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Deformation induced pseudomagnetic fields in complex carbon architectures
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We show that the physics of deformation in α-, β-, and 6, 6, 12-graphyne is, despite their significantly more
complex lattice structures, remarkably close to that of graphene, with inhomogeneously strained graphyne
described at low energies by an emergent Dirac-Weyl equation augmented by strain induced electric and
pseudomagnetic fields. To show this, we develop a continuum theory of deformation in these materials, and
consider two versions of this theory: (i) a truncated theory describing only the low-energy degrees of freedom
of the conical intersection, which thus is spinor valued as in graphene, and (ii) one describing the full sublattice
space. The spinor valued continuum theory agrees very well with the full continuum theory at low energies,
showing that the remarkable physics of deformation in graphene generalizes to these more complex carbon
architectures. In particular, we find that deformation induced pseudospin polarization and valley current loops,
key phenomena in the deformation physics of graphene, both have their counterpart in these more complex
carbon materials.
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I. INTRODUCTION

One of the most remarkable features of graphene is the
robustness of its ultrarelativistic low-energy physics. The
Dirac-Weyl Hamiltonian that describes the quasiparticles of
pristine graphene remains a valid description even under
substantial deformation, simply being augmented by effective
pseudomagnetic and electric fields that encode the deforma-
tion in a low-energy description. These fields, except for
the requirement that the pseudomagnetic field change sign
at conjugate valleys, behave exactly as physical electric and
magnetic fields [1,2], resulting in a rich phenomenology of
deformation induced physics in single layer graphene. For re-
alistic strain the induced magnetic field can reach hundreds of
tesla, a remarkable effect observable as deformation induced
Landau levels in graphene [3]. This deep connection between
structural deformation and an induced electromagnetic field
promises a control over electronic properties unrivaled in
any three dimensional material, and generates novel physical
effects such as deformation induced valley filters [4–8], and
psuedospin polarization [9,10].

Following the experimental realization of graphene low-
energy conical intersections have been predicted for several
all-carbon materials, each with a substantially more complex
lattice structure than that of graphene [11–41]. For example,
6, 6, 12-graphyne and β-graphyne both possess 18 carbon
atoms in their unit cell, as opposed to the two atom unit cell
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honeycomb lattice of graphene. This entails a much more dif-
ficult chemistry of their fabrication [12,42,43], but also a fun-
damental difference in the low-energy physics. In graphene,
the sublattice space is isomorphic to SU(2) pseudospin space,
and it is this that underpins the connection between deforma-
tion and effective electric and magnetic fields. However, this
simple relation between the pseudospin and sublattice degrees
of freedom is lost in these more complex materials. While
the structural physics of nonuniform deformation in the gra-
phynes has been quite intensively investigated [24,27,36,40],
corresponding attention has not been devoted to the electronic
theory of general nonuniform deformations, with most elec-
tronic investigations focusing either on uniform uniaxial and
biaxial strains [13,22,37–39,44,45], “rotating” strain [18], or
phononic excitations [46]. A natural question is therefore:
how much of the rich electronic physics of nonuniform defor-
mation in graphene finds a counterpart in these more complex
carbon architectures?

The purpose of the present paper is to answer this ques-
tion. To that end, we generalize the continuum theory of
deformation in graphene to materials with arbitrary numbers
of atoms in the unit cell. As a minimal description of the
electronic structure entails one π -orbital per basis atom, this
theory can now exist in two forms: one involving all sublattice
degrees of freedom, and a downfolded theory describing only
the spinor degree of freedom of the low-energy Dirac cone.
For all three graphynes, we find that this latter description
is, at low energies, in very close agreement with the full
continuum theory. Thus the intimate connection between
structure and effective electromagnetic field is preserved
in these more complex architectures, and the rich physics
of deformation in graphene generalizes to the semimetallic
graphynes.
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α-graphyne β-graphyne 6,6,12-graphyne

FIG. 1. Lattice structures of α-graphyne, β-graphyne, and 6,6,12-graphyne, with the unit cell indicated by the red (light shaded) box.

II. CONTINUUM THEORY OF COMPLEX
CARBON MATERIALS

While the continuum theory of deformation in graphene
is very well developed, the same attention has not been paid
to the graphynes. The complex lattice structures of these
materials (see Fig. 1) render the methods used in deriving
the continuum theory of deformation for graphene either
prohibitively cumbersome (the expansion of a tight-binding
Hamiltonian) or inapplicable (transport of the Dirac-Weyl
equation to nonMinkowski metric). To avoid this we em-
ploy a methodology [47–52] based on an exact map of the
tight-binding Hamiltonian to a general continuum operator,
recently used to treat stacking deformations in bilayer struc-
ture [48,51,52], and acoustic and optical deformations in
single-layer graphene [47]. We first briefly review this theory,
before extending it to include a treatment of currents, and
subsequently describing both the complete and downfolded
versions required to investigate deformation in graphyne.

A. An exact map of the tight-binding Hamiltonian

In this approach, the “input” consists simply of a hop-
ping function envelope tαβ (r, δ) describing the tight-binding
hopping matrix amplitude from a position r on sublattice
α to r + δ on sublattice β in the material, with the change
in electron hopping due to deformation encoded in the r
dependence of this function. The tight-binding Hamiltonian
is therefore

HTB =
∑

αRiβR j

tαβ (Ri + να, R j + νβ − Ri − να )

×c†
R j+νββ

cRi+ναα, (1)

where Ri and να are the lattice and basis vectors of the
underlying high-symmetry lattice.

The corresponding continuum Hamiltonian H (r, p) that is
exactly equivalent to this tight-binding Hamiltonian is given
by [50]

[H (r, p)]αβ = 1

VUC

∑
j

Mjαβηαβ (r, K j + p/h̄), (2)

where VUC is the unit cell volume, the sum is over all G j

vectors of the reciprocal lattice, K j = K0 + G j with K0 a
reference momentum in the Brillouin zone (for the graphynes,
we study this will be the momentum at which the conical

intersection occurs),

ηαβ (r, q) =
∫

dδ e−iq·δtαβ (r, δ) (3)

the so-called mixed space hopping function, with the Mj

matrices are given by

Mjαβ = eiG j ·(να−νβ ). (4)

As shown in Ref. [47] expansion of the r dependence of
ηαβ (r, q) for slowly varying deformations and expansion of
the p dependence for momenta near the conical intersection
leads to a systematic treatment of deformation within the
continuum picture.

B. An exact map of the current operator

In this work, a focus will be on the valley current densities
induced by deformation, and thus we require a current opera-
tor corresponding to the Hamiltonian (2). The current operator
in tight-binding theory, the so-called bond current operator, is
given by [53,54]

j(Ri) = 1

2VUC

∑
α

[n(Ri + να )v + vn(Ri + να )], (5)

where n̂(Ri + να ) = |Ri + να〉〈Ri + να| is the density opera-
tor with the velocity operator

v = 1

ih̄
[r, H (r, p)], (6)

[with H (r, p) the Hamiltonian of Eq. (2)] and where we have
included normalization by the unit cell volume 1/VUC.

One would expect that the method used to derive Eq. (2)
from Eq. (1) should, if applied to Eq. (5), yield a current
density given by

j(r) = 1
2 (�(r)†[∇pH�(r)] + [∇pH�(r)]†�(r)) (7)

with H (r, p) given by Eq. (2), i.e., in the continuum limit
the relation between Hamiltonian and current operator should
follow from Hamilton’s equations. However, given the very
different forms of the tight-binding Hamiltonian (1) and the
bond-current operator (5) in tight-binding theory it is not
obvious that this is the case.

Indeed, the precise link between the tight-binding and con-
tinuum limits of the current operator has been the subject of
recent discussion in the context of recovering the Schödinger
current operator from the bond current formulas [53] for a
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quadratic band model. As noted in Ref. [53] the fundamental
difficultly involves taking the continuum limit of a discrete
grid and the associated ambiguity in the definition of differ-
ential operators. Employing the same methodology involved
in the derivation of Eq. (2), however, we find a general form
for the continuum current operator precisely equivalent to the
general tight-binding bond-current formula while avoiding all
use of grid limits. This turns out to be just the intuitive result
given by Eq. (7) from which we can then recover, as specific
cases, both the Schrödinger and Dirac-Weyl current operators.

To derive this result, we first consider the matrix element
of Eq. (5) with a general state of the system

|�〉 =
∑
k1α

ck1α

∣∣�k1α

〉
, (8)

where |�k1α〉 denotes a Bloch function of sublattice α and
crystal momentum k1:∣∣�k1α

〉 = 1√
N

∑
Ri

eik1.(Ri+να )|Ri + να〉, (9)

where |Ri + να〉 represents a local orbital at position Ri + να .
One finds for the matrix element 〈�|j(Ri )|�〉 the result

1

2VUC

∑
k1,k2,α′,β

[
c∗

k1α′ck2β

〈
�k1α′ |n̂(Ri + να )v̂|�k2β

〉 + H.c.
]
.

(10)

We now work out the matrix element
〈�k1α′ |n̂(Ri + να )v̂|�k2β〉 in detail. Insertion of the Bloch
functions, Eq. (9), yields

−i

N h̄

∑
R j

e−ik1·(Ri+να )eik2·(R j+νβ )[Ri + να − R j − νβ]

× tαβ (Ri + να, R j + νβ ), (11)

where tαβ (Ri + να, R j + νβ ) = 〈Ri + να|H |R j + νβ〉 is the
usual tight-binding hopping matrix element. To derive a con-
tinuum limit we now employ the Poisson sum formula in the
form ∑

R j

f (R j + νβ ) = 1

VUC

∑
G j

f̂ (G j )e
iG j ·νβ (12)

for which the appropriate function f (r) is

f (r) = eik2·r(−r)tαβ (Ri + να, r) (13)

with the Fourier transform

f̂ (q) =
∫

dr e−i(q−k2 )·r(−r)tαβ (Ri + να, r). (14)

Evaluation of the integral and employing the Poisson sum in
Eq. (11) then yields

ei(k2−k1 ).(Ri+να )

V h̄

∑
G j

eiG j ·(να−νβ )∇k2tαβ (Ri + να, k2 + G j ),

(15)
where V = NVUC is the system volume. By defining a ref-
erence momenta K0 through k2 + G j = G j + K0 + p2 and
promotion of p2 to an operator, this expression can straight-
forwardly be recast into a form involving the continuum

Hamiltonian H (r, p), Eq. (2),

1√
V

e−ip1·r{∇pHαβ (r, p)} 1√
V

eip2·r. (16)

To complete the transformation to the continuum description
we introduce the vector plane waves

φp1α (r) = 1√
V

eip1·r|α〉, (17)

where |α〉 represents a unit vector in a space of dimension
equal to the number of atomic degrees of freedom (for
graphene these would just be pseudospin up and pseudospin
down states). Employing these functions, we then arrive at the
desired operator equivalence:〈

�k1α|n̂(r)v̂|�k2β

〉 = φ†
p1α

(r)
[∇pH (r, p)φp2β (r)

]
. (18)

Insertion of this result back into Eq. (10) and the obvious
definition for the system wave function in the continuum
representation as

�(r) =
∑

p1

cp1αφp1α (r) (19)

then leads to our final result

�(r)†j�(r) = 1
2 (�(r)†[∇pH�(r)] + [∇pH�(r)]†�(r)),

(20)

which is evidently the sought for intuitive form given by
Eq. (7).

This expression trivially reproduces both the well known
current operators for the Dirac-Weyl and Schrödinger equa-
tion. For a Schrödinger form H = 1

2m p2, we find

j(r) = 1

2m
[�(r)∗p�(r) − �(r)p�(r)∗], (21)

whereas for the Dirac-Weyl Hamiltonian H = vF σ · p, we
have

j(r) = �(r)†vF σ�(r). (22)

There is, however, an important caveat to Eq. (20). While the
bond current operator always satisfies a discrete form of the
continuity equation appropriate for the tight-binding Hamil-
tonian [54,55] for the continuum version of the bond current,
Eq. (20), this is not guaranteed. This follows as Eq. (20) is
simply the expectation value of the velocity operator and,
curiously, it turns out that Eq. (20) does violate the continuity
equation, but only for Hamiltonians containing a higher than
second power in momentum [56]. As shown in Appendix, the
Dirac-Weyl theory of deformation in graphene satisfies the
continuity equation up to O(p2), including all “acoustic” field
terms (both gauge terms and so-called “geometric” terms,
the corresponding Fermi velocity terms, and trigonal warping
correction terms), see also Ref. [57]. Effective Hamiltonians
with a momentum power greater than 2 are, however, a
common occurrence in condensed matter. To that end, other
less intuitive definitions of the current operator that do satisfy
the continuity equation have been provided [58–60], and these
can encode nonclassical current contributions. Nevertheless,
the breakdown of a classical relationship between velocity and
current should probably be viewed as a failure of effective
Hamiltonian theory.
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TABLE I. Tight-binding parametrization of the form
A exp(−Bδ2), with the value of A is given in the table (in
eV) and for each material and bond type, and B taken to be
30.03, 10.03, and 20.00 eV/Å for, respectively, α-graphyne,
β-graphyne, and 6,6,12-graphyne (i.e. the same for all bond types).
Following Ref. [19], we also introduce a second parameter for the
graphene-acetylene hopping in 6,6,12-graphyne (denoted t ′ in that
work) for which we take the value −4.17 eV/Å.

Material graphene acetylene graphene-acetylene

α-graphyne −3.02 −3.02 −3.02
β-graphyne −4.30 −2.00 −2.70
6,6,12-graphyne −2.50 −6.25 −2.95

III. CONTINUUM THEORY OF α-,β-, AND
6, 6, 12-GRAPHYNE

A. Tight-binding parameterization

A continuum theory of the pristine lattices, i.e., without
deformation, is easily obtained from Eq. (2). In this case the
mixed space hopping function, Eq. (3), loses its r depen-
dence becoming simply the Fourier transform of the electron
hopping function defined between each sublattice: t̂αβ (q) =∫

dδ e−iq·δtαβ (δ). We therefore require a functional form of
tαβ (δ) describing electron hopping for the three graphynes
we consider: α-, β-, and 6, 6, 12-graphyne. We base our
prameterization on the tight-binding parameters of Ref. [19],
which are defined only for the nearest-neighbor hopping, and
fit these to a Gaussian functional form

t (δ2) = A exp(−Bδ2) (23)

such that the nearest-neighbor hopping is reproduced, with
negligible next nearest (and further) hopping, see Table I.

While the precise functional form of the hopping envelope
is immaterial, this Gaussian form is useful as (i) it renders
the Fourier transform straightforward and rapidly convergent
[a hopping form A exp(−B|r|) would produce a numerically
inconvenient algebraic decay in the Fourier transform] and
(ii) deformation, which modifies the hopping matrix element
through changes of the hopping vector, is easily included.
The tight-binding band structures using this parametrization

are shown as the full lines in Fig. 2. The expected low-
energy conical intersections are found (i) at the K point for
α-graphyne [20], (ii) on the line connecting the 
 and M
points for β-graphyne [20], and (iii) two low-energy cones
one at the X point (we denote this cone I) and a second on the
line connecting 
 and Y points (denoted cone II) for 6, 6, 12-
graphyne [20]. In fact, cone I is shifted somewhat further off
the X point as compared to ab initio calculations [20] (a line
fraction of 0.2 as opposed to 0.08), and cone II somewhat
closer to the 
 point (a line fraction of 0.5 as opposed to 0.62
in ab initio). Furthermore, with only nearest-neighbor hopping
the cone tilting found in ab initio for β-graphyne and cone II
in 6, 6, 12-graphyne is not reproduced. We find that lowering
the value of B somewhat in Eq. (23), to increase next-nearest-
neighbor strength, restores the cone tilting. We have checked
that sensible variation of the tight-binding parameters does not
qualitatively change the results and conclusions we present
in subsequent sections for nonuniform deformation in these
materials.

B. Continuum theory for pristine lattices

To extract a tractable continuum description from Eq. (2)
requires a Taylor expansion in momentum about the Dirac
point. Expanding the hopping function in Eq. (2) to first order

t̂αβ (K j + p) ≈ t̂αβ

(
K2

j

) + p · ∇q t̂αβ (q2)
∣∣
q=K j

(24)

generates an expression of the form

H full
0 (p) = H (0) + H (1)

x px + H (1)
y py, (25)

where the Hamiltonian at the Dirac momenta is

H (0)
αβ = 1

VUC

∑
j

Mαβ j t̂
(0)
αβ

(
K2

j

)
(26)

and the matrices H (1)
i given by

[
H (1)

i

]
αβ

= 2

VUC

∑
j

Mαβ j t̂
(1)
αβ

(
K2

j

)
Kji, (27)

where Kji is the ith component of the vector K j . The matrices
(26) and (27) are labeled by sublattice indices, i.e., represent
8 × 8 matrices for α-graphyne and 18 × 18 matrices for β-
graphyne and 6, 6, 12-graphyne. These therefore describe not
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FIG. 2. Tight-binding band structures (full line, black online) of (a) α-graphyne, (b) β-graphyne, and (c) 6,6,12-graphyne. Shown also are
the band structure generated by two continuum approximations; one designed to reproduce the low-energy Dirac-Weyl conical intersection
(dot-dashed lines, red and blue curves online) and one designed to reproduce all bands (dashed lines, green online). Both these continuum
theories include only up to second order in momentum. In (c), the expansion point for the all-band continuum description is the Dirac point of
cone II although, as can be observed, this generates a reasonable agreement even close to cone I.
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only the low-energy conical intersection (described generi-
cally by a spinor degree of freedom) but also all other band
manifolds. In Fig. 2, is shown the band structure obtained
from Eq. (25), with additionally second order in momentum
terms included, revealing an excellent agreement with the
underlying tight-binding method.

To obtain a description of the low-energy conical intersec-
tion, we must downfold the full continuum theory. To that
end, we diagonalize the Hamiltonian at the Dirac point H (0),
Eq. (26), and apply the resulting unitary transformation U to
the full Hamiltonian H full

0 (p). This yields

H = ε + UH (1)
x U † px + UH (1)

y U † py, (28)

where ε is a diagonal matrix whose entries are the eigenvalues
at the Dirac point momenta, with the matrices H (1) now
encoding hybridization of these bands at a finite momentum
away from the Dirac point. This now allows us to identify the
subspace corresponding to degenerate eigenvalues at the Dirac
point, and by retaining only this subspace one arrives at a
spinor valued low-energy Hamiltonian. This procedure yields
a Dirac-Weyl form, but with an SU(2) rotation. Undoing this
with a further unitary transform Us we then find a generic final
form for all three materials [11,14]

H0(p) = vxσx px + vyσy py + (tx px + ty py)σ0. (29)

The band structure calculated using Eq. (29) is shown as
the dot-dashed lines in Fig. 2, showing good agreement with
the full tight-binding calculation for the low-energy conical
intersection. Further improvement requires additional bands
to be included in the continuum theory, not higher orders of
momenta.

While Eq. (29) provides a good description of the low-
energy manifold it does not directly provide the physical wave
function; for this a back transformation is required. Given a
spinor eigenvector φ of Eq. (29), we must firstly transform
back to the global SU(2) frame

c = Usφ, (30)

which then provides the coefficients for constructing the phys-
ical wave function from the Dirac point wave functions:

�i =
∑
j∈low

c jUi j, (31)

where �i is the ith component of the physical wave function
(i.e., in sublattice space) while the sum j is over the band
indices of the low-energy manifold (recall that U is the unitary
transform that diagonalizes H0 the Hamiltonian at the Dirac
point momenta). In graphene such a back transformation is, of
course, unnecessary; a low-energy expansion directly yields a
Dirac-Weyl equation. For any more complex material, how-
ever, the coefficients of the Dirac-Weyl spinor wave function
merely parametrize the low-energy conical intersection in
terms of the Dirac point wave functions.

C. Continuum theory of deformation

Inclusion of deformation into the low-energy scheme re-
quires describing how electron hopping changes throughout
the material, i.e., the full function tαβ (r, δ). This can be
obtained simply from the geometric information of how the

deformation changes the hopping δ at point r in the material,
via substitution of δ in the hopping function of the high-
symmetry material tαβ (δ) by tαβ (δ(r)). The change in the
square of the hopping vector due to the applied deformation
field u(r) is just

δ2 → (δ + u(r + δ) − u(δ))2, (32)

which, upon substitution into a hopping function tαβ (δ2)
yields, via a Taylor expansion for slowly varying fields, the
mixed space hopping function

ηαβ (r, q) = t̂ (0)
αβ (q2) + t̂ (1)

αβ (q2)
(
εxx(r) + 1

2 (∂xu(r))2
)
q2

x

+ t̂ (1)
αβ (q2)

(
εyy(r) + 1

2 (∂yu(r))2
)
q2

y

+ t̂ (1)
αβ (q2)(2εxy(r) + ∂xu(r) · ∂yu(r))qxqy. (33)

In this expression, εi j = 1
2 (∂iu j + ∂ jui ) and t (n)

αβ (q2) is the
Fourier transform of the nth order derivative of the high-
symmetry hopping function:

t (n)
αβ (q2) =

∫
dδeiδ·q ∂nt (δ2)

∂ (δ2)
n . (34)

Insertion of this result directly into Eq. (2) leads to a
Hamiltonian of the form

H full
def = Hxx

(
εxx + 1

2 (∂xu)2) + Hyy
(
εyy + 1

2 (∂yu)2)
+ Hxy(2εxy(r) + ∂xu(r) · ∂yu(r)) (35)

with the matrices Hnm given by

[Hnm]αβ = 1

VUC

∑
j

Mαβ j t̂
(0)
αβ

(
K2

j

)
KjnKjm, (36)

where again Kjn is the nth component of the vector K j =
K0 + G j . This along with Eq. 25 provides a continuum de-
scription in which all bands are included, i.e., in terms of all
sublattice degrees of freedom.

To identify the low-energy sector of the Hamiltonian with
deformation, we employ the same transformations U and Us

that yielded the low-energy sector for the pristine lattice. This,
for all three materials, then results in the following generic
form for the low-energy deformation Hamiltonian

Hdef(r, p) = [
εxx + 1

2 (∂xu)2
]
(σ0 fxx + σxgxx )

+ [
εyy + 1

2 (∂yu)2
]
(σ0 fyy + σxgyy)

+ [2εxy + ∂xu · ∂yu)](σygxy) (37)

where we have suppressed the r dependence in the deforma-
tion tensor and fields, and where the fi j and gi j are constants.
This is very close to the form of deformation in graphene,
which can be obtained by substituting fxx = fyy = α and
gxx = −gyy = −gxy = β into this expression. This latter con-
dition,

gxx = −gyy = −gxy, (38)

will hold for all materials in which the Dirac cone is protected
by symmetry, as this ensures that scaling the lattice constant
cannot displace the Dirac cone off the high-symmetry point.
This is true for α-graphyne, and we find Eq. (38) to be exactly
satisfied by our deformation expansion, but not for β- or
6, 6, 12-graphyne. For these materials, biaxial deformation
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FIG. 3. The in-plane deformation applied to all materials; the
length scale of the unit cell is 100a in all cases. In (a), is shown
the deformation field with the color bar the magnitude and the arrow
the direction, while in (b), is shown the magnitude of the deformation
tensor ε.

shifts the Dirac cone in momentum space; for β-graphyne
towards the X point, while for 6, 6, 12-graphyne, cone I moves
towards the X point and cone II towards the Y point [45].

IV. ELECTRONIC STRUCTURE OF NONUNIFORM
DEFORMATION IN GRAPHYNE

Having established the basic theory we now examine the
electronic consequences of nonuniform deformation. After
a brief description of the numerical methodology, we first
examine the robustness of the low-energy conical manifolds
under deformation, before considering the changes in electron
densities and current densities induced by deformation.

A. Numerical details

Solution of either the two-band or full band Hamiltonian
with deformation, Eqs. (35) and (37), is performed using a
basis of eigenstates from the pristine system. For a momentum
k0 the basis set is formed from all eigenstates of the pristine
system with momenta |k − k0| < kcut and energy |ε (0)

ki | < ecut.
The advantage of this basis lies in the efficiency of conver-
gence: we find that typically to converge the electronic struc-
ture in an energy window E requires ecut ≈ 1.5E . The basis
size is determined by ecut with kcut chosen so as the restrict the
calculation to a single valley. We find that ecut chosen so that

(a)

α-graphyne

(b)

β-graphyne

(c)

6,6,12-graphyne

FIG. 4. Band manifolds in the extended zone scheme for α-
graphyne, β-graphyne, and 6, 6, 12-graphyne. Shown is the pro-
jection of the wave function of the system with deformation onto
the set of wave functions of the ideal system at k, see Eq. (39),
with the amplitude of the projection indicated by the color. These
plots therefore represent the broadening of the eigenstates of the
pristine material due to scattering induced by the deformation. By
comparison with Fig. 2, which displays the band structures of the
corresponding systems without deformation, we see that while the
low-energy conical intersections are broadened by deformation, they
are not significantly disrupted.
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FIG. 5. Deformation induced magnetic fields in the graphynes. Shown are effective pseudomagnetic field and scalar potential generated by
the deformation field displayed in Fig. 3, for α- and β-graphyne, and the two conical intersections of 6, 6, 12-graphyne. For ease of comparison,
we present the magnetic field as an energy via multipliction of the Fermi velocity of each material. As can be seen, despite the very different
lattice structures the effective fields induced by deformation are remarkably similar in form (the 90◦ rotation in β-graphyne is simply due to
the fact the coordinate system is rotated by 90◦).

the basis size is of between 1000 and 2000 states is usually
sufficient for convergence. For further numerical details, we
refer the reader to Ref. [47].

B. Spectral weight changes due to deformation

How are the band manifolds of the pristine lattices mod-
ified by deformation? As large scale periodic deformation
results in a Brillouin zone reduced by a factor of 102–103 as
compared to the pristine lattice, the multiplicity of backfolded
and hybridized bands becomes very hard to interpret. A much
more useful quantity is what could be called a “poor man’s
spectral function”:

ω(k, ε) =
∑

j

ρk jδ(ε − εk j ), (39)

where

ρk j =
∑

i

〈φki|�k j〉. (40)

In this expression, |�k j〉 is the jth eigenstate at crystal
momentum k of the system with deformation and |φki〉 an
eigenstate, also at k, for the system without deformation. In
the absence of deformation ρk j = 1 and Eq. (39) is simply
the band structure of the pristine material. However, in the
presence of deformation, |�k j〉 will involve the coupling to-
gether of many eigenstates of the pristine system and ρk j < 1.
Thus Eq. (39) represents how the bands of the high-symmetry
system are broadened through scattering induced by the de-
formation. To explore this we consider the deformation field
shown in Fig. 3, similar to those typically employed in the
discussion of nonuniform deformation in graphene. Panel (a)
of this figure shows the deformation field, while panel (b)
shows the magnitude of the deformation tensor is shown. The

maximum value of the strain tensor is ∼7%; our ab initio
calculations indicate that strains of <7% are within the elastic
regime of these materials. As can be seen in Fig. 4 for each
of the three graphynes, we consider the “spectral function”
follows closely the band structures of the pristine systems (see
Fig. 2) but with the expected deformation induced broadening.
The nonuniform “speckled” nature of the spectral intensity
along the band lines can be understood as arising from the
complex multiple intersections and subsequent hybridization
that occurs when the bands are folded back to the Brillouin
zone of the deformed system; in the extended zone scheme,
this will be manifested as a nonuniform spectral weight along
the band lines.

C. Charge inhomogenity and current flow

Having established the robustness of the low-energy man-
ifold to deformation, we now consider a description of de-
formation within a continuum theory of the low-energy con-
ical intersection. In this case, the physics is encoded in the
effective electric and pseudomagnetic fields that augment the
Dirac-Weyl equation, and these fields are shown in Fig. 5 for
α-, β- and 6, 6, 12-graphyne, each with the same circularly
symmetric deformation field shown in Fig. 3. Strikingly, for
all three materials the form of the effective pseudomagnetic
and scalar fields is very similar. This is remarkable when
one considers the very different lattice structures of these
three systems, with α- and β-graphyne possessing hexago-
nal lattices and 6,6,12-graphyne a rectangular lattice. While
the pseudomagnetic fields are comparable in magnitude, the
scalar field is almost an order of magnitude greater for cone II
of 6,6,12-graphyne than for α-graphyne suggesting that the
interplay of gauge and scalar fields, known to be significant
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FIG. 6. Density and current density induced by the deformation in the graphynes. Shown in columns 1 to 4 are results for, respectively,
α-graphyne, β-graphyne, the Dirac cone on the X -S symmetry line of 6, 6, 12-graphyne, and the Dirac cone that lies on the 
-Y symmetry line
of 6, 6, 12-graphyne. In each case, the deformation field is that given in Fig. 3. The energy window within which the density and current density
are integrated is, 0–100 meV for α-graphyne, 0–10 meV for β-graphyne, and 20–30 meV at both conical intersections in 6, 6, 12-graphyne;

similar results are however seen for any low-energy window. The units are Å
−2

for the electron density and eV/Å for the current density; all
densities and current densities are multiplied by the unit cell area (100a)2. The first and second rows show the electron density generated by the
two-band and full-band continuum pictures, respectively, while rows 3 and 4 show the current density produced by the two-band and all-band
continuum theories, respectively. In all cases, it can be seen that the two-band and all-band continuum theories are in excellent agreement, and
thus the Dirac-Weyl description of deformation remains valid for these materials, despite their complex lattice structures. While α-graphyne
exhibits exactly the same “charge flowers” found in graphene, see (1a) and (2a) for the other graphynes this is not the case with, in particular,
cone I of 6, 6, 12-graphyne, (1c) and (2c), clearly exhibiting the C2 symmetry of the underlying lattice.

for describing nanobubbles in graphene, would be especially
important in this material [3,61].

Is the two-band Dirac-Weyl theory of deformation valid
in these more complex carbon architectures? To probe this
question we now examine the deformation induced changes
in electron density and current density calculated using the
two-band and full-band continuum theories. If the Dirac-Weyl
continuum theory provides a valid description, then results
from these two distinct continuum theories should be in close
agreement. Rows 1 and 2 of Fig. 6 show electron density using
the two-band and full-band continuum theory, respectively,

and rows 3 and 4 display the current density, again calculated
from the two- and full-band continuum theory, respectively.
For both density and current density, it can be seen that
the results of the two continuum theories are in very good
agreement: the Dirac-Weyl description of deformation thus
remains valid for these much more complex lattice structures.

We now consider the structure of the deformation in-
duced changes to electron density and current density. For
α-graphyne these are very similar to those reported in previ-
ous studies of graphene for circularly symmetric deformation
fields, with “charge flowers”[62] of C6 symmetry and an
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FIG. 7. Pseudospin polarization near the Dirac point in the graphynes. Each row shows the atom projected density for α-graphyne [(a) and
(b)], β-graphyne [(d) and (e)], and cones I [(g) and (h)] and II [(j) and (k)] of 6, 6, 12-graphyne for the same deformation and integration
window employed in Fig. 6. For all atoms in the unit cell of these materials, the atomic projected electron density takes on one of these two
forms. The assignment of each atom in the unit cell to each of the two projection types is shown in the third column with the A and B type
atoms, corresponding to columns one and two, respectively, shown by dark and light (green) shading, respectively. Pseudospin polarization

due to deformation, well known in graphene, thus generalizes to the graphynes. As in Fig. 6, the units are Å
−2

and densities are multiplied by
the unit cell area (100a)2.

associated C3 symmetry current density pattern [63–65], see
panels (1a)–(4a) of Fig. 6. For β- and 6, 6, 12-graphyne,
however, the density exhibits a much lower symmetry, espe-
cially striking for cone I of 6,6,12-graphyne. This reflects the
C2 lattice symmetry for 6,6,12-graphyne. The corresponding
current densities are, however, much closer in form to those
found in α-graphyne and graphene.

As the effective fields induced by deformation showed no
great distinction of form, the differences in electron density
indicates the importance of the transformation from the pseu-
dospinor of the Dirac-Weyl equation back to the physical
wave function discussed in Sec. II. However, the deformation

induced current densities do correspond to the pseudomag-
netic fields shown in Fig. 5, with regions of strong current flow
occurring at the nodal lines of the pseudomagnetic field. The
current density induced by deformation in these graphynes
can therefore, just as in graphene, be understood as due to
snake states [63,64,66] at regions where the pseudomagnetic
field changes sign.

Finally we examine the question of sublattice polariza-
tion. In graphene, the deformation induced charge density is
strongly polarized on sublattice A or B, which can be viewed
in the Dirac-Weyl picture as a local pseudospin polarization.
The more complex lattice structures for α-, β-, and 6, 6, 12-
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graphyne, which have 8, 18, and 18 atoms in the unit cell
respectively, suggests that this physics will not be transferable
to these more complex carbon architectures. Remarkably, as
can be seen in Fig. 7, this is not the case. For each of
these materials the atom projected density takes on one of
only two forms, exhibited in the first two columns, with the
correspondence between projection type and atom position
in the unit cell shown in column three. However, while each
of the 8 atoms of α-graphyne have a density given exactly
by one of these two projection types, for β-graphyne and
6,6,12-graphyne, there are slight deviations amongst the nine
atom projections of each type.

D. The role of optical deformation

Thus far we have not considered the role of local relax-
ations which will undoubtedly be induced by application of
a deformation field. This is known to be more significant in
these materials than in graphene (where it can also qualitat-
ively change the physics [67]). In the case of graphene the two
atom unit cell leads to a natural effective Hamiltonian theory
in terms of acoustic and optical deformation fields, as recently
discussed by Gupta et al. [47]. However, the more complex
unit cells of the graphynes imply many more optical modes.
To simplify this situation, and by analogy with graphene, we
can define optical and acoustic modes in terms of the two
groups of atoms on which charge is localized due to pseu-
dospin polarization. In this way, we can define the average
displacement of each group of atoms off their ideal positions
under strain, and so define single optical and acoustic modes.

To investigate this, we have performed ab initio calcu-
lations for 6, 6, 12-graphyne using the VASP software suite
[68,69], in which we allow the 18 atoms of the unit cell
to relax under an applied biaxial strain. Figure 8 shows
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FIG. 8. Optical deformation due to local atomic relaxation in-
duced by biaxial strain in 6,6,12-graphyne. For each group of atoms
on which pseudospin polarization occurs (see Fig. 7), we define
the average displacement of the atoms from their ideal positions
under strain. From these two average displacements, the acoustic and
optical components of the deformation then may be calculated and
the deformation magnitude plotted as a function of applied strain.
Note that the acoustic component, as expected, is zero.

the magnitude of the resulting optical deformation, due to
local atomic relaxation, given as a percentage of the nearest-
neighbor separation for a range of biaxial strains. As can
be seen, for biaxial strains of up to 6%, the optical defor-
mation is of the order of 1%. Beyond 8% biaxial strain the
lattice substantially reconstructs. Thus optical deformation
will likely play some role in the physics of these materials,
as they do with graphene, and may in principle be included
in an effective Hamiltonian description following the scheme
outlined in Ref. [47].

V. DISCUSSION

The principal question we have addressed is whether the
intuitive Dirac-Weyl description of deformation in graphene
generalizes to the more complex carbon architectures
of the graphynes. To answer this question, we have gener-
alized the continuum theory of deformation in graphene to
arbitrary numbers of sublattices, and considered this theory
at two levels: a truncated Dirac-Weyl type theory, formally
identical to that of graphene, and the full theory including
all sublattice degrees of freedom (which therefore describes
the full band structure and not only the low-energy conical
intersection). For α-, β-, and 6, 6, 12-graphyne these two
levels of theory lead to very similar results for the deformation
induced changes to the density and current density close to the
Dirac point, showing that the Dirac-Weyl description remains
valid for these materials. Deformation in the graphynes thus
retains the remarkable connection between structural change
and pseudomagnetic and scalar fields found in graphene, and
the rich physics of that material—valley filters [4–8], pseu-
dospin polarization [9,10], and deformation induced Landau
ladders [3]—can be expected to be found in the graphynes, if
they can be synthesized.
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APPENDIX: THE CONTINUITY EQUATION FOR
DEFORMATION IN DIRAC-WEYL MATERIALS

As our focus here will be on deformation in materials
with low-energy conical intersections, and the valley currents
that deformation induces, it is useful to demonstrate that
the current operator defined in the previous section indeed
satisfies the continuity equation for such systems. To this end,
we consider the most general form of the Dirac-Weyl equation
augmented by deformation induced fields which, up to second
order in momentum, is given by

H = Ai(r)σi + i
i(r)σi + v
i j
F (r)σi p j + iwi j

F (r)σi p j

+ 1

2!
Mi jk (r)σi p j pk . (A1)

In this expression, the index i runs over the three Pauli
matrices σ0, σ1, and σ2 and the indices j and k over the two
degrees of freedom of space. Thus there are two effective
gauge field terms: A = (A1, A2), an imaginary gauge [70] that
transforms as a field in the Dirac-Weyl equation under rotation
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of the graphene lattice(
0 
x − i
y


x + i
y 0

)

→
(

0 (
x − i
y)eiθ

(
x + i
y)e−iθ 0

)

and a real valued gauge [70–75] that does not transform as a
field (a phase ei2θ is instead acquired). In addition there are
real and imaginary parts to the scalar potential, A0 and 
0,
respectively. At linear order in momentum, v

i j
F and w

i j
F are

the real [70,71,73,74] and imaginary velocity tensors. Finally
there is also a trigonal warping term Mi jk . Higher orders of
momenta can be included in Eq. (A1) but, if Hermiticity is to
be preserved, only by restricting the spatial fields to be slowly
varying [47].

It is not immediately evident that Eq. (A1) satisfies the
continuity equation ∇ · j(r) + ∂t n(r) = 0 (as both the Hamil-
tonians vF σ · p and vF σ · p + σiAi obviously do) due both to
the presence of the coordinate dependent velocity and mass
tensors, as well as the fact that both gauge and velocity
terms have both real and imaginary parts. However, as we
now show using conditions that guarantee hermiticity of the
deformation Hamiltonian, the continuity equation is indeed
satisfied.

The jth component of the corresponding current operator
is given by

j j = v
i j
F (r)σi + iwi j

F (r)σi + Mi jk (r)σi p j (A2)

with the divergence of the current density then given by

∇ · j(r) = 1

ih̄
�[(p j�)†vi jσi� − �†vi jσi p j�

−�† p jv
i jσi� + i(p j�)†wi jσi�

− iψ†wi jσi p j� − i�† p jw
i jσi�

+ (p j�)†Mi jkσi p j� − ψ†Mi jkσi p j pk�

−�† p jM
i jkσi pk�].

Using the obvious relations �[(pj�)†Mi jkσi p j�] = 0 and
(ψ†vi jσi p j�)† = (vi jσi p j�)†� in conjunction with the her-
miticity conditions obeyed by the Hamiltonian [47,70]

p jM
i jkσi pk − 2iwi jσi p j = 0, (A3)

p jv
i jσi − 2i
iσi = 0, (A4)

we have

∇ · j(r) = 1

ih̄
�[−2�†H�] (A5)

and using

∂t n(r) = 1

ih̄
[�†(H�) − (H�)†�] (A6)

we then find

∂t n(r) + ∇ · j(r) = 0, (A7)

and so the continuity equation is satisfied.
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