistent polariton current was recently
demonstrated [17].

The distribution of the condensate density N, = W2 is
characterized by the mean radius Ry and the width 2a; see
Fig. 2(a). Then, assuming that N, takes a constant value over
the width of the ring [18], we estimate the rate of scattering
as N,R(¥) = r(k)N.N?', where the condensate wave vector is
defined by the winding number m as k. = m/Ry. The reservoir
steady-state density N*' can be obtained from Eq. (3b):

st _ F0+ykc2'
" I"()[l _S(kc_kr)z]‘

To estimate the value of the induced current Iy, = 2ajscar,
we assume that the reservoir is at rest, k, = 0, and we take
m=1,a =1 um, and Ry = 10 um. So, for the typical value
of the condensate density N, = 10'° cm~2 we obtain that the
current is on a picoampere scale. According to Eq. (5), this
current induces a negligibly small flow of reservoir excitons
[see Fig. 2(b)], which is consistent with our assumption of the
static reservoir.

The existence of the predicted circular electric current
can be experimentally detected measuring the current-induced
magnetic field, for instance, with state-of-the-art SQUID mag-
netometers [19]. Assuming that the circular current density
Jjscar follows the condensate density N, distribution, we es-
timate the magnetic field in the center of the ring, H =
Lcat/2Ry. The dependence of the induced electric current
given by Egs. (11), (12), and the corresponding magnetic field
on the condensate density is shown in Fig. 2(c).

12

V. CONCLUSIONS

We demonstrate that propagation of an out-of-equilibrium
polariton condensate can be controlled by an electric cur-
rent, as the latter influences the gain rate of different single-
polariton quantum states. The effect appears due to drift
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of the excitonic reservoir. The existence of this pseudodrag
effect paves the way for the engineering of the integrated
optical circuits operating with polariton condensates. It may
be promising for the creation of superfluid gyroscopes and
quantum interferometers. The reciprocal effect of acceleration
of the charge carriers by the moving polariton superfluid is
also described. Being sustained by the stimulated exciton-
electron scattering, the carrier’s flow is evidenced by the
circular electric current in a cylindrical micropillar excited by
a nonresonant laser pump.
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APPENDIX: DYNAMICS OF THE CONDENSATE
FORMATION IN THE PRESENCE OF
MOMENTUM-DEPENDENT GAIN

Here we describe in detail how the presence of momentum-
dependent gain affects the polariton condensation dynamics
in the microcavity stripe, leading to the formation of the
moving condensate. We start with the kinetic equations (1)
for polariton mode populations, whose simplified form reads

Nk = r(K) (Ve + DN, — T'(K)Ny, (Ala)

N, =P — (r, + ) )M + 1)>Nr. (Alb)
k

Here N, is the spatially homogeneous reservoir density,
while N denotes the total number of polaritons in the quan-
tum state k.

The dynamics predicted by Eqgs. (Al) is illustrated in
Fig. 3. We assume that before the pump has been switched
on at t = 0, the polariton modes are empty, N; = 0. Then, at
the initial stage of the condensate formation, the growth of the
population of polariton modes is governed by the term r(k)N,,
see Eq. (Ala), which follows the k dependence of the rate
of the income transitions (k) and is maximized at k = k,;
see the yellow curve in Fig. 3(c). However, the gain profile
changes as the polariton modes get populated. In particular,
at Nx > 1, the dynamics obeys the net gain, the maximum of
which is at

sroN, (1)
sroN,(t) + y

For kmax(c) < k-, the gain G(k) causes a redistribution of pop-
ulation between the polariton modes excited before shifting
its maximum toward smaller k; see Fig. 3(c).

It is critical that the net gain G(k,t) is time-dependent
since it is governed by the reservoir density N,. As the
pump power switches instantly, the reservoir rapidly grows
approaching its trivial steady state N, = P/I",; see Fig. 3(b).

KmaxG) = k,. (A2)
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FIG. 3. The polariton condensate formation in the microcavity
stripe. (a) Dynamics of the polariton distribution in the reciprocal
space predicted by the kinetic equations model (A1). The color scale
corresponds to the spectral density of polaritons per unit length,
Sk = Nx/2m. The white solid line shows the position of the gain
maximum K. The dashed line indicates the maximum of the
polariton spectral density. (b) Dynamics of the reservoir density.
(c) Snapshots of the polariton distribution at different moments in
time. The blue curve corresponds to the steady-state distribution.
The spacing between the polariton states in the reciprocal space is
/500 um~'. (d) The dependence of the condensate wave vector
k. on the parameter s in Eq. (2) for different values of the elec-
tric current. The solid curves correspond to Eq. (A4), while the
markers indicate the values predicted by the generalized Gross-
Pitaevskii model with a. = 6 peV um? and o, = 2a,. The parame-
ters are k, = 1.35 um™!, P = 314", /1y, Ty = 0.05ps~!, y = 7.5 x
1073 um? ps~!, ry = 0.01 ps~' um?, and I', = 5T

However, after the burst at the initial stage, the condensate
density smoothly decreases toward its stationary value N, =
N, where the dissipation and the outscattering to the conden-
sate balances the pump. The position of the gain maximum,
Kmax(G), indicated by the white solid line in Fig. 3(a), follows
the reservoir density evolution. Simultaneously, the polariton
distribution approaches the position of the maximum gain
gradually evolving to its steady state [see the white dashed
line in Fig. 3(a)]:

r(K)N

" T(k) — r(k)N (A3)

k

Note that the Boltzmann equations model predicts that in
the steady state the condensate occupies a narrow band of
states in reciprocal space. The shape of this band is defined
by Eq. (A3); see the blue line in Fig. 3(c). The position of the
maximum of polariton distribution, which can be associated
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with the condensate wave vector,

A = 25T + J42s2y Ty + (A — 25T)?
ke =
2k,sy

precisely matches the expression (8), which was obtained
with use of the generalized Gross-Pitaevskii model neglect-
ing polariton-polariton interactions. Note that the condensate
momentum does not depend on the pumping power P and
is governed by the parameters of the k-dependent gain. In
Fig. 3(d) we demonstrate the variation of the steady-state
condensate momentum with the variation of the effective
scattering cross section described by the parameter s, which
governs the k dependence of the incoming rate.

The kinetic equations model clearly demonstrates the in-
fluence of the reservoir dynamics on the reciprocal space
polariton distribution. However, the considered approach ne-
glects polariton-polariton interactions as well as the spatial
dependence of the reservoir density. Both of these effects
can be efficiently accounted for with the driven-dissipative
Gross-Pitaevskii (GP) model (3).

An example of the condensate formation dynamics pre-
dicted by the generalized GP model is shown in Figs. 1(d)
and 1(e). The overall condensation scenario discussed in
Sec. II1 is akin to the one described above. The mean conden-
sate wave vector follows the time dependence of the net gain
G(k), which is governed by the reservoir population. After
rapid growth at the initial stage, the wave vector relaxes to
the steady state [the dashed curve in Fig. 1(d)]. However, in
contrast to the case of kinetic equations (A1), the generalized
GP model has a set of steady-state solutions parametrized by
the condensate wave vector k.. Namely,

. (A4

o I'(k,
\Ij — \yoelk(x—lwl, ]v:t — ( )’
r(ke)

with |\Ifo|2 = P/T'(k;.) — T",/r(k.). This implies that the con-
densate can exist in an arbitrary Kk-state within the amplifica-
tion band, G(N, = P/T",) > 0.

The particular state of the condensate, selected during its
formation, is strongly dependent on the initial conditions. In
stark contrast to the model (A1), the GP equation requires the
initial seed in order to produce the nontrivial steady state. We
simulate the condensate formation with the model (3) using
random initial conditions, which mimic the fluctuations of the
polariton field. It is clear that the choice of the condensate
wave vector is stochastic in this case. In the linear case (. =
o, = 0), the averaging over a large number of realizations
yields the value k. that coincides with the one predicted
by Eq. (A4). One can easily demonstrate that this state

(A5)
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FIG. 4. (a) The dependence of the pseudodrag-induced momen-
tum of the polariton superfluid on the polariton-polariton interaction
constant «.. The polariton-reservoir interaction strength is o, = 2c,.
(b) The dependence (8) of the condensate wave vector k. on the
y-parameter for different values of the electric current.

corresponds to the threshold value of the reservoir density
N, = N defined by Eq. (7).

In the presence of polariton-polariton and polariton-
reservoir interactions, the dynamics of the condensate forma-
tion follows the same scenario, however the average conden-
sate wave vector is reduced; see the color markers in Fig. 3(d)
and compare with the solid curves corresponding to the lin-
ear case. The influence of the polariton-polariton interaction
constant o, on the condensate momentum is summarized in
Fig. 4. For the polariton nonlinearities typical for GaAs-based
microcavities (e, is several units of eV um?), the condensate
momentum steeply decreases with the increase of «,; see
Fig. 4(a). Then, k. gradually reduces to zero as o, grows.

The observed reduction of the pseudodrag effect in the
presence of interactions should be attributed to the redistri-
bution of polaritons in the reciprocal space induced by the
polariton-polariton repulsion. Indeed, spatial inhomogeneities
of the polariton density, grown from the noise during the
condensate formation, are smoothed away because of the
polariton repulsion. The excited high-momentum polaritons
are subject to the extra losses accounted for in the I"(k) depen-
dence, that is, I'(k) = 'y + yk? in the 1D case; see Eq. (3).
Thus the influence of the interactions can be accounted for by
rescaling of the y -parameter. According to Eq. (6), an increase
of the steepness of the I'(k) dependence shifts an amplification
band toward smaller polariton momenta, reducing the wave
vector of the condensate; see Fig. 1(b). Thus, the condensate
wave vector predicted by Eq. (8) should decrease, as is shown
in Fig. 4(b). This behavior qualitatively reproduces the k(o)
dependence shown in Fig. 4(a).
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