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Interseries transitions between Rydberg excitons in Cu2O
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We investigate the infrared optical transitions between excitons of the yellow, green, and blue series in the
cuprous oxide Cu2O. We show that, in many cases, the dipole approximation is inadequate and, in particular,
that it breaks down in yellow-blue transitions even for moderate principal quantum numbers of n ≈ 10. The
interband matrix elements of the transition operator needed for the evaluation of the excitonic transition strengths
are derived from known as well as from fitted band parameters.
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I. INTRODUCTION

Excitons, bound states of electrons and holes in semi-
conductors, were first postulated by Frenkel [1] in the limit
of strongly bound systems, and then by Wannier [2] in the
weakly bound limit. For the Wannier excitons, the crystal
mostly acts as a dielectric background, and the excitonic states
show remarkable similarities to those of the hydrogen atom.
The first observation of the Wannier excitons succeeded in
the yellow series of Cu2O in the 1950s [3] reaching up to
principal quantum numbers of n = 8. Recently, this limit has
been pushed up to n = 25 [4] and orbital quantum numbers
of � = 5 [5], revealing an almost perfect Rydberg series. The
nonparabolicity of the valence band does, however, induce
a systematic deviation from the Rydberg series, which can
be cast into quantum defects δn,� [6,7] approaching constant
values for large n similar to alkali Rydberg atoms.

Since the first observation of these excitonic Rydberg
states, they have attracted considerable attention due to their
exaggerated properties such as their large real-space exten-
sions, comparatively long lifetimes, and huge polarizabilities.
The latter are responsible for the Rydberg blockade phe-
nomenon already observed early on [4] due to the dipole-
dipole interaction of the yellow Rydberg excitons [8], but
they also contribute to a strong interaction with the electron-
hole plasma [9]. Further investigations have focused on the
influence of the valence-band structure on the excitonic quan-
tum defects [7,10], the interaction with phonons and photons
[11], the influence of electric and magnetic fields [6,12],
as well as the possibility to observe giant-dipole excitons
in crossed electromagnetic fields [13]. Moreover, the level
statistics [14,15] has been investigated showing the breaking
of all antiunitary symmetries.

In addition to the yellow exciton series, there are three
more excitonic series in Cu2O (see Fig. 1) that were found
as early as the 1950s and 1960s [16,17]. Transitions between
the ground states of the yellow and blue series have been ob-
served as polaritonic beating [18], and intraseries transitions
within the yellow series have been probed [19]. More recently,
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proposals have been put forward to use the yellow intraseries
transitions for the implementation of tunable excitonic masers
[20,21]. Furthermore, the photoluminescence of the excitons
in Cu2O has been measured, including both the blue and violet
series [22], and the superradiance-to-polariton crossover of
the blue 1S state has been investigated in dependence on the
crystal thickness [23]. As the Rydberg excitons show coherent
features already in single-photon absorption [24], the perti-
nent question is how to exploit these in coherent manipulation
schemes such as electromagnetically induced transparency–
based protocols for single-photon generation [25] or to gen-
erate giant optical nonlinearities [26]. The first step in this
direction is to identify suitable dipole-allowed transitions that
are also easily accessible experimentally. As the excitonic
Rydberg energies of Cu2O are very low compared to atomic
systems, intraseries transitions are inconveniently located in
the far infrared. However, transitions between different ex-
citon series, i.e., interseries transitions, could be exploited.
In particular, transitions between Rydberg states of different
exciton series become accessible with near-infrared light.

In this article, we compute the infrared transition strengths
from the yellow P excitons into the green and blue excitons as
shown in Fig. 2. These transition strengths are directly propor-
tional to both the transition rate per exciton and the line inten-
sities of the corresponding transitions. For transitions between
Rydberg states of different series, the dipole approximation
breaks down as the states can reach real-space extensions up
to μm while the separation in energy approaches a finite value
(�so = 131 meV from yellow to green and �68 ≈ 450 meV
from yellow to blue; see also Table I). Therefore, the spatial
extent of the excitons becomes comparable to the wavelength,
in which case the dipole approximation is known to break
down. We will first calculate the transition strengths in dipole
approximation and subsequently assess the influence of the
breakdown of the dipole approximation for a representative
set of transitions.

This article is structured as follows. In Sec. II the general
theory of excitonic interseries transitions is laid out both with
and without the dipole approximation. Section III contains the
derivation of the interband matrix elements of the light-matter
coupling operator that are needed for the evaluation of the
transition strengths. Sections IV and V contain the derivation
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FIG. 1. Schematic band structure of Cu2O in the vicinity of the
� point and the main band gap.

and discussion of the transition strengths from the yellow
series to the green and blue series, respectively, followed by an
outlook on future work as well as a discussion of the results in
Sec. VI. Computational details such as the chosen basis states
and the conduction-band Hamiltonian have been delegated to
the appendices.

II. EXCITON STATES AND TRANSITION OPERATORS

In this section, the general structure of the transition matrix
elements of excitonic interseries transitions will be derived.
The excitons are composed of a bound pair of an electron in
the conduction band and a hole in the valence band. Their
quantum states can be written as

∣∣�c,v
τ,K

〉 =
∑

k

φτ,K (k) â†
c,k+αK âv,k−βK |�0〉. (1)

|Ψ0〉

Δso

Eg ≈ 2.172 eV

Δ68 ≈ 450 meV

S P

yellow
S P D

green

e1 ‖ z

K

e2, κ

e2, κ

S P D

blue

D

FIG. 2. Schematic term diagram of the excitonic states in the
yellow, green, and blue series of Cu2O. In the proposed scheme, the
z component of a yellow �−

4 P exciton is excited via a z-polarized
laser beam with wave vector K, and the transitions into the green and
blue series are probed by a second laser beam with polarization e2

and wave vector κ. |�0〉 denotes the crystal vacuum.

Here, τ = {n, �, m, c, v} labels the quantum numbers of the
internal excitonic state with the envelope function φτ,K (k), c
and v denote the conduction and valence band with fermionic
creation (annihilation) operators â†

c,q (âv,q), and |�0〉 is the
crystal vacuum state. k and K denote the relative and center-
of-mass (COM) momenta of the electron and hole with the
relative masses α = me/M, β = mh/M, and M = me + mh.
Mass estimates based on the band parameters are listed in
Table II.

Note that Eq. (1) is expressed in terms of valence-band
electrons, and the actual hole momentum is −k + βK. Here
and in the following we will always assume that for the
COM momenta of interest φτ,K (k) ≈ φτ,0(k) = φτ (k) holds.
It should also be noted here that, in general, the excitonic
states in Eq. (1) are mixed due to the broken rotational
symmetry of the crystal. A better approximation to the actual
excitonic states would be the use of properly symmetrized
basis states as done in Ref. [31] and discussed in Appendix B.
We will continue first the analysis in terms of the basis states
in Eq. (1) as the symmetrized states are linear combinations
of them, and later use the symmetrized states from Sec. IV
onward.

The full one-electron crystal Hamiltonian is given by

H = p2

2m0
+ V (r) + h̄

4 m2
0 c2

(S × ∇V ) · p, (2)

where V (r) is the crystal periodic potential containing both
the effective interaction with the crystal ions and the other
electrons, and S denotes the Pauli matrices. The minimal
substitution yields a light-matter coupling operator of the form

eA(r)

m0
·
[

p + h̄

4 m0 c2
(S × ∇V )

]
= eA(r)

m0
· π, (3)

where the Coulomb gauge has been used and the diamagnetic
term has been ignored. Even if the components of A(r) do
not correspond to plane waves, they can be decomposed into
them by a Fourier transformation. We will therefore assume
the transition operator to be of the form e−iκr π, which can be
expressed in second quantization as

e−iκr π =
∑
ν,ν ′

∑
k

〈ν, k|e−iκr π|ν ′, k + κ〉 â†
ν,k âν ′,k+κ, (4)

where ν and ν ′ sum over the bands of interest and the pseudo-
momentum conservation has been used. Umklapp processes
are being ignored due to the small magnitude of the wave
vectors of interest.

The matrix element 〈�c,v
τ,K |e−iκr π|�c,v′

τ ′,K ′ 〉 with v �= v′ can
be evaluated as〈
�c,v

τ,K

∣∣e−iκr π
∣∣�c,v′

τ ′,K ′
〉

=
∑
ν,ν ′

∑
q

〈ν, q|e−iκr π|ν ′, q + κ〉
∑
k,k′

φτ ′ (k′)φ†
τ (k)

×〈�0|â†
v,k−βK âc,k+αK â†

ν,qâν ′,q+κâ†
c,k′+α′K ′ âv′,k′−β ′K ′ |�0〉.

This corresponds to a change of valence band by the hole,
i.e., a transition from the yellow to the green series (see
Fig. 1). Using the fact that v �= v′ implies that only those
terms contribute in which ν = v′ and ν ′ = v, and applying
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TABLE I. Material properties of Cu2O used in this work.

Parameter Value Reference Parameter Value Reference

B6,8 0.342 h̄πa−1
g This work A1 −1.76 [6]

A6 2.44 This work A2 4.519 [6]
A8 3.99 This work A3 −2.201 [6]
Eg 2.17208 eV [4] B1 0.02 [6]
�68 450 meV [18] B2 −0.022 [6]
�so 131 meV [3] B3 −0.202 [6]
ag 0.427 nm [27] εs 7.5 [28]
F −0.43 [12] (see Appendix A) ε∞ 6.46 [29]

the anticommutator rules [â†
ν,q, âν ′,q′]+ = δν,ν ′ δq,q′ as well as

[âν,q, âν ′,q′]+ = [â†
ν,q, â†

ν ′,q′ ]+ = 0 gives

〈
�c,v

τ,K

∣∣e−iκr π
∣∣�c,v′

τ ′,K ′
〉

= −
∑

q

〈v′, q|e−iκr π|v, q + κ〉
∑
k,k′

φτ ′ (k′)φ†
τ (k)

×〈�0|â†
v,k−βK âv,q+κ â†

v′,q âv′,k′−β ′K ′

× (δk′+α′K ′,k+αK − â†
c,k′+α′K ′ âc,k+αK )|�0〉. (5)

The matrix element of the vacuum state in Eq. (5) can only
be nonzero if the electrons are created in the same states from
which they had been annihilated. In this case, the products of
the creation and annihilation operators can be rewritten as the
number operator â†

ν,qâν,q = n̂ν,q. The matrix element can then
be evaluated by observing that in the crystal vacuum state,
all valence bands are completely filled while the conduction
bands are empty,

〈
�c,v

τ,K

∣∣e−iκr π
∣∣�c,v′

τ ′,K ′
〉

= −δK ′−κ,K

∑
k

φ†
τ (k + βK ′ + ακ)φτ ′ (k + β ′K ′)

×〈v′, k|e−iκr π|v, k + κ〉. (6)

It will be more convenient for the subsequent analysis to re-
formulate this equation in terms of valence-band holes instead
of electrons which implies exchanging 〈v′, k|e−iκr π|v, k + κ〉

TABLE II. Estimates of the properties of the excitonic series,
derived from the values in Table I and Eq. (17). The experimental
Rydberg energies of the green and blue series are based on only a
few low-n states and thus not very reliable.

mh me aB (nm) Ry∗ (meV) Ry∗
exp (meV)

Yellow −m0
A1−2B1

m0

A6− 4B2
6,8

3m0�68

1.12 86.07 86.04 [7]

Green −m0
A1+B1

m0

A6− 4B2
6,8

3m0�68

1.09 87.94 139 [30]

Blue −m0
A1−2B1

m0

A8+ 2B2
6,8

3m0�68

2.58 37.22 46 [17]

for 〈v,−k − κ|e−iκr π|v′,−k〉 and therefore〈
�c,v

τ,K

∣∣e−iκr π
∣∣�c,v′

τ ′,K ′
〉

= −δK ′−κ,K

∑
k

φ†
τ (k + βK ′ + ακ)φτ ′ (k + β ′K ′)

×〈v,−k − κ|e−iκr π|v′,−k〉. (7)

The equivalent matrix element for a change of the conduc-
tion band (i.e., from the yellow to the blue series) is〈

�c,v
τ,K

∣∣e−iκr π
∣∣�c′,v

τ ′,K ′
〉

= δK,K ′−κ

∑
k

φ†
τ (k − αK )φτ ′ (k − α′K + β ′κ)

×〈c, k|e−iκr π|c′, k + κ〉. (8)

Single-photon transitions with a change of both valence and
conduction bands (say, from the yellow to the violet series)
are forbidden to all orders, as these are two-particle transitions
which require at least two photons. In the dipole approxima-
tion (ignoring the COM momenta of both excitonic states and
the photon K = K ′ = κ = 0), Eq. (7) reduces to〈

�c,v
τ

∣∣π∣∣�c,v′
τ ′

〉 = −
∑

k

φ†
τ (k)φτ ′ (k)〈v,−k|π|v′,−k〉. (9)

The difference between Eqs. (7) and (9) consists of two
effects:

(1) the nonvertical (i.e., nondipolar) transitions between
the pure Bloch states and

(2) the relative displacement of the envelope functions by
(β − β ′)K ′ + ακ which corresponds to a nondipolar transition
between the envelope functions.

For states with allowed dipole transitions, the first cor-
rection is expected to be only weak, while the second one
will significantly lower the transition strengths for states with
large principal quantum numbers n. For transitions between
Rydberg states of different series, both |K| and |κ| become
constant while the momentum-space extension decreases
∝ n−1. This implies that the overlap of the envelope functions
will vanish and the mentioned approximation is only valid
as long as the momentum-space extension of at least one of
the excitonic states is much larger than (β − β ′)K ′ + ακ. Or,
to phrase it differently, the real-space extension of at least
one of the states has to be much smaller than the transition
wavelength in order for the dipole approximation to be valid.

The momentum-space displacements for the yellow-green
and yellow-blue transitions are given in Table III. The smaller
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TABLE III. Estimates of the momentum-space displacements for the yellow-green and yellow-blue transitions as well as copropagating
and counterpropagating pump and probe beams.

Copropagating Counterpropagating

Yellow-green (β − β ′)|K ′| + α|κ| ≈ 0.12 × 10−3π/ag (β − β ′)|K ′| − α|κ| ≈ −0.18 × 10−3π/ag

Yellow-blue (α′ − α)|K| − β ′|κ| ≈ −1.96 × 10−3π/ag (α′ − α)|K| + β ′|κ| ≈ −0.82 × 10−3π/ag

values for the yellow-green transitions result partially from
the fact that our estimate for the hole mass of the �+

8 valence
band is very close to that of the �+

7 valence band giving
β − β ′ ≈ −0.0078 and, additionally, from the larger κ of the
yellow-blue transitions. This implies that the effects from
the breakdown of the dipole approximation will be more
prominent for the yellow-blue transitions. The wave numbers
are given by |k(E )| = E

√
ε∞/(h̄c) with the refractive index√

ε∞ of Cu2O. The energy separations were approximated
by the band gaps, i.e., by Eg for |K| as well as �so and �68

for the yellow-green and yellow-blue photon momenta |κ|,
respectively.

III. INTERBAND MATRIX ELEMENTS

In order to proceed with the evaluation of Eqs. (7)–(9),
the interband matrix elements 〈ν, q|e−i(q′−q)rπ|ν ′, q′〉 as well
as the envelope functions φτ (q) are required. In this section,
the calculation of the matrix elements will be laid out, while
the envelope functions will be approximated by properly
symmetrized hydrogenic functions with the parameters given
in Table II.

For the transitions between the yellow and green series
in Cu2O, the relevant valence bands are the uppermost �+

7
band and the �+

8 band, that both stem from the same �+
5 band

when the spin is ignored. The interband matrix elements can
be rewritten in terms of the lattice periodic functions |uv, q〉
via |v, q〉 = eiqr |uv, q〉 as

〈�+
7 , σ,−q − κ|e−iκr π|�+

8 , σ ′,−q〉
= 〈

u�+
7
, σ,−q − κ

∣∣π∣∣u�+
8
, σ ′,−q

〉
− h̄q

〈
u�+

7
, σ,−q − κ

∣∣u�+
8
, σ ′,−q

〉
, (10)

where σ and σ ′ denote the substates of the irreducible rep-
resentations (“spin”). This can be evaluated in perturbation
theory using

|uv, q〉 ≈ |uv, 0〉 + h̄

m0

∑
n

|un, 0〉〈un, 0|q · π|uv, 0〉
Ev (0) − En(0)

. (11)

The term ∝h̄q in Eq. (10) vanishes for κ = 0, and its lowest-
order term is proportional to q2κ . As both the q and κ of
interest are small compared to the size of the Brillouin zone,
this term will be ignored. The remaining term in Eq. (10) gives

〈
u�+

7
, σ,−q − κ

∣∣π∣∣u�+
8
, σ ′,−q

〉 = h̄

m0

∑
n

〈
u�+

7
, σ, 0

∣∣ − (q + κ) · π|un, 0〉〈un, 0|π∣∣u�+
8
, σ ′, 0

〉
E�+

7
(0) − En(0)

+ h̄

m0

∑
n

〈
u�+

7
, σ, 0

∣∣π|un, 0〉〈un, 0| − q · π
∣∣u�+

8
, σ ′, 0

〉
E�+

8
(0) − En(0)

= −〈
u�+

7
, σ, q

∣∣π∣∣u�+
8
, σ ′, q

〉 − h̄

m0

∑
n

〈
u�+

7
, σ, 0

∣∣κ · π|un, 0〉〈un, 0|π∣∣u�+
8
, σ ′, 0

〉
E�+

7
(0) − En(0)

. (12)

The term proportional to κ corresponds to higher-order tran-
sitions between the Bloch states and can induce quadrupole
transitions between excitonic states, while the first term is
responsible for the dipole transitions.

Assuming that

E�+
7

(0) − En(0) ≈ E�+
8

(0) − En(0) (13)

for all intermediate states |un, 0〉, Eq. (12) can be rewritten as

〈
u�+

7
, σ,−q − κ

∣∣π∣∣u�+
8
, σ ′,−q

〉

= −m0

h̄
∇q+ κ

2

[
H

(
q + κ

2

)]
σ,σ ′

− F h̄Ñσ,σ ′ · κ. (14)

Here, F ≈ −0.43 denotes a magnetic band parameter, and the
matrices Ñσ,σ ′ ∈ C3×3 can be derived from group-theoretical
considerations (see Appendix A). In addition, H(q) denotes

the Suzuki-Hensel Hamiltonian [32]

H(q) = −�so

3
I · S + h̄2

2m0

{
[A1 + B1I · S]q2

+
[

A2

(
I2
x − 1

3
I2

)
+ B2

(
Ixσx − 1

3
I · S

)]
q2

x + c.p.

+ [A3(IxIy+IyIx ) + B3(Ixσy+Iyσx )]{qx, qy} + c.p.

}
,

(15)

where I is the vector of the spin-1 angular-momentum matri-
ces, S the vector of the Pauli matrices, and {qx, qy} = (qxqy +
qyqx )/2 the symmetric product. Furthermore, c.p. stands for
cyclic permutation, �so is the spin-orbit splitting of the va-
lence band, and the Ai and Bi are band structure parameters
whose values can be found in Table I.
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The approximation in Eq. (13) is justified as the interme-
diate states can only have �−

7 or �−
8 symmetry, and the next

band of such symmetry is removed by about 20 �so from the
valence bands. A more in-depth discussion of Eq. (14) as well
as the matrices Ñσ,σ ′ can be found in Appendix A.

In this manner, the interband matrix elements are easily
accessible, once the band structure parameters are known. For
the valence bands of Cu2O, good fits to the Suzuki-Hensel
Hamiltonian are available [6]. However, one has to keep in
mind that the representation of the Hamiltonian in terms of
I and S implies a basis �−

4 ⊗ �+
6 = �−

6 ⊕ �−
8 . The valence

band states in Cu2O, however, have the symmetry �+
5 ⊗ �+

6 =
(�−

2 ⊗ �−
4 ) ⊗ �+

6 = �+
7 ⊕ �+

8 . Therefore, one has to be care-
ful when assigning the band states to the rows and columns of
the Hamiltonian, and one cannot simply assign them by their
eigenvalues of the operators J2 and Jz (where J = I + S/2).

For the transitions between the yellow and the blue series,
the interband matrix element takes the form

〈�+
6 , σ, q|e−iκr π|�+

8 , σ ′, q + κ〉 = B6,8Rσ,σ ′ , (16)

where B6,8 is the relevant band structure parameter and R
is given in Eq. (C6). We fitted the Hamiltonian derived in
Appendix C to spin-DFT calculations in the vicinity of the
� point [33], yielding

A6 = 2.44, A8 = 3.99, A′
8 = −1.94,

A′′
8 = 1.25, B6,8 = 0.342

h̄π

ag
. (17)

The resulting band structure is shown in Fig. 3, with excel-
lent agreement to the DFT calculations. Using the effective
electron masses as defined in Table II yields me = 0.99 m0 for
the �+

6 conduction band which agrees with the experimental
values [34] as well as me = 0.21 m0 for the �−

8 conduction
band.

FIG. 3. Conduction band structure of Cu2O, comparing results
from spin-DFT calculations (black solid lines) with fits with the
parameters in Eq. (17) (red dashed lines).

IV. TRANSITIONS BETWEEN THE YELLOW AND GREEN
SERIES IN CuO2

In this section, the transition matrix elements for transitions
from the yellow P excitons to the green S and D excitons
will be calculated. We will first evaluate them in the dipole
approximation of Eq. (9) and subsequently drop the dipole
approximation for a representative set of states.

Using the symmetrized basis functions given in
Appendix B with hydrogen-like radial wave functions as
approximations to the excitonic states, the transition matrix
elements in dipole approximation can now be calculated.
Focusing on the transitions from the z component of the
yellow �−

4 P exciton (without loss of generality), the transition
strength to the green S and D states can be expressed as

∑
i

∣∣〈Y P
�−

4
z , n

∣∣πx j

∣∣G�
�+

ξ

i , n′〉∣∣2 = C
�+

ξ

x j

∣∣p�
r (n, n′)

∣∣2
, (18)

where the sum over i runs over the substates of the green
��+

ξ manifold, � denotes the angular momentum (i.e., S or D),
and �+

ξ the irreducible representations into which the green

S and D excitons can be decomposed. The C
�+

ξ

�,x j
are listed in

Table IV and depend only on the spins, the angular momenta,
as well as the band structure parameters A2 − B2 and A3 − B3.
Furthermore,

p�
r (n, n′) = h̄

∫ ∞

0
dk k3φ̃

†
Y P,n(k) φ̃G�,n′ (k) (19)

are the radial matrix elements of h̄k that are shown in Fig. 4.
The representation of Eq. (18) as well as the coefficients
can be retrieved by multiplying the symmetrized basis func-
tions in Appendix B with the corresponding transition matrix
Eq. (B13) and integrating over the angular coordinates.

In Eq. (19), the sum over k has been converted to an
integral via

∑
k ≈ �/(2π )3

∫
d3k with � the crystal volume.

The radial envelope functions φ̃τ (k) = √
�/(2π )3/2 φτ (k) are

normalized with respect to the integral
∫

d3k.
In order to include the multipole corrections contained in

Eq. (7), we first observe that for interband transitions between

TABLE IV. Angular coefficients for dipole transitions into the
green S and D excitons.

Polarization xi (e2)

C
�+

ξ

�,xi
x y z

Green S 1 �+
3 0 0 0.11

1 �+
4 0.85 0.85 0

1 �+
5 0.52 0.52 0

� 1.37 1.37 0.11

Green D 2 �+
1 0 0 0.47

2 �+
2 0 0 0

3 �+
3 0 0 0.87

5 �+
4 0.41 0.41 0

5 �+
5 0.44 0.44 0

� 0.85 0.85 1.34
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FIG. 4. Radial coefficients as given in Eq. (19). The radial wave
functions used are hydrogenic functions with Bohr radii given in
Table II.

bands of the same parity, the leading order of the interband
matrix element can be expressed as

〈v,−q − κ|e−iκr π|v′,−q〉 = −h̄M · q − h̄N · κ (20)

with some state-dependent matrices M, N ∈ C3×3. In this
approximation, Eq. (7) can be rewritten as〈

�c,v
τ,K

∣∣e−iκr π
∣∣�c,v′

τ ′,K+κ

〉 = i h̄ M · O(τ, τ ′, (β − β ′)K + α′κ)

− h̄[N · κ − β ′M · (K + κ)]

×W (τ, τ ′, (β − β ′)K + α′κ),

(21)

where

O(τ, τ ′, q) =
∫

d3r eiq·r φ†
τ (r) ∇r φτ ′ (r) (22)

and

W (τ, τ ′, q) =
∫

d3r eiq·r φ†
τ (r) φτ ′ (r) (23)

with the real-space (i.e., Fourier transformed) envelope func-
tions φτ (r). The integrals W (τ, τ ′, q) are identical to those ap-
pearing in the calculation of the phonon scattering of Rydberg
excitons [11]. Table V lists the transition strengths relative to
the dipole approximation for some representative transitions
from the yellow P excitons to the green �+

3 excitons. For
counterpropagating beams and a principal quantum number
of ∼20, the error introduced by the dipole approximation can
reach almost 25%.

TABLE V. Relative transition strengths from ny�
−
4 P excitons to

all green ng�
+
3 excitons with both pump and probe beam z polarized

and propagating along the y axis.

Copropagating Counterpropagating

ny ng S �+
3 D �+

3 S �+
3 D �+

3

19 20 1.04 0.96 0.76 0.83
14 15 1.02 0.99 0.90 0.94
8 9 1.01 1.00 0.98 0.99

V. TRANSITIONS BETWEEN THE YELLOW AND BLUE
SERIES IN CuO2

We will now proceed by repeating the analysis of the
previous section for transitions from the yellow to the blue
P excitons. In particular, we will show that the breakdown of
the dipole approximation allows transitions to certain blue S
excitons with transition strengths comparable to those from
yellow P to blue P excitons.

The effective mass, averaged spatially as well as over
light and heavy holes, of an electron in the �−

8 conduction
band derived from the fits is 0.21 m0. Note that some of this
mass derives from the coupling to the �+

6 conduction band.
Hence, this value is not the same as the inverse of A8 in
Eq. (17). As the interband matrix elements are constant to
leading order in q, the only allowed transitions in the dipole
approximation are those between states of the same �. The
dipolar transition strengths between yellow nP and blue n′P
excitons can therefore be written as

∑
i

∣∣〈Y P
�−

4
z , n

∣∣πx j

∣∣BP
�+

ξ

i , n′〉∣∣2 = |B6,8|2D
�+

ξ

P,x j
|or (n, n′)|2

(24)

with the band parameter B6,8 (see Appendix C) and the radial
overlap integral

or (n, n′) =
∫ ∞

0
dk k2 φ̃

†
Y P,n(k) φ̃BP,n′ (k). (25)

The blue P states have symmetry �−
4 ⊗ �−

8 ⊗ �+
7 = �+

1 ⊕
�+

2 ⊕ 2�+
3 ⊕ 3�+

4 ⊕ 3�+
5 , and the corresponding coefficients

D
�+

ξ

P,x j
are given in Table VI with the squared overlap integrals

shown in Fig. 5.
For a constant interband transition matrix element

〈c, k|e−iκr π|c′, k + κ〉 ≈ 〈c, 0| π|c′, 0〉, Eq. (8) can be
rewritten as

〈
�c,v

τ,K

∣∣e−iκr π
∣∣�c′,v

τ ′,K+κ

〉
= 〈c, 0|π|c′, 0〉W (τ, τ ′, (α′ − α)K − β ′κ). (26)

The corrections to transitions from the z component of the
yellow ny �−

4 P exciton to all blue nb �+
3 P states are shown in

TABLE VI. Angular coefficients for dipole transitions into the
blue P excitons.

Polarization xi (e2)

D
�+

ξ

P,xi
x y z

Blue P 1 �+
1 0 0 1/3

1 �+
2 0 0 0

2 �+
3 0 0 1/3

3 �+
4 5/12 5/12 0

3 �+
5 1/4 1/4 0

� 2/3 2/3 2/3
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FIG. 5. Radial coefficients as given in Eq. (25) for the transitions
between the yellow and blue P excitons. The radial wave functions
used are hydrogenic functions with Bohr radii given in Table II.

Fig. 6. The quantity

T (ny, P �+
3 nb; k, x j ) = |B6,8|2

∑
j

∣∣〈Y P
�−

4
z ny

∣∣R†
x j

⊗W̄ (Y P ny, BP nb, k)
∣∣BP

�+
3

j nb
〉∣∣2

(27)

shown there coincides with the exact transition strength for
k = (α′ − α)K − β ′κ and with the dipole approximation for
k = 0. Here, j sums over all four substates of the the two �+

3
representations appearing in the decomposition of the blue P
excitons (see Table VI), W̄ (τ, τ ′, k) ∈ C(2�+1)×(2�′+1) denotes
the matrix containing the W (τ, τ ′, k) for all combinations
of magnetic quantum numbers, the Rxj are the interband

coefficient matrices given in Eq. (C6), and |BP
�+

3
j nb〉 as well

as |Y P
�−

4
z ny〉 are the symmetrized basis states of Appendix B.

For the given relative electron masses in Cu2O,
the scaled COM wave number of the yellow exciton
is K̃ = (α − α′)|K| = 1.39 × 10−3π/ag, and κ̃ = β ′|κ| =

0.0 1.5 2.5K̃ + κ̃K̃ − κ̃

k 10−3 π/ag

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

T
(n

y
,

n
b
P

Γ
+ 3
,k

e
y
)

h
2
a−

2
g

ny = 5 ⇔ nb = 4

ny = 10 ⇔ nb = 7

ny = 14 ⇔ nb = 10

ny = 20 ⇔ nb = 14

FIG. 6. Transitions from the z component of the yellow ny�
−
4 P

state to all blue nb�
+
3 P states via a z-polarized probe beam.

The dashed lines indicate the sum of the dipole and octupole
contributions.

0.0 1.5 2.5K̃ + κ̃K̃ − κ̃

k 10−3 π/ag

0.000

0.001

0.002

0.003

0.004

T
(n

y
,

n
b
S

Γ
− 3
,k

e
y
)

h
2
a−

2
g

ny = 5 ⇔ nb = 4

ny = 10 ⇔ nb = 7

ny = 14 ⇔ nb = 10

ny = 20 ⇔ nb = 14

FIG. 7. Same as Fig. 6 for the transition to the blue �−
3 S excitons

via x-polarized probe beams. Dashed lines indicate the quadrupole
approximation.

0.57 × 10−3π/ag is the photon wave number scaled by the
relative hole mass of the blue exciton. These values have been
calculated from the band gaps of the yellow and blue series
and should be accurate to within 1% even for the ny = 5 ⇔
nb = 4 transition. The sum K̃ + κ̃ appears for copropagat-
ing beams and the difference K̃ − κ̃ for counterpropagating
beams (see Table III).

There is a prominent effect from the abandonment of the
dipole approximation even for principal quantum numbers
ny ≈ 5. In Fig. 6, the dashed lines show the sum of dipole
and octupole contributions only, which deviates strongly from
the exact result (solid lines) for larger momentum transfer k.
However, the deviation of the exact result from the low-order
multipole expansion is least for counterpropagating beams. In
Fig. 7, we show the transition strengths from the yellow �−

4 P
excitons to the blue �−

3 S excitons which are usually dipole
forbidden. Hence, the first nonvanishing contribution is that
of a quadrupole interaction. Note that the magnitudes of the
transition matrix elements are of the same order of magnitude
as in Fig. 6.

VI. DISCUSSION AND OUTLOOK

We have presented detailed calculations for the transition
strengths of the excitonic interseries transitions in Cu2O, go-
ing well beyond the dipole approximation. Those transitions
can either be between the yellow and green series, where the
hole changes the valence band, or between the yellow and
blue series with an accompanying change of the conduction
band. The symmetry properties of the respective bands imply
that dipole transitions are only allowed for |��| = 1 (yellow-
green) or �� = 0 (yellow-blue), respectively.

Transitions between Rydberg excitons of different series
are located at wavelengths that are comparable with the size of
the Rydberg wave functions. Hence, the dipole approximation
is no longer valid, and the inclusion of multipoles of all orders
is necessary. We have shown that, already for relatively low
principal quantum numbers, the deviation from the dipole
approximation cannot be neglected. In particular, dipole-
forbidden transitions such as from yellow P excitons to blue
S excitons become allowed to the extent that their transition
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matrix elements are of similar size to those of dipole-allowed
transitions. These results pave the way to construct protocols
for coherent manipulation of Rydberg excitons.

So far, our calculations are based on the exciton parameters
collected in Table II which were derived from band struc-
ture parameters of Cu2O and show discrepancies from the
experimental data. To improve on these, a detailed theory of
the green [35,36] and blue Rydberg excitons, including the
coupling to the yellow continuum states, would be necessary.
Furthermore, both the �+

8 valence band and the �−
8 conduc-

tion band have an anisotropic mass at the � point that will
result in a strong coupling of different angular momenta even
for Rydberg states and a corresponding redistribution of the
transition strengths over more states than we have taken into
account so far. To the best of our knowledge, no experiments
have been performed, from which the excitonic interseries
transition strengths in Cu2O could be quantified.

Proposals have been put forward to use spatially modulated
light fields such as orbital angular momentum light in order to
tune the selection rules of excitonic transitions [37]. Realizing
such transitions is, however, experimentally challenging as
the real-space extension of both initial and final states has
to be comparable to the characteristic length scale of the
modulation, or the transversal position inside the beam has
to be controlled very precisely [38,39]. Excitonic interseries
transitions, on the other hand, have the advantage that both
initial and final states can in principle become arbitrarily large
while the energy separation, and hence the wavelength of the
coupling beam, approaches a finite value. This work paves the
way toward the evaluation of such transition matrix elements,
which we leave for a future publication.
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APPENDIX A: INTERBAND MATRIX ELEMENTS

The Suzuki-Hensel Hamiltonian in the �+
7 -�+

8 cross space
represents the perturbation theoretical k · π Hamiltonian of
the form [40]

[Hq + HB]σ,σ ′ = h̄2

2m2
0

∑
n

�−1
n

〈
u�+

7
, σ, 0

∣∣q · π|un, 0〉

× 〈un, 0|q · π
∣∣u�+

8
, σ ′, 0

〉 + O(q4), (A1)

where

�−1
n = 1

E�+
8

(0) − En(0)
+ 1

E�+
7

(0) − En(0)
, (A2)

Hq denotes only the q-dependent part of H(q), and the mag-
netic field B is given by the commutator [32,41]

q × q = eB
ih̄

. (A3)

In this notation, σ = {±1/2} and σ ′ = {±1/2,±3/2} denote
the valence band “spin.” The representations �+

7 and �+
8

are left out for notational convenience but are nonetheless
implied. For a vanishing magnetic field one obtains

[Hq]σ,σ ′ = h̄q
2m0

· 〈
u�+

7
, σ, q

∣∣π∣∣u�+
8
, σ ′, q

〉
, (A4)

as can be seen from Eq. (12). This can be rewritten as

[Hq]σ,σ ′ = h̄2

2m0
q · Mσ,σ ′ · q (A5)

and 〈
u�+

7
, σ, q

∣∣π∣∣u�+
8
, σ ′, q

〉 = h̄Mσ,σ ′ · q (A6)

with some state-dependent matrix Mσ,σ ′ ∈ C3×3. For a
symmetric matrix Mσ,σ ′ it follows that ∇q(q · Mσ,σ ′ · q) =
2Mσ,σ ′ · q, which would imply〈

u�+
7
, σ, q

∣∣π∣∣u�+
8
, σ ′, q

〉 = m0h̄−1∇q [Hq]σ,σ ′

= m0h̄−1∇q [H(q)]σ,σ ′ . (A7)

All that is left to show is, hence, that the M are indeed
symmetric matrices. Their components can be written as

Mxi,x j

σ,σ ′ = 1

m0

∑
n

〈
u�+

7
, σ, 0

∣∣πx j |un, 0〉〈un, 0|πxi

∣∣u�+
8
, σ ′, 0

〉
E�+

7
(0) − En(0)

+ 1

m0

∑
n

〈
u�+

7
, σ, 0

∣∣πxi |un, 0〉〈un, 0|πx j

∣∣u�+
8
, σ ′, 0

〉
E�+

8
(0) − En(0)

.

(A8)

They are obviously symmetric with respect to an exchange
of xi and x j under the approximation that the two energy
denominators are equal. Again, this approximation is reason-
able as the next possible coupling states |un, 0〉 (of �−

7 or �−
8

symmetry) are removed by about 20�so. The components of
m0 h̄−1∇q H(q) are then given by h̄Mσ,σ ′ · q, where the M are
defined by

Mσ,σ ′ =

⎛
⎜⎜⎜⎜⎜⎝

〈�+
7 ,−1/2| 〈�+

7 , 1/2|
M5,z M3,1

M3,2 + M5,xy

√
1
3 M5,z√

1
3 M†

5,z −M3,2 + M5,xy

−M3,1 M†
5,z

⎞
⎟⎟⎟⎟⎟⎠

|�+
8 ,−3/2〉

|�+
8 ,−1/2〉

|�+
8 , 1/2〉

|�+
8 , 3/2〉

(A9)

with

M5,z = A3 − B3√
8

⎛
⎜⎝

0 0 1

0 0 i

1 i 0

⎞
⎟⎠, (A10)

M3,1 = A2 − B2√
18

⎛
⎜⎝

−1 0 0

0 −1 0

0 0 2

⎞
⎟⎠, (A11)

M3,2 = A2 − B2√
6

⎛
⎜⎝

1 0 0

0 −1 0

0 0 0

⎞
⎟⎠, (A12)
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and

M5,xy = A3 − B3√
6

⎛
⎜⎝

0 i 0

i 0 0

0 0 0

⎞
⎟⎠. (A13)

Under the same approximations, the κ-dependent part of
Eq. (12) can be rewritten as

h̄

m0

∑
n

〈
u�+

7
, σ, 0

∣∣κ · π|un, 0〉〈un, 0|π∣∣u�+
8
, σ ′, 0

〉
E�+

7
(0) − En(0)

= m0

2h̄
∇κ [H(κ)]σ,σ ′ + F Ñσ,σ ′ · h̄κ, (A14)

where Ñσ,σ ′ = (Nσ,σ ′ − NT
σ,σ ′ )/2 is the antisymmetric part of

Nxi,x j

σ,σ ′ = 1

F m0

∑
n

〈
u�+

7
, σ, 0

∣∣πx j |un, 0〉〈un, 0|πxi

∣∣u�+
8
, σ ′, 0

〉
E�+

7
(0) − En(0)

(A15)

and F is an additional parameter. We thus arrive at
〈
u�+

7
, σ, q + κ

∣∣π∣∣u�+
8
, σ ′, q + κ

〉 = m0

h̄
∇q+ κ

2

[
H

(
q + κ

2

)]
σ,σ ′

+ F Ñσ,σ ′ · h̄κ. (A16)

The matrices Ñ for all state combinations can be calculated
by the applying the Wigner-Eckart theorem of Oh to Eq. (A15)
and a subsequent antisymmetrization which results in

Ñσ,σ ′ =

⎛
⎜⎜⎜⎜⎜⎝

〈�+
7 ,−1/2| 〈�+

7 , 1/2|√
1
3 Ñ4,xy Ñ4,z

0 −Ñ4,xy

−Ñ
∗
4,xy 0

Ñ4,z

√
1
3 Ñ

∗
4,xy

⎞
⎟⎟⎟⎟⎟⎠

|�+
8 ,−3/2〉

|�+
8 ,−1/2〉

|�+
8 , 1/2〉

|�+
8 , 3/2〉

(A17)

where the ∗ denotes a complex conjugation and

Ñ4,xy =
√

1

2

⎛
⎜⎝

0 0 −1

0 0 −i

1 i 0

⎞
⎟⎠ (A18)

as well as

Ñ4,z =
√

2

3

⎛
⎜⎝

0 i 0

−i 0 0

0 0 0

⎞
⎟⎠. (A19)

Due to the antisymmetry of Ñ, one can rewrite κ · Ñσ,σ ′ ·
κ = e/(ih̄) vσ,σ ′ · B, where

v4,xy =
√

1

2

⎛
⎜⎝

−i

1

0

⎞
⎟⎠, v4,z =

√
2

3

⎛
⎜⎝

0

0

i

⎞
⎟⎠, (A20)

and the commutation relation in Eq. (A3) has been used. This
tells us that the parameter F is related to the magnetic part
of the valence-band Hamiltonian which is given by (ignoring
spin-orbit terms) [32]

HB = h̄e

m0
[A4I + B4S] · B. (A21)

Inserting [E�+
7

(0) − En(0)]−1 ≈ �−1
n /2 into Eq. (A14), we

can thus write

h̄2F

2m0
κ · Ñσ,σ ′ · κ = 1

2
[HB]σ,σ ′

⇒ h̄e

2m0
F

vσ,σ ′

i
· B

= h̄e

2m0
[A4Iσ,σ ′ + B4Sσ,σ ′] · B (A22)

and find by comparison F = −(A4 − 2B4)/
√

3. A further
comparison with the magnetic valence-band Hamiltonian

HB = h̄e

m0

[(
3κ

2
+ gs

4

)
I − gs

4
S
]

· B (A23)

and its parameters given in Ref. [12] yields

F = −
√

3

4

(
κ + gs

2

)
≈ −0.43, (A24)

where gs ≈ 2 and κ ≈ −0.5 is the fourth Luttinger parameter
[41]. Note that the spin matrices are defined differently there;
I differs by a factor of h̄ and Sh = h̄S/2. For the transition
between Rydberg excitons of different parity, the term in
Eq. (A14) will be small compared to both the transition
strength and the correction from the displacement of the
momentum-space envelope functions in Eq. (7).

In the case of transitions between the yellow and blue
series, the matrix elements of the �+

6 and �−
8 conduction

bands are of interest. Transitions between these bands are
allowed at the � point and the band Hamiltonian thus takes
the form

[Hq]σ,σ ′ = h̄

m0

〈
u�+

6
, σ, 0

∣∣q · π
∣∣u�−

8
, σ ′, 0

〉 + O(q3), (A25)

which is equivalent to Eq. (C5) and directly contains the
sought after transition matrix elements via〈

u�+
6
, σ, q

∣∣π∣∣u�−
8
, σ ′, q + κ

〉
= m0

h̄
∇q[Hq]σ,σ ′ = m0

h̄
∇q[H(q)]σ,σ ′

= 〈
u�+

6
, σ, 0

∣∣π∣∣u�−
8
, σ ′, 0

〉
. (A26)

The next higher-order terms would be of order q2 and qκ .

APPENDIX B: SYMMETRIZED BASIS STATES

Here we list the symmetrized basis states for the yellow
�−

4 P excitons and the green S and D excitons, which are
equivalent to the one used in Ref. [31]. Note that all following
states are constructed in terms of valence band holes. The
product states of the bands forming the yellow series give
�+

7 ⊗ �+
6 = �+

2 ⊕ �+
5 , where [42]

Y �+
2 =

√
1

2

(
ψ

�+
6

1/2 ψ
�+

7
−1/2 − ψ

�+
6

−1/2 ψ
�+

7
1/2

)
, (B1)

Y
�+

5
yz = i

√
1

2

(
ψ

�+
6

1/2 ψ
�+

7
1/2 − ψ

�+
6

−1/2 ψ
�+

7
−1/2

)
, (B2)
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Y
�+

5
zx =

√
1

2

(
ψ

�+
6

1/2 ψ
�+

7
1/2 + ψ

�+
6

−1/2 ψ
�+

7
−1/2

)
, (B3)

Y
�+

5
xy = −i

√
1

2

(
ψ

�+
6

1/2 ψ
�+

7
−1/2 + ψ

�+
6

−1/2 ψ
�+

7
1/2

)
. (B4)

In the same vein, the states of the green series can be ex-
pressed as �+

8 ⊗ �+
6 = �+

3 ⊕ �+
4 ⊕ �+

5

G
�+

3
1 = −

√
1

2

(
ψ

�+
6

1/2 ψ
�+

8
−1/2 + ψ

�+
6

−1/2 ψ
�+

8
1/2

)
, (B5)

G
�+

3
2 = −

√
1

2

(
ψ

�+
6

1/2 ψ
�+

8
3/2 + ψ

�+
6

−1/2 ψ
�+

8
−3/2

)
, (B6)

G
�+

4
x = i

√
1

8

(√
3
[
ψ

�+
6

−1/2 ψ
�+

8
3/2 + ψ

�+
6

1/2 ψ
�+

8
−3/2

]

− [
ψ

�+
6

−1/2 ψ
�+

8
−1/2 + ψ

�+
6

1/2 ψ
�+

8
1/2

])
, (B7)

G
�+

4
y =

√
1

8

(√
3
[
ψ

�+
6

−1/2 ψ
�+

8
3/2 − ψ

�+
6

1/2 ψ
�+

8
−3/2

]

+ [
ψ

�+
6

−1/2 ψ
�+

8
−1/2 − ψ

�+
6

1/2 ψ
�+

8
1/2

])
, (B8)

G
�+

4
z = i

√
1

2

(
ψ

�+
6

1/2 ψ
�+

8
−1/2 − ψ

�+
6

−1/2 ψ
�+

8
1/2

)
, (B9)

G
�+

5
yz = −i

√
1

8

([
ψ

�+
6

−1/2 ψ
�+

8
3/2 + ψ

�+
6

1/2 ψ
�+

8
−3/2

]

+
√

3[ψ
�+

6
−1/2 ψ

�+
8

−1/2 + ψ
�+

6
1/2 ψ

�+
8

1/2

])
, (B10)

G
�+

5
zx =

√
1

8

([
ψ

�+
6

−1/2 ψ
�+

8
3/2 − ψ

�+
6

1/2 ψ
�+

8
−3/2

]

−
√

3
[
ψ

�+
6

−1/2 ψ
�+

8
−1/2 − ψ

�+
6

1/2 ψ
�+

8
1/2

])
, (B11)

G
�+

5
xy = i

√
1

2

(
ψ

�+
6

1/2 ψ
�+

8
3/2 − ψ

�+
6

−1/2 ψ
�+

8
−3/2

)
. (B12)

The valence-band transition matrix of Eq. (A16) in the 12-
dimensional spinor space of �+

6 ⊗ (�+
7 ⊕ �+

8 ) is simply
[

m0

h̄
∇q+ κ

2

[
H

(
q + κ

2

)]
σ,σ ′

+ F h̄Ñ · κ

]
⊗ Id6, (B13)

where Id6 is the unity operator in the �+
6 Hilbert space of

the conduction band. The yellow �−
4 P excitons can then be

constructed with the cubic harmonics [43] for � = 1

ξ
1,�−

4
x = Y −1

1 − Y 1
1√

2
, ξ

1,�−
4

y = i
Y −1

1 + Y 1
1√

2
, ξ

1,�−
4

z = Y 0
1

(B14)

as

Y P
�−

4
x = φ√

2

(
iY

�+
5

xy
Y −1

1 + Y 1
1√

2
+ Y

�+
5

zx Y 0
1

)
, (B15)

Y P
�−

4
y = φ√

2

(
Y

�+
5

xy
Y −1

1 − Y 1
1√

2
+ Y

�+
5

yz Y 0
1

)
, (B16)

Y P
�−

4
z = φ

2

(
Y

�+
5

zx
[
Y −1

1 − Y 1
1

] + iY
�+

5
yz

[
Y −1

1 + Y 1
1

])
, (B17)

where the Y m
� are the spherical harmonics and φ denotes the

radial wave function, which is assumed to depend only on n,
� and the excitonic series (i.e., yellow, green, or blue).

The green S states can be constructed by multiplying each
of the product states in Eqs. (B5)–(B12) by φ Y 0

0 . There are
40 green D states in total, which will not be listed here but
can easily be constructed with the coupling constants given in
Ref. [42] and the cubic harmonics for � = 2:

ξ
2,�+

3
1 = Y 0

2 , ξ
2,�+

3
2 = Y −2

2 + Y 2
2√

2
, ξ

2,�+
5

yz = i
Y −1

2 + Y 1
2√

2
,

ξ
2,�+

5
zx = Y −1

2 − Y 1
2√

2
, ξ

2,�+
5

xy = i
Y −2

2 − Y 2
2√

2
. (B18)

The blue product states form �−
8 ⊗ �+

7 = �−
3 ⊕ �−

4 ⊕ �−
5 ,

where

B
�−

3
1 = −

√
1

2

(
ψ

�+
7

−1/2 ψ
�−

8
−3/2 + ψ

�+
7

1/2 ψ
�−

8
3/2

)
, (B19)

B
�−

3
2 =

√
1

2

(
ψ

�+
7

−1/2 ψ
�−

8
1/2 + ψ

�+
7

1/2 ψ
�−

8
−1/2

)
, (B20)

B
�−

4
x = −i

√
1

8

(√
3
[
ψ

�+
7

−1/2 ψ
�−

8
−1/2 + ψ

�+
7

1/2 ψ
�−

8
1/2

]

+ [
ψ

�+
7

−1/2 ψ
�−

8
3/2 + ψ

�+
7

1/2 ψ
�−

8
−3/2

])
, (B21)

B
�−

4
y =

√
1

8

(√
3
[
ψ

�+
7

1/2 ψ
�−

8
1/2 − ψ

�+
7

−1/2 ψ
�−

8
−1/2

]

+ [
ψ

�+
7

−1/2 ψ
�−

8
3/2 − ψ

�+
7

1/2 ψ
�−

8
−3/2

])
, (B22)

B
�−

4
z = i

√
1

2

(
ψ

�+
7

1/2 ψ
�−

8
3/2 − ψ

�+
7

−1/2 ψ
�−

8
−3/2

)
, (B23)

B
�−

5
yz = −i

√
1

8

([
ψ

�+
7

−1/2 ψ
�−

8
−1/2 + ψ

�+
7

1/2 ψ
�−

8
1/2

]

−
√

3
[
ψ

�+
7

−1/2 ψ
�−

8
3/2 + ψ

�+
7

1/2 ψ
�−

8
−3/2

])
, (B24)

B
�−

5
zx =

√
1

8

([
ψ

�+
7

−1/2 ψ
�−

8
−1/2 − ψ

�+
7

1/2 ψ
�−

8
1/2

]

+
√

3
[
ψ

�+
7

−1/2 ψ
�−

8
3/2 − ψ

�+
7

1/2 ψ
�−

8
−3/2

])
, (B25)

B
�−

5
xy = i

√
1

2

(
ψ

�+
7

1/2 ψ
�−

8
−1/2 − ψ

�+
7

−1/2 ψ
�−

8
1/2

)
. (B26)

There are 24 blue P states, which can be constructed in
the same manner from these product states and the coupling
coefficients given by Koster [42]. The interband matrix for
transitions between the yellow and blue series can be ex-
pressed as Id7 ⊗[B6,8R].

APPENDIX C: CONDUCTION-BAND HAMILTONIAN

In order to describe the transitions between the yellow and
the blue series, a band Hamiltonian describing the �+

6 and �−
8

conduction bands is needed (or at least the off-diagonal part
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thereof). For the �+
6 subspace there is one free parameter for

the terms of zeroth order in q (=̂�+
1 ) and one parameter for the

terms of second order (=̂�−
4 ⊗ �−

4 = �+
1 ⊕ �+

3 ⊕ �+
4 ⊕ �+

5 )
in q as 〈�+

6 |�+
3 |�+

6 〉 = 〈�+
6 |�+

5 |�+
6 〉 = 0, and the �+

4 compo-
nent corresponds to the commutator of the components of q,
which vanishes without a magnetic field. The Hamiltonian is
thus

H6(q) = E6 + h̄2q2

2m0
A6 (C1)

with the free parameters E6 and A6.
For the �−

8 subspace, the analysis is similar, only that the
angular momentum matrices for spin I = 3/2

Ix = 1

2

⎛
⎜⎜⎜⎜⎝

0
√

3 0 0√
3 0 2 0

0 2 0
√

3

0 0
√

3 0

⎞
⎟⎟⎟⎟⎠,

Iy = i

2

⎛
⎜⎜⎜⎜⎝

0
√

3 0 0

−√
3 0 2 0

0 −2 0
√

3

0 0 −√
3 0

⎞
⎟⎟⎟⎟⎠,

Iz = 1

2

⎛
⎜⎜⎜⎝

−3 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 3

⎞
⎟⎟⎟⎠ (C2)

have to be used, and that there are in total three parameters for
the second-order terms (one for �+

1 , �+
3 , and �+

5 each). This
results in the Hamiltonian

H8(q) = E8 + h̄2

2m0

{
A8 q2 + A′

8

([
I2
x − 1

3
I2

]
q2

x + c.p.

)

+ A′′
8 ({Ix, Iy}{qx, qy} + c.p.)

}
, (C3)

where {Ix, Iy} = (Ix Iy + Iy Ix )/2 is the symmetrized product
and c.p. denotes the cyclically permuted terms. This is equiv-
alent to the Suzuki-Hensel Hamiltonian in the subspace of the
�+

8 valence bands.

Dipole transitions between the two conduction bands are
allowed at the � point; therefore the lowest-order term in the
cross space is linear in q (=̂�−

4 ). There is one free parameter,
and this part of the Hamiltonian can be constructed from the
three matrices that transform as �−

4 in the �−
8 ⊗ �+

6 cross
space [42]

Ux = i

√
1

2

⎛
⎜⎜⎜⎜⎝

−1 0

0 −
√

1
3√

1
3 0

0 1

⎞
⎟⎟⎟⎟⎠, Uy =

√
1

2

⎛
⎜⎜⎜⎜⎝

1 0

0
√

1
3√

1
3 0

0 1

⎞
⎟⎟⎟⎟⎠,

Uz = −i

√
2

3

⎛
⎜⎜⎜⎝

0 0

1 0

0 1

0 0

⎞
⎟⎟⎟⎠. (C4)

The off-diagonal Hamiltonian can then be expressed via

H6,8(q) = h̄

m0
B6,8 R · q, (C5)

where

Rxi =
(

0 U †
xi

Uxi 0

)
∈ C6×6, (C6)

and the complete Hamiltonian is simply

H(q) = H6(q) + H8(q) + H6,8(q). (C7)

The parameter of interest for the transitions between yellow
and blue series is thus B6,8.

APPENDIX D: EVALUATION OF THE INTEGRALS

The two types of overlap integrals in Eqs. (22) and (23)
have been evaluated by using the plane-wave expansion

eiq·r = 4π

∞∑
�=0

�∑
m=−�

(−1)m i� j�(qr)Y m
� (nq)Y −m

� (nr), (D1)

where j�(r) denotes the spherical Bessel functions. Inserting
this into Eq. (23) and integrating over the angular degrees of
freedom yields

W (τ, τ ′, q) = 4π

�+�′∑
λ=|�−�′|

(−1)m′
iλ Y m′−m

λ (nq)G(λ, m − m′; �,−m; �′, m′)
∫ ∞

0
dr r2 jλ(qr) f †

τ (r) fτ ′ (r), (D2)

where fτ (r) is the radial part of φτ (r) and G(�1, m1; �2, m2; �3, m3) denotes the Gaunt coefficients

G(�1, m1; �2, m2; �3, m3) =
∮

d2nY m1
�1

(n)Y m2
�2

(n)Y m3
�3

(n)

=
√

(2�1 + 1)(2�2 + 1)(2�3 + 1)

4π

{
�1 �2 �3

0 0 0

}{
�1 �2 �3

m1 m2 m3

}
.

The symbols in the curly brackets are the Wigner 3-j symbols. The Gaunt coefficients vanish if m1 + m2 + m3 �= 0 or �1 + �2 +
�3 is an odd number.
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The other integrals can be evaluated through

O(τ, τ ′, q) = −4π

1∑
μ=−1

(−1)m′−μ 〈�′ + 1, m′ − μ; 1, μ|�′, m′〉
�′+1+�∑

λ=|�′+1−�|
G(�,−m; �′ + 1, m′ − μ; λ, m − m′ + μ)iλ

×Y m′−μ−m
λ (nq) ξμ

[
�′ + 1

2�′ + 1

]1/2 ∫ ∞

0
dr r2 jλ(qr) f †

τ (r)

(
∂

∂r
− �′

r

)
fτ ′ (r)

+ 4π

1∑
μ=−1

(−1)m′−μ 〈�′ − 1, m′ − μ; 1, μ|�′, m′〉
�′−1+�∑

λ=|�′−1−�|
G(�,−m; �′ − 1, m′ − μ; λ, m + μ − m′)iλ

×Y m′−μ−m
λ (nq) ξμ

[
�′

2�′ + 1

]1/2 ∫ ∞

0
dr r2 jλ(qr) f †

τ (r)

(
∂

∂r
+ �′ + 1

r

)
fτ ′ (r), (D3)

where 〈�1, m1; �2, m2|�3, m3〉 denotes the Clebsch-Gordan coefficients, and ξ−1 = (1,−i, 0)T /
√

2, ξ0 = (0, 0, 1)T and ξ1 =
(−1,−i, 0)T /

√
2 are the spherical basis vectors.
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