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Theory of collective magnetophonon resonance and melting of a field-induced Wigner solid

Luca V. Delacrétaz,1 Blaise Goutéraux,2,3 Sean A. Hartnoll,1,4 and Anna Karlsson5,6

1Department of Physics, Stanford University, Stanford, California 94305-4060, USA
2Center for Theoretical Physics, École Polytechnique, CNRS UMR 7644, Université Paris-Saclay, 91128, Palaiseau, France

3Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm, Sweden
4Stanford Institute for Materials and Energy Science, SLAC National Accelerator Laboratory, 2575 Sand Hill Road,

Menlo Park, California 94025, USA
5Institute for Advanced Study, School of Natural Sciences, 1 Einstein Drive, Princeton, New Jersey 08540, USA

6Division for Theoretical Physics, Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden

(Received 12 June 2019; published 26 August 2019)

Electron solid phases of matter are revealed by characteristic vibrational resonances. Sufficiently large
magnetic fields can overcome the effects of disorder, leading to a weakly pinned collective mode called the
magnetophonon. Consequently, in this regime it is possible to develop a tightly constrained hydrodynamic
theory of pinned magnetophonons. The behavior of the magnetophonon resonance across thermal and quantum
melting transitions has been experimentally characterized in two-dimensional electron systems. Applying our
theory to these transitions we explain several key features of the data. Firstly, violation of the Fukuyama-Lee
sum rule as the transition is approached is shown to be a consequence of the non-Lorentzian form taken by
the resonance. Secondly, this non-Lorentzian shape is shown to be caused by dissipative channels that become
especially important close to melting: proliferating dislocations and uncondensed charge carriers.
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I. INTRODUCTION

Magnetophonons are vibrational modes of electron solid
phases of matter in the presence of a magnetic field [1].
A remarkable fact about magnetophonons is that their long-
wavelength modes can survive at low energies in the presence
of disorder. Without a magnetic field, the sound modes of
electronic translational order are typically pinned to a high mi-
croscopic frequency scale ωo by disorder [2]. However, a mag-
netic field hybridizes the longitudinal and shear sound modes
into the so-called magnetophonon and magnetoplasmon. At
large field, the magnetoplasmon tends towards the high cy-
clotron frequency ωc, while the magnetophonon becomes
parametrically light, with peak frequency ωpk ∼ ω2

o/ωc [3].
The universal low-energy, long-wavelength excitations of

any thermal medium are described by hydrodynamics [4].
For sufficiently pure samples (small ωpk) the magnetophonon
resonance will be in this collective regime, and this limit
provides a well-defined theoretical starting point. Such low-
energy pinned magnetophonons will have their own hydro-
dynamic theory, consistently decoupled from nonuniversal
high-energy dynamics. Although magnetophonon modes have
been investigated for decades from a microscopic perspective,
a systematic hydrodynamic theory has not been formulated.
Upon formulating this theory, we will be able to shed light
on several open problems concerning the observed melting
behavior of magnetophonon resonances.

In sufficiently large magnetic fields, the ground state
of two-dimensional electron systems such those arising in
GaAs/GaAlAs heterostructures is expected to be a Wigner
solid [5,6]. Re-entrant insulating phases between quantum
Hall plateaus [7,8] are also naturally interpreted as Wigner

solids, as evinced by the threshold behavior in their nonlinear
conductivity [8–10]. The direct detection of a pinned mag-
netophonon resonance, however, has long been considered
the smoking-gun signature of crystalline order in a large
field [10–18]. More recent measurements have systematically
investigated the form and location of the long-wavelength
magnetophonon resonance as a function of filling fraction,
electron density, disorder, and temperature [19–24], and have
also found collective vibrational modes in the immediate
vicinity of quantum Hall phases [25–27].

Aspects of the observed dependence of the magnetophonon
peak on parameters such as field, density, and disorder have
been successfully described by microscopic theories of har-
monic lattice vibrations in the presence of disorder and
Coulomb interactions [3,28–32]. For an overview of these
results, see Ref. [33]. Little is understood about the effect
of many-body interactions on magnetophonon dynamics, al-
though these are likely important for the melting dynamics
of the Wigner solid [21]. Indeed, the behavior of the magne-
tophonon resonance as the solid melts is at odds with current
theory [33].

Our collective approach describes a limit of extreme dom-
inance of interactions, formally opposite to the harmonic
vibration regime. Specifically, hydrodynamics is valid at the
lowest energy scales ω � 1/τeq with τeq being the local
thermal equilibration time. In this limit almost everything has
decayed and one need only keep track of the dynamics of a
finite number of conserved densities and Goldstone modes,
leading to a robust and powerfully constrained structure for
the magnetophonon resonance, described in Sec. II. Functions
of frequency are analytic and dissipation is described by a
finite number of transport coefficients. Specifically, we find
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the peak in the optical conductivity takes the form

σ (ω) = νωpk
(1 − a2)(−iω + �) − 2aωpk

(−iω + �)2 + ω2
pk

. (1.1)

Here ν is the filling fraction. In addition to ωpk there are only
two undetermined coefficients characterizing the peak, � and
a. We find that this functional form gives a good fit to the data
across the entire parameter range that we consider; see Fig. 1
below. The simple, analytic-in-frequency form (1.1) is the
key sense in which our theory is collective: The conductivity
is determined by only a small amount of microscopic data,
packaged into three coefficients. In practice this can be quite a
weak requirement. For example, the low-frequency response
of conventional metals is often well-described by the Drude
form, which is analytic and has only two undetermined co-
efficients, despite these metals not being at all hydrodynamic
in the sense of momentum being longer lived than all other
modes.

The peak width � has been widely considered. The con-
stant a controls the non-Lorentzian shape of the peak and is
also crucial. In particular, the spectral weight in the peak is

S = π
2 (1 − a2)νωpk. (1.2)

This expression recovers the well-known Fukuyama-Lee re-
sult [3] when a = 0. We find that fits to the data require
a to be nonzero and to increase dramatically as the solid
melts as a function of temperature or filling. In this way we
quantitatively explain violations of the Fukuyama-Lee sum
rule that have been previously noted—they are directly tied
(by hydrodynamics) to the non-Lorentzian shape of the peak
(1.1). See Fig. 3 below.

The coefficients a and � can be evaluated by using Kubo
formulas, which we derive and evaluate in Sec. III. Disorder
gives a contribution � ∼ ωpk to the width, somewhat analo-
gous to the results obtained in microscopic theories [3,29–32].
An especially universal contribution to a—loosely, from dis-
sipation of the pinned phase into currents of uncondensed
carriers—gives a ∝ �/ωpk. A further source of phase re-
laxation is mobile dislocations [34]. In the pinned regime,
these are also found to lead to a ∝ �/ωpk ∼ x, the density of
mobile dislocations. In this way we obtain two mechanisms
that suggest that, in a phase-disordering melting transition
driven by a rapid increase in �/ωpk, the constant a should
also increase. This is precisely what is seen in several of our
fits to the data. See Figs. 2 and 3 below. Taking all the above
together, we obtain a physically plausible and quantitatively
accurate picture of the thermal and quantum melting dynamics
observed in Refs. [21,33].

Throughout we work in units where h̄ = kB = e = 1.

II. MAGNETOPHONON HYDRODYNAMICS

In the absence of a magnetic field, incommensurate trans-
lational order leads to a Goldstone mode for each sponta-
neously broken translation. These Goldstone fields produce
a new sound mode—shear sound—in addition to the usual
longitudinal sound present in translation-invariant systems
[4]. Both sound modes are gapped (or “pinned”) when trans-
lations are explicitly broken by, e.g., disorder. If pinning is
sufficiently weak these modes can still be described within

hydrodynamics. The modes are now called pseudo-Goldstone
bosons. Pinned sound modes are responsible for a peak in
the dynamical response at nonzero frequency ωo [2]. Often,
however, ωo is large and outside of the hydrodynamic regime.

A large magnetic field hybridizes the longitudinal and
shear sound modes into so-called magnetophonon and mag-
netoplasmon modes, with gaps of order ω2

o/ωc and ωc, re-
spectively, where ωc = nB/χππ is the cyclotron frequency [3].
Here χππ is the momentum susceptibility; for example, in a
Galilean-invariant system χππ = nm is the mass density. Here
n is the density and m is the mass, so that the usual expression
ωc = eB/m is recovered upon restoring a factor of e. In the
experimentally relevant limit ωo � ωc the magnetophonon
becomes light. Hydrodynamics applies at frequencies below
the local thermal equilibration rate 1/τeq. Therefore, if

ω2
o/ωc � 1/τeq � ωc, (2.1)

then there should exist a hydrodynamic theory of the mag-
netophonon alone, without the high-energy magnetoplasmon.
This theory will hold even if the pinning frequency ωo itself is
large. Our first objective will be to obtain this theory.

In a transverse magnetic field, the total “magnetic
momenta” Pi obey the nontrivial algebra [Pi, Pj] = −iεi jBN .
Here B is the magnetic field and N is the electric charge
operator. When the generators of symmetries do not commute
and have expectation values (〈N〉 �= 0 in this case), the num-
ber of Goldstone bosons that arise can be fewer than the
number of spontaneously broken symmetries [35]. The ef-
fective Lagrangian for the Goldstone fields can be first order
in time derivatives, in such a way that the fields are not
all independent degrees of freedom. In particular, let ϕi be
the Goldstone fields corresponding to spontaneously broken
magnetic translations. As always, the symmetries act upon
the Goldstone fields by shifts, so that, under a translation
by δx j , one has ϕ j → ϕ j + δx j to leading order in fields.
The most relevant term in the effective Lagrangian that is
allowed by this symmetry, as well as PT symmetry, is then
L = εi jϕiϕ̇ j + · · · . Here · · · denotes terms that are higher
order in fields (negligible in linear-response hydrodynamic
regimes) or spatial derivatives (to be restored shortly). Let us
see how this Lagrangian encodes magnetic translations in the
symmetry-broken state. First, quantization immediately yields
the commutator

[ϕi(x), ϕ j (y)] = −iεi jδ(x − y). (2.2)

Using the transformation ϕ j → ϕ j + δx j , the standard
Noether argument implies that the conserved densities πi ∝
εi jϕ

j . Thus using Eq. (2.2), and fixing the normalization, we
indeed reproduce the magnetic translation algebra with

Pi =
∫

πid
2x =

√
nB

∫
εi jϕ

jd2x. (2.3)

Within linearized hydrodynamics N can be replaced by its ex-
pectation value, and hence n = 〈N〉/Vol is the charge density.

Allowing for pinning—i.e., weak explicit breaking of mag-
netic translations—and restoring spatial gradient terms, the
nondissipative, long-wavelength and linearized dynamics of
the pseudo-Goldstone fields is thus described by, with k being
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the wave vector,

L = εi jϕiϕ̇ j − ϕi[δ
i jωpk + (κkik j + μk2δi j ) + · · · ]ϕ j .

(2.4)

We assumed isotropy (sixfold rotation symmetry is sufficient
[36]) and PT symmetry to restrict the form of the spatial-
derivative terms. The pinning term ωpk breaks the invariance
under translations ϕi → ϕi + δxi. The stiffnesses and pinning
frequency must satisfy ωpk, μ, κ > 0 for the potential to be
positive definite. Beyond this fact, they are a priori undeter-
mined coefficients in the derivative expansion.

The equations of motion following from Eq. (2.4) lead to
the dispersion relation

ω(k) = ±
√

(ωpk + μk2)[ωpk + (μ + κ )k2]. (2.5)

In the absence of pinning we find a pair of gapless propagat-
ing modes with dispersion relation ω ∼ ±k2. These are the
magnetophonons.1,2 We will mostly be interested in the limit
k → 0, wherein Eq. (2.5) gives the pinned magnetophonon
gap ω = ±ωpk.

Dissipation and coupling to charge fluctuations is added to
the theory following the usual constitutive relations of hydro-
dynamics [4]. Setting k = 0, these can be written usefully as(

ji

ϕ̇i

)
=

(
σ

i j
0 γ i j

γ i j �i j/ωpk

)(
Ej

s j − ωpkϕ j

)
. (2.6)

Here Ej is an external electric field and s j is the source for ϕ j .
In equilibrium ϕ j = s j/ωpk. This formula describes the elec-
tric current coupled to an additional slow mode. We will ig-
nore the coupling to thermal currents for simplicity, this can be
straightforwardly incorporated. Equality of the off-diagonal
terms in the above matrix follows from Onsager reciprocity, as
we show in the Appendix. The transport coefficients appear-
ing in Eq. (2.6) have longitudinal and Hall components, so that
σ

i j
0 = σ0δ

i j + σ H
0 εi j , γ i j = γ δi j + γHεi j , and �i j = �δi j +

ωpkε
i j . The physical meaning of these terms will become

apparent shortly. The dissipative coefficients are σ0, γ , � and
positivity of entropy production requires γ 2 � σ0�/ωpk.

1Conventional acoustic phonons in a solid have the linear disper-
sion ω ∼ k at small wave vector, due to the spontaneous breaking of
translations. In our electron solid, with a magnetic field, the collective
excitations have a quadratic dispersion ω ∼ k2. Due to their origin
in spontaneously broken translations we follow the literature in
referring to these excitations as magnetophonons.

2Coupling to three-dimensional photons changes the dispersion
relation at small wave vector to ω ∼ k3/2 [3,37]. The dressing of our
results by Coulomb interactions is discussed in the Appendix where,
among other things, we recover this result. We will mainly be inter-
ested in the frequency-dependent conductivity, which is the response
to the total (rather than external) electric field, and therefore we need
only consider the unscreened response to obtain σ (ω, k); see, e.g.,
Ref. [38]. The experimental detection of a screened magnetophonon
has recently been reported [39].

By eliminating ϕi in Eq. (2.6), setting the sources si = 0,
and writing Ohm’s law as ji = σi jE j we obtain the frequency-
dependent conductivities

σxx(ω) = σ0 + bωpk
(1 − a2)(−iω + �) − 2aωpk

(−iω + �)2 + ω2
pk

, (2.7a)

σxy(ω) = σ H
0 + bωpk

−2a(−iω + �) + (a2 − 1)ωpk

(−iω + �)2 + ω2
pk

.

(2.7b)

Here we set a ≡ γ /γH and b ≡ γ 2
H . The physical meaning

of the various terms is apparent: σ0 and σ H
0 describe current

dissipation into modes other than the magnetophonon, � is
the phase relaxation rate, setting the width of the peak, ωpk

is the pinning frequency, a determines the deviation from a
strict Lorentzian form, and b controls the spectral weight of
the peak.

The expressions (2.7) are similar to results obtained in
microscopic theories of crystal vibrations [3,28,30–32]. Our
theory has directly zoomed in on the low-energy magne-
tophonon, whereas microscopic descriptions necessarily in-
clude the high-energy magnetoplasmon also. For complete-
ness, in the Appendix we give a hydrodynamic discussion of
the full magnetophonon-magnetoplasmon system. The other
difference is that, because Eq. (2.7) holds at low frequencies
below the local thermalization rate ω � 1/τeq, the expres-
sions are ratios of analytic functions of frequencies. In this
regime, any degrees of freedom that are gapless at zero
temperature with nontrivial scaling exponents (cf. Ref. [32])
will instead produce nonanalyticities in the temperature de-
pendence of the transport coefficients.

The linear response relation (2.6) also leads to Kubo for-
mulas for the dissipative coefficients. In particular,

� = ωpk lim
ω→0

lim
ωpk,�→0

1

ω
Im GR

ϕ̇x ϕ̇x
(ω), (2.8a)

γ = lim
ω→0

lim
ωpk,�→0

Im GR
jx ϕ̇x

(ω), (2.8b)

σ0 = lim
ω→0

lim
ωpk,�→0

1

ω
Im GR

jx jx (ω). (2.8c)

The first limit in Eq. (2.8) is one in which the effects re-
sponsible for � and ωpk (e.g., disorder) become small. The or-
der of limits is important and is explained in more detail in the
Appendix. A more precise statement is that the Green’s func-
tions should be evaluated in the frequency regime ωpk,� �
ω � τ−1

eq . Indeed, consistency with the collective des-
cription requires � and ωpk to be slow compared with the
local thermalization rate τ−1

eq . The need to set the term ωpkϕ j

to zero in order to obtain Kubo formulas is visible already
from Eq. (2.6).

One of the nondissipative terms can be evaluated explicitly,
using the following expression [this expression is plausible
from Eq. (2.6), see the Appendix for a detailed discussion[:

γH = lim
ω→0

lim
ε→0

Re GR
ϕy jx (ω) = χϕy jx . (2.9)

This term is therefore a susceptibility in the clean ε = 0
system. From Eq. (2.3), ϕi is related to the generator of
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magnetic translations by Pi = √
nBεi jϕ

k=0
j . Therefore,

γH = 1√
nB

χPx jx = √
ν, (2.10)

where in the last step χP j = n follows from a standard ar-
gument [40], based on the fact that 〈[Px, jx]〉 ∼ ∂x jx ∼ ṅ.
Here the filling fraction ν ≡ n/B. This leads to the advertised
results (1.1) and (1.2) for the optical conductivity and spectral
weight in the magnetophonon peak. In Eq. (1.1) we dropped
the σ0 term to focus on the form of the peak. See also Sec. IV
below.

III. MICROSCOPIC EVALUATION OF KUBO FORMULAE

The dissipative coefficients describing phase relaxation, �

and γ , are to be determined via the Kubo formulas (2.8).
To use these formulas we must first obtain the operator ϕ̇ =
i[H, ϕ]. In particular, we need the decay of the homogeneous
phase mode ϕk=0

i = ∫
d2xϕi(x). Different mechanisms are

possible, corresponding to different terms in H that have a
nonzero commutator with ϕk=0

i . Here H is not the microscopic
Hamiltonian but should be thought of as giving the leading
corrections away from the dissipationless effective theory
(2.4). We shall describe two mechanisms, corresponding to
phase relaxation due to disorder and mobile dislocations.

A. Phase dissipation due to disorder

Explicit, microscopic breaking of translational symmetry,
such as by disorder, allows various new terms to appear in
the effective long-wavelength Hamiltonian. We have already
allowed for the pinning term ωpkϕ

2. That term alone, however,
does not lead to phase relaxation, which requires dissipation
of the phase into other modes. For this we must consider more
general terms of the form

Hdis = λ

∫
d2xϕi(x)Oi(x). (3.1)

Here Oi is a local (vector) operator and λ is a coupling.
This Hamiltonian breaks translation invariance—recall that
ϕ transforms by a shift—thereby encoding the microscopic
disorder.

Given the term (3.1) in the Hamiltonian, the commutator
(2.2) of the phase operator with itself leads to

ϕ̇k=0
i = i

[
Hdis, ϕ

k=0
i

] = −λεi jOk=0
j . (3.2)

The commutator of ϕ with O in (3.1) contributes an additional
term ϕ̇ ∼ 1√

B
ϕ∂O, using Eq. (2.3). This composite operator

can be neglected in hydrodynamic regimes and is also small
at large fields. The Kubo formulas (2.8) then become

�dis = ωpkλ
2 lim

ω→0
lim
ε→0

1

ω
Im GR

OyOy
(ω, k = 0), (3.3)

γdis = −λ lim
ω→0

lim
ε→0

1

ω
Im GR

jxOy
(ω, k = 0). (3.4)

An especially universal coupling is to the current opera-
tor, so that Oi = εi j j j . The factor of ε is necessary for the
coupling to respect PT symmetry. This term is in fact always

present, and the coupling constant is fixed as

Hdis = 1

γ H

∫
d2xεi jϕi(x) j j (x). (3.5)

This interaction leads to ϕ̇i = ji/γ H , which is exactly the
relationship obtained by using Eq. (2.6) to solve for ϕ̇ in
terms of j in the absence of sources and dissipation. The term
(3.5) is also consistent with the expression (2.9) for γ H as a
susceptibility. Physically, Eq. (3.5) describes the energy cost
of going to a moving frame, which generates an electrical
current j of “uncondensed” carriers. Recall that εi jϕi(x) ∝ π j ,
which is the momentum density that generates translations.

Recalling from Eq. (2.10) that γ H = √
ν, the coupling

(3.5) immediately leads to

�dis = ωpkσ0

ν
, γdis = σ0√

ν
. (3.6)

These expressions describe dissipation of the pinned phase
into charge carriers other than the magnetophonon mode.
Broken translation invariance allows the phase to mix with
the current according to Eq. (3.5), and the current is then able
to dissipate. This physics has a similar flavor to that explored
in Ref. [28], but the results are not the same. In particular, the
expressions in Eq. (3.6) saturate the entropy production bound
given below Eq. (2.6) above: γ 2 = σ0�/ωpk. Furthermore, the
DC conductivity following from Eq. (2.7a) vanishes with the
values (3.6). These are distinctive features.3 The contributions
(3.6) are universally present, independently of the pinning
mechanism.

If the wavelength of the disorder is sufficiently long to be
sensibly described within the effective Hamiltonian, one can
in addition consider terms of the form Hdis = ∫

d2xV (x)O(x),
with a disorder potential V (x). The corresponding phase relax-
ation now comes from the fact that ϕ acts on O as a magnetic
translation P. The resulting expressions are similar to those
for the momentum relaxation rate obtained in Refs. [42,43].
Indeed, writing ϕ j = εi jπi/

√
nB, from Eq. (2.3), the Kubo

formula (2.8a) gives �dis = ωpk�/ωc, with � being the mo-
mentum relaxation rate. These terms will typically be small in
the large-field limit.4

B. Phase dissipation due to mobile dislocations

The phase can also be relaxed by mobile dislocations,
which are topological defects describing a vortex in the
translational order. Dislocations can relax the phase even
without disorder and pinning and may be expected to become
important during the melting of the solid [34]. To incorporate
vortex dynamics it is necessary to keep track of some spatial

3A closely related coupling is responsible for saturation of the
entropy production bound at low temperatures in a (zero field)
holographic model [41].

4Operators such as O = ϕ2 are exceptions, because magnetic
translations act on ϕ as a shift, with no factors of 1/B. It can be
verified that such terms do not contribute to phase relaxation when
the wavelengths of the disorder are sufficiently long to be included
within hydrodynamics.
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gradients. With nonvanishing gradients, the equation of mo-
tion for the phase (in the absence of pinning or dissipation,
i.e., inside the ε → 0 limit) is

ϕ̇i = i[H, ϕi] = εik (κ∂k∂ j + μ∇2δk j )ϕ j − γH

χ
εi j∂ jn + · · · ,

(3.7)

The first terms here follow immediately from the Lagrangian
(2.4), while the nondissipative coupling to the charge density
n is determined from Eq. (2.6): Gradients are restored in
Eq. (2.6) by letting E → E − ∇μe = E − (∇n)/χ . Here μe

is the chemical potential and χ is the charge compressibility.
It is clear in Eq. (3.7) that the phase is not relaxed as the wave
vector k → 0; this is the usual protection of Goldstone bosons.
However, in the cores of dislocations the symmetry is restored
and the phase is not well defined. In this case, the arguments
developed in Refs. [36,44,45] show that

ϕ̇k=0
i = 2γH

χ
εi j

∫
cores

d2x∂ jn. (3.8)

This expression is closely related to the final term in Eq. (3.7),
but the factor of two is a little subtle and is due to the
fact that the integral is over all mobile dislocation cores,
that have time-dependent locations [45]. The first terms in
Eq. (3.7) do not contribute since the phase decays rapidly in
the normal state. If the symmetry is only partially restored
in the core, cf. [46], there can be additional contributions to
Eq. (3.8). Equation (3.8) should be thought of as describing
a generalized Bardeen-Stephen effect in which dissipation
occurs in the cores of mobile vortices [47].

We can now use Eq. (3.8) in the Kubo formulas. A simple
case arises when the cores are sufficiently large that charge
diffuses within the cores. The argumentation in this case is
identical to that in Ref. [45], giving the Bardeen-Stephen-like
expressions

�vor = 2x

σn
νωpk, γvor = x

√
ν
σ H

n

σn
. (3.9)

Here x is the fraction of the total area covered by mobile
vortex cores, while σn and σ H

n are the longitudinal and Hall
conductivities of the normal state in the core. We recall that
γ 2

H = ν. Furthermore, at low temperatures one can expect
that σ H

n = ν, leading to the relation �vor/ωpk = 2γvor/
√

ν =
2avor. More generally, even when the cores are not large, one
still expects � ∼ γ ∼ x.

Phase relaxation due to mobile dislocations survives in
the clean limit ωpk → 0. In this limit the factor of ωpk in
Eq. (3.9) will be replaced by terms of order κ/�2

vor and μ/�2
vor.

Here �vor is the radius of the vortex. This follows from the
fact that the inverse phase susceptibility that appears in the
Kubo formula (2.8a) should, from Eq. (2.4), be written more
generally as ωpkδ

i j → ωpkδ
i j + (κkik j + μk2δi j ) + · · · . See

Ref. [36] for more details. If we write ωpk = max(κ, μ)/�2
cor,

for some “correlation length” �cor, then the relative importance
of pinning for dislocation-mediated phase relaxation is deter-
mined by the ratio �vor/�cor. The two regimes are physically
similar.

IV. EXPERIMENTS

We proceed to use the formula (1.1) to fit the magne-
tophonon peaks observed in electronic Wigner solids under-
going a thermal melting transition in Refs. [21,22] as well as
those undergoing a quantum melting transition in Ref. [33].
We will find first that the fits are good and second that
the dependence of the fitting parameters on temperature and
filling is in good agreement with the expectations from the
dissipative mechanisms discussed in the previous Sec. III.
We will end this section with a discussion of the validity of
the collective theory for the observed peaks. Even where these
peaks are unlikely to be deep in the hydrodynamic regime,
the physics captured by the theory seems to be quantitatively
correct. Recall that the essential simplification introduced here
by hydrodynamics is to consider only a finite number of
long-lived modes, the phase and the charge density, leading
to the analytic-in-frequency expression (1.1).

The fits are shown in Fig. 1. In making the fits we have not
attempted to fit the overall offset, controlled by σ0 in Eq. (1.1).
There are various background sources of dissipation in the
experimental setup, which were addressed by subtraction of
a reference function of frequency; see, e.g., Ref. [33]. This
means that the shape of the curve away from the peak should
perhaps not be taken too literally; for example, the data as
presented included negative values of σxx at small and large
frequencies. For this reason, we have only fit the parame-
ters �, ωpk, a that determine the location and shape of the
peak. Ideally, the offset σ0 could be found by independent
measurements of the DC conductivity in the same extremely
pure samples in which the peak has been measured.

The plots in Fig. 1 show the disappearance of the mag-
netophonon peak as the resonance melts. We focus first on
the leftmost and center plots. These will be seen to be quan-
titatively very similar, despite the fact that the former shows
thermal melting while the latter shows quantum melting. The
fitted values of � and ωpk for these two cases are shown in
Fig. 2. These plots show the same behavior: The width �

increases significantly, by a factor of more than five, while
the peak frequency decreases a little, by a factor of two.
This behavior is consistent with melting by phase disordering
rather than vanishing stiffness—in the latter case ωpk would
be expected to go to zero. The statistical error in the fits is
negligible except for the final data point closest to the melting
temperature.

The “non-Lorentzian” parameter a for these two sets of
data is shown in Fig. 3. The left plot shows a dramatic
increase in a towards the melting transition, closely tracking
the increase of � in Fig. 2. The range of values taken by a
is the same in the thermal and quantum cases. The right plot
shows how this increase in a close to the melting transition
leads to a violation of the Fukuyama-Lee sum rule, according
to Eq. (1.2). This plot shows the spectral weight S divided
by νωpk, with the Fukuyama-Lee result shown as a dashed
black line. In addition to the cases considered here, similar
departures from the Fukuyama-Lee sum rule have been widely
seen in other data close to melting transitions; see, e.g.,
Refs. [25,27,48].

The discussion of dissipation mechanisms in Sec. III led to
the expressions (3.6) and (3.9) for the dissipative parameters.
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FIG. 1. Fits of the magnetophonon resonance. Dashed blue curves are fits to Eq. (1.1). Solid gray is data. Curves are offset relative to
each other, the absolute offset has not been fit and is not shown (see main text). (left) Temperature dependence of the resonance in a sample
with ν = 0.128 and B = 18 T; data from Ref. [21]. (center) Filling-fraction dependence of the resonance in a sample (“sample P”) with
n = 7.7 × 1010 cm−2 and T = 80 mK; data from Ref. [33]. (right) Temperature dependence of the resonance in a sample with ν = 0.16 and
B = 10.3 T; data from Ref. [22].

These in turn lead to the relations

�dis

adisωpk
= 1,

�vor

avorωpk
= 2. (4.1)

Recall again that a = γ /γH = γ /
√

ν. The first expression in
Eq. (4.1) describes disorder-mediated dissipation of the phase
into currents, while the second describes phase dissipation

due to mobile dislocations (“vortices”). In Fig. 4 we plot the
ratio �/(aωpk) for all three families of fits in Fig. 1. Consider
first the left plot. The behavior of this ratio is seen to be very
similar between the thermal and quantum melting transitions.
At lower temperatures and fillings, away from the transition,
the ratio in this plot approaches the value two, associated in
Eq. (4.1) to mobile dislocations. This regime, with sharp peaks
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FIG. 2. Thermal and quantum melting. Variation of � and ωpk as the melting transition is approached. Melting is characterized by a strong
increase in � and a weaker decline of ωpk. (left) Thermal melting corresponding to leftmost plot in Fig. 1. (right) Quantum melting as a
function of filling fraction, corresponding to the center plot in Fig. 1.
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FIG. 3. Non-Lorentzian peaks and violation of the Fukuyama-Lee sum rule. (left) The dimensionless parameter a, indicating departure
from a purely Lorentzian peak, grows significantly as melting is approached. Shown as a function of temperature (for the leftmost plot in
Fig. 1) and as a function of filling (for the center plot in Fig. 1). (right) Corresponding violation of the Fukuyama-Lee sum rule (shown as
dashed black line) for the ratio S/(νωpk) as melting is approached.

and hence dilute vortices—small x in Eq. (3.9)—is precisely
where the result (3.9) and hence (4.1) is controlled. As the
transition is approached x → 1 and additional dissipative
channels may also appear.

The plot of the ratio of coefficients on the right of Fig. 4
corresponds to the data on the rightmost plot of Fig. 1, which
we have not discussed yet. The frequency scale on this plot
in Fig. 1 is an order of magnitude larger than on the other
two, indicating that this is a more disordered sample (and
the melting temperature is also higher). Indeed, in Fig. 4 we
see that, at low temperatures, the ratio now tends to unity,
associated in Eq. (4.1) to disorder rather than dislocations. As
previously, as the melting temperature is approached, more
dissipative channels are likely to open and operators other
than current are likely to become important in Eq. (3.1).

All told, the form (1.1) of the magnetophonon peak to-
gether with the results (3.6) and (3.9) for the dissipative pa-
rameters appear to give quantitative insight into the dissipative
melting dynamics of magnetophonons. Let us estimate the
strength of interactions necessary for these observed peaks
to be within a hydrodynamic regime. The local thermaliza-
tion time can be usefully parametrized as τeq = αh̄/(kBT ),
with α ∼ 1 expected for strong interactions and α � 1 for a
weakly interacting system. For the first two plots in Fig. 1,
the experiments we focused on, the pinned magnetophonon
resonances are in the range h fpk/(kBT ) ∼ 0.1 − 0.5. This
requires α � 10 for the highest temperatures and α � 2 at
lower temperatures. For this to hold, moderate to strong
interactions are necessary. The more disordered sample, the
third plot in Fig. 1, is further from the collective regime, with
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FIG. 4. Ratio of coefficients suggests different dissipative mechanisms are at work in the less disordered and more disordered samples.
(left) The low temperature and low filling behavior of the cleaner samples (leftmost and center plots in Fig. 1) are consistent with dissipation
into mobile dislocations, shown as a dashed black line. (right) The low-temperature behavior of the more disordered sample (rightmost plot in
Fig. 1) is consistent with the universal phase dissipation into currents, shown as a dashed black line.

085140-7



LUCA V. DELACRÉTAZ et al. PHYSICAL REVIEW B 100, 085140 (2019)

h fpk/(kBT ) ∼ 0.4–6.4. Poor screening means that Coulomb
interactions are potentially important in these gapped low-
temperature systems (cf. Ref. [49]). Clearly, a direct deter-
mination of the thermalization time would be desirable. At
the very least, the collective approach gives a complementary
perspective to the existing harmonic vibration studies and,
beyond that, seems to organize the data in an accurate and
useful way.

V. FINAL COMMENTS

Our theoretical construction relies only on the symmetries
of the system, either exact (charge conservation and PT)
or approximate (magnetic translations). As such it should
describe other microscopic systems with the same symmetry-
breaking pattern. Vortex lattices in superfluids or supercon-
ductors have a similar symmetry structure. Although particle
number is also spontaneously broken there, the fact that its
generator can be obtained from the spontaneously broken
magnetic translations [Pi, Pj] = −iεi jBN implies that no ad-
ditional Goldstone mode is protected [50,51]. The hydrody-
namics with exact magnetic translation symmetry is then iden-
tical to the theory developed here without pinning or phase
relaxation, and the quadratically dispersing mode is called the
Tkachenko mode in this context (see Ref. [52] for a review,
and Ref. [53] for a recent effective-field theory approach). The
analog of the magnetoplasmon is the Kohn mode, which has
been automatically integrated out in our approach. Pinning
and relaxation are, however, qualitatively different in vortex
lattices, since the spontaneous breaking of particle number
conservation, which remains an exact symmetry, guarantees
the existence of a superfluid sound mode as k → 0. We leave
the study of pinning and relaxation in these systems for future
work.

Experimentally speaking, we have focused on the well-
characterized Wigner solid in GaAs/GaAlAs heterostruc-
tures. Recent results suggest that similar magnetophonon
resonances can be observed in graphene in a large field [54].
Field-induced incommensurate translational order also arises
in strongly correlated systems such as cuprates [55,56], and
should also lead to distinctive collective modes analogous to
those we have investigated here.
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APPENDIX A: HYDRODYNAMICS OF PINNED
MAGNETOPHONONS

Here we will derive the hydrodynamic Green’s functions
and Kubo formulas. The most general “Josephson relation”
and constitutive relation for the current, at wave vector k = 0,
read

ϕ̇i = �i j

ωpk
(s j − ωpkϕ j ) + γ i jE j, (A1a)

ji = γ̃ i j (s j − ωpkϕ j ) + σ
i j
0 Ej . (A1b)

At nonzero k there will be a series of corrections to
the right-hand side involving terms such as ∇∇ϕ and ∇n.
The magnetophonon field ϕi and its source si enter in the
Hamiltonian corresponding to Eq. (2.4) as

H =
∫

d2xωpkϕiϕi − siϕi + · · ·. (A2)

The field and source must therefore appear in the combi-
nation ωpkϕi − si in Eq. (A1) in order for the current and
ϕ̇ to vanish at equilibrium, wherein E = 0 and ϕi = si/ωpk.
Isotropy requires that all matrices in Eq. (A1) take the form
Mi j = Mδi j + MHεi j . The nondissipative part of the Joseph-
son relation is fixed by the commutation relation (2.2) and the
Hamiltonian (A2), so that �H = ωpk.

The background magnetic field breaks both parity P :
(x, y) → (−x, y) and time reversal T : t → −t but preserves
their product PT. This symmetry imposes Onsager constraints
on response functions. Specifically, one can show that for
operators transforming under PT as Oa → ηaOa, with ηa =
±1, one has

GR
ab(ω) = ηaηbGR

ba(ω). (A3)

Once the hydrodynamic Green’s functions have been
computed—we are about to review the method for doing
this—the Onsager constraint can be seen to fix γ̃ = γ in
Eq. (A1). We impose this relation from this point on.

The retarded Green’s functions are obtained by solving
Eq. (A1) for the expectation values of the operators Oa =
{ϕi, ji} in terms of their sources sa = {si, Ai}, where A =
E/iω, as

GR
ab(ω) = δ〈Oa(ω)〉

δsb(ω)
. (A4)

This leads to the following Green’s functions:

GR
ji j j

(ω) = iω

[
σ̂ 0 − ωpk

γ̂ 2

−iω + �̂

]
i j

, (A5a)

GR
ϕiϕ j

(ω) = − 1

ωpk

[
�̂

−iω + �̂

]
i j

, (A5b)

GR
ϕi j j

(ω) = −GR
jiϕ j

(ω) = iω

[
γ̂

−iω + �̂

]
i j

, (A5c)

where the hats denote matrices.
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Positivity of dissipation implies that the anti-Hermitian
part of the matrix GR

ab(ω) must be positive definite [for ex-
ample, this imposes Im GR

aa(ω) � 0 on diagonal entries]. This
leads to the following constraints:

σ0 � 0, � � 0, γ 2 � σ0
�

ωpk
. (A6)

The Kubo formulas for the dissipative and nondissipative
parameters, given in Eqs. (2.8) and (2.9) in the main text,
including

�

ωpk
= lim

ω→0
lim

ωpk,�→0

1

ω
Im GR

ϕ̇x ϕ̇x
(ω), (A7a)

γ = lim
ω→0

lim
ωpk,�→0

1

ω
Im GR

ϕ̇x jx (ω), (A7b)

γH = lim
ω→0

lim
ωpk,�→0

Re GR
ϕy jx (ω), (A7c)

now follow from the explicit Green’s functions in Eq. (A5),
using the identities

GR
ȧb(ω) = −iωGR

ab(ω) + χȧb, (A8a)

GR
ȧḃ(ω) = ω2GR

ab(ω) + iωχȧb + χȧḃ, (A8b)

and understanding the limit ωpk,� → 0 to mean that one only
keeps the leading-order term in relaxation �, ωp. Note that
the order of limits in the Kubo formula is essential in order to
extract the correct result from Eq. (A5).

APPENDIX B: WIGNER SOLID HYDRODYNAMICS
IN A MAGNETIC FIELD

An important objective in the main text was to develop a
theory of the magnetophonon alone, decoupled from high-
energy modes. Here we describe an extended hydrodynamics
for translational order in a magnetic field, capturing both
the magnetophonon and magnetoplasmon. This is only a
sensible thing to do if the magnetoplasmon is below the local
thermalization scale, which is not the case at large fields.
Nonetheless, the hydrodynamic expressions provide a useful
point of contact with more microscopic results. The formulas
obtained may also be useful for weakly pinned translational
order in small fields. The effect of a small magnetic field on
a pre-existing pinned electron solid is to split the (coincident
at k = 0) longitudinal and shear sound modes into a magne-
toplasmon and a magnetophonon [3].

The hydrodynamic variables are now the momenta πi, the
phases φi, and the electric current ji. The source conjugate
to the momentum is the velocity vi, the source conjugate to
the phase is si, and the electric field is Ei. The key equations
are the (approximate) conservation equation for the momen-
tum, the phase-relaxed Josephson equation for the phase, and
the constitutive relation for the current. The most general
form these equations can take at leading (zeroth) order in
gradients is

π̇ = −�̂χππv + Îs + n̂E + · · ·, (B1a)

φ̇ = −Îv − �̂

ω2
o

s − γ̂ E + · · ·, (B1b)

j = n̂v + γ̂ s + σ̂0E + · · ·. (B1c)

Hatted variables are matrices. On the right-hand side we
have only explicitly written the source terms [there are also
fields on the right-hand side; cf. (A1)], as the dependence on
the sources is sufficient to obtain the Green’s functions. The
Onsager condition (A3) was imposed and is responsible for
the appearance of the matrices n̂, γ̂ , and Î in two equations
each. The physical meaning of �̂ and σ̂0 is similar to that in
the main text, while �̂ will be related to momentum relaxation.
All matrices again have the form M̂ = M δ̂ + MHε̂—where δ̂

is the identity and ε̂ is the Levi-Civita tensor—with M and MH

arbitrary, except for

Î = δ̂ + IHε̂, (B2)

which follows from the normalization of the phason
[φi(x), π j] = iδi jδ

2(x). In the absence of a magnetic field,
parity is preserved and all matrices are proportional to the
identity—in this case the constitutive relations reduce to those
in Ref. [36].

The Eq. (B1) describe the hydrodynamics of any system
with spontaneously broken translations, without parity. One
can easily obtain the conductivity from this theory:

σ̂ = σ̂0 + n̂2

χππ

z + �̂ − ω2
oγ̂

′[2Î + γ̂ ′(z + �̂)]

(z + �̂)(z + �̂) + Î2ω2
o

, (B3)

where z = −iω, and where we defined γ̂ ′ = χππ γ̂ /n̂ to sim-
plify the expression.

When parity is broken specifically by a background mag-
netic field B, it is possible to express certain transport pa-
rameters appearing in Eq. (B3) in terms of B. This is done
by starting from Eq. (B1) without parity breaking and adding
the Lorentz force term to the momentum (non)-conservation
equation π̇i = Bεi j j j + · · · . Imposing consistency with the
Onsager relations (A3) then leads to

n̂ = nδ̂ + Bε̂σ̂0, �̂ = �δ̂ + B2

χππ

σ̂0 − ωcε̂, (B4)

where ωc = nB/χππ is the cyclotron frequency. � will be
the momentum relaxation rate. Using Eq. (B4) in Eq. (B3),
the conductivity then has two finite frequency peaks, around
ωc and ω2

o/ωc, defining the magnetoplasmon and magne-
tophonon, respectively.

The results in the main text can be recovered for this case
(in which the magnetoplasmon is also hydrodynamical) by
taking the limit ωc → ∞, keeping ωpk = ω2

o/ωc and ν = n/B
finite. For illustrative purposes we set σ̂0, γ̂ = 0; in general
the ωc → ∞ limit still maps onto the magnetophonon result
without this simplification, but the map is more complicated.
In the limit we then obtain

σ̂ (ω) = νε̂ + νωpk
Î2

z + �̂ + ωpk ε̂ Î2
, (B5)

which matches the magnetophonon conductivity (2.7) or
(A5a) with replacements

σ̂
mp
0 → νε̂, a → −IH , �̂mp → �̂ + ωpk ε̂ Î2. (B6)

APPENDIX C: SCREENING OF MAGNETOPHONONS

Long-range Coulomb interactions can significantly modify
hydrodynamic correlation functions. See Ref. [57] for an
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extended discussion of the effects of Coulomb interactions in
translationally ordered states. As discussed in the text, screen-
ing should not be incorporated when computing the optical
conductivity. However, other probes measure screened corre-
lators or poles. These can be obtained by adding Coulomb
interactions

H = · · · +
∫

d2k
nkn−k

|k| , (C1)

where here we assumed photons are not confined to the two-
dimensional plane (i.e., the photons are three dimensional).
Resonances in response functions now will no longer be given
by poles of GR

nn(ω, k) but rather by solutions to

|k| + GR
nn(ω, k) = 0. (C2)

The finite-k Green’s function GR
nn(ω, k) can be obtained,

for example, by using the methods of Appendix A. Only the
nondissipative Green’s function is needed here. This can be

obtained by analytic continuation of the Euclidean Green’s
function GE that follows from the effective action (2.4),
extended to include coupling to the charge density [cf. also
Eq. (3.7) in the main text]

LE = εi jϕi(i∂τ )ϕ j − ϕi(κkik j + μk2δi j )ϕ j

+ γ H

χ
ikiϕin + n2

2χ
. (C3)

Analytically continuing and removing a contact term
GR(ω) = GE (iω) − χ leads to the retarded Green’s function

GR
nn(ω, k) = χ

(γ 2
H/χ )μk4

ω2 − μ
[
κ + μ + (

γ 2
H/χ

)]
k4

. (C4)

Solving Eq. (C2) and using γH = √
ν then gives the well-

known dispersion relation of a screened magnetophonon [28],

ω = ±√
μνk3/2. (C5)
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