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Bond particle theory for the pseudogap phase of underdoped cuprates
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We present a theory for the lightly doped t-J model that is of possible relevance for the normal state of
underdoped cuprates. Starting from an arbitrary dimer covering of the plane, an exact representation of the
t-J Hamiltonian in terms of bond bosons and fermions can be derived. Since all dimer coverings must give
identical results for observable quantities, we construct an approximate but translationally invariant Hamiltonian
by averaging the bond particle Hamiltonian over all possible dimer coverings. Treating the resulting Hamiltonian
in the mean-field approximation, we find Fermi pockets centered near (π/2, π/2) with a total area of x/2 (with
x the hole concentration) and a gapped spin-wave-like band of triplet excitations.
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I. INTRODUCTION

Copper-oxide-based superconductors have a phase dia-
gram that is similar to a large number of heavy-fermion
compounds and the iron pnictide superconductors [1]. In all
these materials, a phase transition occurs at zero temperature
as a function of some control parameter that is surrounded
by a superconducting dome. In the cuprates, the control
parameter is the hole concentration x in the CuO2 planes.
However, whereas the phase on the overdoped side of the tran-
sition appears to be a normal metal, albeit with correlation-
enhanced effective mass, the underdoped phase—the so-
called pseudogap phase—is not well understood. To begin
with, we briefly summarize some experimental results for this
phase.

Below the pseudogap temperature T ∗, which decreases
monotonously with x, angle-resolved photoelectron spec-
troscopy (ARPES) shows Fermi arcs and a pseudogap [2–4],
i.e., unlike what is expected for the hole-doped density func-
tional band structure, the quasiparticle band does not reach
the chemical potential μ in a sizable range in k-space around
(π, 0). One possible explanation would be that the Fermi
arc really is one-half of an elliptical or semielliptical hole
pocket that is centered near ( π

2 , π
2 ), formed by a band with

weak dispersion along (0, π ) → (π, 0). To reconcile this
interpretation with experiment, one has to make the additional
assumption that the ARPES weight of the quasiparticle band
has a strong k-dependence and drops sharply to almost zero
upon crossing a line in k-space that roughly corresponds to
the antiferromagnetic zone boundary, so that only the part
of the pocket facing (0,0) can be resolved, whereas the part
facing (π, π ) has too low spectral weight. In fact, much the
same behavior is indeed observed in insulating cuprates [5,6],
where this phenomenon has been termed the remnant Fermi
surface. In the underdoped compounds, the drop of spectral
weight would have to be even more pronounced, however, to
be compatible with experiment.

The length of the Fermi arcs is independent of temperature
[7,8] up to T ∗, as expected for a true Fermi surface. At T ∗
the arcs disappear abruptly and ARPES apparently shows the

free-electron Fermi surface. The length of the arcs increases
with x [8,9], which suggests that the carriers that form the
pockets are the doped holes. A somewhat unusual feature is
the temperature dependence of the dispersion, i.e., while the
arc length is temperature-independent, the dispersion along
(0, π ) → (π, 0) flattens with increasing temperature [8,10],
so that the pseudogap seems to close with increasing tem-
perature. It is plausible that the motion of the doped holes
through the “spin background” will be influenced by the spin
correlations of the latter. Since these change with temperature,
a temperature dependence of the hole dispersion is not entirely
unexpected.

The asymmetry of the spectral weight around ( π
2 , π

2 ),
which gives rise to the remnant Fermi surface in the insulating
compounds, is reproduced by exact diagonalization of the
half-filled t-J or Hubbard model [11]. It can be explained by
the coupling of the photohole to the quantum spin fluctuations
of the Heisenberg antiferromagnet or t-J model [12], further
enhanced by the coupling to charge fluctuations in the Hub-
bard model [13].

Further insight can be gained from thermodynamic and
transport properties. Thereby, an extra complication has to
be taken into account, namely the tendency of underdoped
cuprates to form inhomogeneous states with charge-density-
wave (CDW) order with ordering wave vector qCDW = (q, 0),
the precise nature of which depends on the material. It may
be combined with spin order [14], “checkerboard order”
[15], or CDW order without spin order [16]. Typically these
ordered states are observed at low temperatures and in a
certain doping range [xCDW

min , xCDW
max ]. When this is taken into

account, various results indicate that the underdoped cuprates
are Fermi liquids. The charge carrier relaxation rate τ−1

extracted from the optical conductivity of various underdoped
cuprates (with x ≈ 0.1) has a quadratic dependence on both
frequency ω and temperature T [17]. For compounds with
x < 0.15 and for temperatures below T ∗, the dc-resistivity
ρ varies with temperature as ρ = AT 2 with an x-dependent
constant A [18,19], although this behavior is masked at lower
temperatures by CDW order, superconducting fluctuations, or
localization [19]. This is also consistent with the variation of
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the Hall angle with temperature as cot(�H ) ∝ T 2 [18]. The
Wiedemann-Franz law is obeyed [20], as is Kohler’s rule [21].
The entropy S and the magnetic susceptibility χ are related
over a wide doping range by S = aT χ , with a the Wilson
ratio for spin- 1

2 fermions [22]. This is expected for a free
Fermi gas because S/T and χ probe the fermionic density
of states (DOS) around μ by similar weighting functions so
that the proportionality should hold even for a structured or
temperature-dependent DOS [22].

The one unusual feature, however, is the x-dependence
of transport quantities. It is found that A ∝ x, as would be
expected from Drude theory for a Fermi gas with carrier
density nc = x, and the value of A per CuO2 plane is material-
independent [19]. For larger x ≈ 0.2, and when superconduc-
tivity is suppressed by a magnetic field, the carrier density
inferred from the T → 0 limiting values of ρ shows a sharp
crossover at a material-dependent x∗ ≈ 0.2 from nc = 1 + x
for x > x∗ to nc = x for x < x∗ [23,24]. The carrier density
can also be inferred from the Hall constant RH , but this is com-
plicated by the occurrence of CDW order. In the absence of
CDW order, RH > 0 [23,24], as expected for holelike carriers.
From measurements of RH at sufficiently high temperatures,
where there is neither superconductivity nor CDW order, one
infers nc = x at x � 0.1 [25–27]. For larger x and when su-
perconductivity is suppressed by a magnetic field, nc inferred
from RH again crosses sharply from nc = 1 + x to nc = x
at the same x∗ where this occurs for ρ [23,24]. Thereby,
x∗ coincides with the “critical doping” where T ∗(x) → 0 as
inferred from a variety of physical properties [28]. It is found
that x∗ > xCDW

max so that the crossover in the x-dependence
of nc cannot be related to CDW order [23,24], which can
also be seen from the fact that for x < xCDW

min the behavior
nc = x is recovered [23,24]. In the CDW-ordered state itself,
quantum oscillations [29–31] and the quadratic temperature
dependence of ρ [32] confirm the Fermi-liquid nature of the
ground state, whereas the negative RH suggests the presence
of electron pockets [33], likely caused by a reconstruction
of the hole pockets. The observation of spin zeros in the
angular dependence of the quantum oscillations suggests that
the carriers are spin- 1

2 fermions [34]. The wave vector qCDW

of the CDW modulation varies with x, and this variation is
consistent with the assumption that qCDW corresponds to the
nesting vector connecting the tips of the Fermi arcs [35] along
the direction (π, 0) → (0, π ). This is to be expected in the
hole pocket picture because for a band with weak dispersion
along (π, 0) → (0, π ), the tips would be the part of the Fermi
surface with the lowest Fermi velocity and hence the highest
density of states. Generally, assuming that the holes rather
than the electrons are the mobile fermions, one would have a
system with a low density of carriers with high effective mass,
and the average energy of delocalization would be further
reduced by the fact that there are four equivalent pockets so
that the Fermi energy is reduced by a factor of 4. Such a
system may well be susceptible to charge ordering due to
long-ranged Coulomb interaction. Lastly, the Drude weight
in the optical conductivity is ∝ x [17,27], again consistent
with nc = x. The effective mass, as inferred from nc and the
optical sum rule, is practically independent of doping over
the underdoped region, and in fact also the antiferromagnetic
phase [27].

A simple and unifying interpretation for a large body of
ARPES and transport experiments on underdoped cuprates
thus would be that below T ∗(x) these compounds are Fermi
liquids formed by spin- 1

2 fermions that correspond to the
doped holes. The Fermi surface takes the form of hole pockets
centered near ( π

2 , π
2 ) and with a “dark side” toward (π, π ).

This is also consistent with exact diagonalization studies for
the t-J model, which show that for x ≈ 0.1 the Fermi surface
takes the form of hole pockets [36] and that the low-lying
eigenstates can be mapped one-to-one to those of weakly
interacting spin-1/2 fermions corresponding to the doped
holes [37]—which is the defining property of a Fermi liquid.

The situation is very different for overdoped compounds
where at low temperature ARPES [38–40], magnetoresistance
[41], and quantum oscillations [42] show a free-electron-
like Fermi surface that takes the form of a 3D hole barrel
around (π, π ) and covers a fraction of the Brillouin zone of
(1 + x)/2. Consistent with the observation of quantum os-
cillations, the transport properties are Fermi-liquid-like [43].
Such a Fermi surface is expected in the limit of small electron
density, x → 1, so that the range of applicability of this
limit appears to extend down to x∗. This is also consistent
with exact diagonalization studies of the dynamical spin and
density correlation functions in the t-J model, which indicate
a transition to a more conventional renormalized free-electron
Fermi surface at around x = 0.25 [44,45].

Taken together, the above experimental results suggest
that the zero-temperature phase transition in the cuprates at
x∗ corresponds to the transition between the two types of
Fermi surfaces: from pockets formed by the holes doped into
the lower Hubbard band for x < x∗, to a more conventional
Fermi liquid with correlation-enhanced band mass for x > x∗.
While the latter phase probably may be adequately described
by a Gutzwiller-projected Fermi sea, the phase realized for
x < x∗ is more elusive, and it is the purpose of this paper
to describe a theory that can describe it. The goal of this
paper, therefore, is to develop a theory for the doped, para-
magnetic Mott-insulator that is compatible with the scenario
suggested by the above experimental results: a translationally
invariant state without any type of order but with short-range
antiferromagnetic spin correlations, which is a Fermi liquid
of spin- 1

2 fermions that correspond to the doped holes rather
than the electrons, so that the volume of the Fermi surface is
proportional to x, rather than 1 − x. As will be seen below, the
bond particle theory, which was used initially for the study
of spin systems [46], is particularly suited to do so because
it contains the right types of elementary excitations as its
“natural particles.”

Theoretically, a hole pocket Fermi surface can always be
produced by backfolding a free-electron-like Fermi surface
assuming some order parameter with wave vector (π, π )
[47,48]. However, no evidence for such an order parameter has
been observed so far. Constructing a theory that gives a Fermi
surface with a volume proportional to x without invoking
backfolding of a free-electron Fermi surface is not achieved
easily. Various authors have proposed that a fluctuating rather
than a static order order parameter is already sufficient to
backfold the Fermi surface [49–53], or that short-range anti-
ferromagnetic correlations may cause the pseudogap [54,55].
Hole pockets can also be produced by a phenomenological
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ansatz for the self-energy [56], and it has also been pro-
posed that the origin of the pseudogap is checkerboard-type
CDW order [57]. On the other hand, one may also assume
that there is no underlying free-electron Fermi surface that
can be backfolded. Rather, in this picture the hole pockets
are a consequence of the proximity to the Mott insulator,
which corresponds to a nominally half-filled band but has
no Fermi surface at all. The Hubbard-I approximation [58]
predicts a hole pocket centered at (π, π ) in a paramagnetic
and translationally invariant ground state, whereby the volume
of the pocket increases monotonically with x. However, the
increase is nonlinear in x, which seems counterintuitive. The
Hubbard-I approximation can be reformulated as a theory
for holelike and doublonlike quasiparticles, which results in
hole pockets with a volume that is strictly ∝x, and if short-
range antiferromagnetic spin correlations are incorporated,
the pocket indeed is centered near ( π

2 , π
2 ) [59]. Another such

theory is the quantum dimer model proposed by Punk et al.
[60–62], and the theory to be outlined below has some simi-
larity to this theory. More precisely, in the following we apply
bond particle theory to the t-J model. This was proposed
by Sachdev and Bhatt [46] and applied subsequently to spin
ladders [63–65], bilayers [66,67], intrinsically dimerized spin
systems [68,69], and the “Kondo necklace” [70].

II. FORMALISM

A. Hamiltonian

We consider the t-J model on a two-dimensional (2D)
square lattice with N sites, labeled by indices i, j and periodic
boundary conditions. The Hamiltonian reads [71,72]

H = −
∑
i, j

∑
σ

ti, j ĉ
†
i,σ ĉ j,σ + J

∑
〈i, j〉

Si · S j,

where ĉ†
i,σ = c†

i,σ (1 − niσ̄ ), Si is the operator of electron spin
at site i, and 〈i, j〉 denotes a sum over all pairs of nearest
neighbors. We assume that the hopping integrals ti, j are dif-
ferent from zero only for nearest [(1,0)-like], second-nearest
[(1,1)-like], and third-nearest [(2,0)-like] neighbors, and we
call the respective hopping integrals t , t ′, and t ′′. The nearest
neighbor t will be taken as the unit of energy.

B. States of a single dimer

The basic idea of the calculation is to represent eigenstates
of a single dimer by bond bosons (for even electron number)
and bond fermions (for odd electron number). We consider a
single dimer with the sites labeled 1 and 2 and first write down
the four states with two electrons, which means the singlet and
the triplet. Introducing the matrix 4-vector γ = (τ0, τ ) with
τ0 = 1 and τ the vector of Pauli matrices, the state 4-vector
β = (s, t ) is [46,63]

|β〉 = 1√
2

∑
σ,σ ′

c†
1,σ (γiτy)σ,σ ′ c†

2,σ ′ |0〉. (1)

The four states with a single electron can be classified by their
parity and z-spin [64,68],

| f±,σ 〉 = 1√
2

(c†
1,σ ± c†

2,σ )|0〉. (2)

The last eigenstate is the empty dimer |e〉 = |0〉. If the dimer
is in one of the states with two electrons, (1), we consider it
occupied by a boson, created by the operator 4-vector (s†, t†),
whereas a dimer in one of the states (2) is considered occupied
by a fermion, created by f †

±,σ . If the dimer is empty we again
consider it occupied by a boson, created by e†. The states |s〉,
| f+,σ 〉, and |e〉 are even under the exchange 1 ↔ 2, whereas
|t〉 and | f−,σ 〉 are odd. We ascribe positive parity also to the
operators s†, f †

+, and e†, and negative parity to t† and f †
−. The

procedure to transcribe operators for the original t-J model
to the representation in terms of bond particles is as follows:
since the nine states introduced above form a complete basis
of the Fock space of a dimer, any operator O acting within
that dimer can be expressed as

∑
a,b |a〉Oa,b〈b|, with Oa,b =

〈a|O|b〉. Replacing |a〉〈b| → a†b, we obtain an operator for
the bond particles that has the same matrix elements as long
as it is acting in the subspace of states with precisely one bond
particle in the dimer. In this way, the representation of the spin
operator at site j ∈ {1, 2} becomes

S j → λ j

2
(s†t + t†s) − i

2
t† × t

+ 1

4
(f†

+ + λ jf
†
−)τ(f+ + λ jf−), (3)

where λ j = (−1) j−1. Introducing the contravariant spinor
c = (ĉ↑, ĉ↓)T , the representation of the electron annihilation
operator at site j becomes

c j → :
1

2
(s iτy + λ jt · τiτy)( f†

+ − λ jf
†
−)

+ 1√
2

e†(f+ + λ jf−) :, (4)

where : · · · : denotes normal ordering. As mentioned above,
these representations are valid in the subspace of states with
precisely one bond particle in the dimer:

s†s + t† · t +
∑

σ

∑
α∈{±}

f †
α,σ fα,σ + e†e = 1. (5)

C. Generalization to the plane

We now consider the original plane with N sites and
assume that these are partitioned into N

2 disjunct dimers,
whereby the sites in a dimer are always nearest neighbors.
We call such a partitioning a dimer covering of the plane.
Each dimer is assigned a dimer label m ∈ {1, 2, . . . , N/2}. We
consider a dimer with dimer label m, which consists of the
sites i and j. When writing down the dimer states introduced
above, we have to decide which of the two sites, i or j,
corresponds to the site 1 and which one to the site 2 in (1) and
(2). This is because some of the dimer states have negative
parity under 1 ↔ 2 so that their sign depends on this choice.
We adopt the convention that for a bond in the x-direction
(y-direction), the left (lower) site always corresponds to the
site 1. We call the site that corresponds to 1 the 1-site and
the site that corresponds to 2 the 2-site of the dimer. For
each site i we define λi = 1 if it is the 1-site and −1 if it is
the 2-site in its respective dimer. Next we introduce the bond
particle operators defined above and give them an additional
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dimer label, e.g., s†
m, t†

m, or f †
m,+,↑. Lastly, we define Rm =

(Ri + R j )/2.
Next we derive the bond particle representation of the t-J

Hamiltonian for the given dimer covering. The intradimer part
of the Hamiltonian is

Hintra =
∑

m

(
−3J

4
s†

m sm + J

4
t†
m · tm

− t
∑

σ

( f †
m,+,σ fm,+,σ − f †

m,−,σ fm,−,σ )

)
.

We proceed to the interdimer part of the Hamiltonian, which
can be constructed using (3) and (4). Consider two dimers, m
and n, and let there be a bond in the Hamiltonian that connects
sites i and j such that site i belongs to dimer m, and site j to
dimer n. Using (3) and (4), we then find the representations

J Si · S j → Jλiλ j

4
(s†

mtm + t†
msm)(s†

ntn + t†
nsn) − J

4
(t†

n × tn)

· (t†
m × tm) − iJ

4
[λi(s

†
mtm + t†

msm) · (t†
n × tn)

+ λ j (s
†
ntn + t†

nsn) · (t†
m × tm)], (6)

−t
∑

σ

ĉ†
i,σ ĉ j,σ

→ t

4

[
( s†

msn + λiλ jt†
m · tn )

( ∑
σ

f †
n, j,σ fm,i,σ

)

− ( λit†
msn + λ js

†
mtn ) · v(n, j),(m,i)

−iλiλ j ( t†
m × tn ) · v(n, j),(m,i)

]
, (7)

where

fm,i,σ = fm,+,σ − λi fm,−,σ , (8)

and the vector v is defined as

v(n, j),(m,i) =
∑
σ,σ ′

f †
n, j,σ τσ,σ ′ fm,i,σ ′ .

In (6) and (7) we have actually dropped all terms containing
the boson e†

m, which represents the empty dimer, and also
all terms originating from the second line in (3), which
describes direct exchange between holes. The reason is that
both the density of empty dimers and the contribution of direct
exchange between holes should be ∝x2, and we consider x to
be small.

The factors of λi or λ j in (6) and (7) guarantee the
invariance of the Hamiltonian under symmetry operations
of the lattice. A given dimer covering of the plane could,
e.g., be rotated by π

2 , and the bond particle Hamiltonian
for the resulting dimer covering must be equivalent to the
original one. Consider a bond pointing in the y-direction as
in Fig. 1(a), which consists of the sites i and j. According
to our convention, the site i is the 1-site so that the dimer
state | f−,σ 〉 = (c†

i,σ − c†
j,σ )/

√
2. Now assume the whole

dimer covering is rotated counterclockwise by π
2 . This is

equivalent to a permutation of the numbers of the lattice
sites, and we assume that thereby i → i′ and j → j′. The

(a) (b)

i

j

i’j’

FIG. 1. Under a rotation by π/2 in the counterclockwise direc-
tion, the dimer in (a) is transformed into the one in (b). The arrow
indicates the marked site.

transformed dimer state therefore is (c†
i′,σ − c†

j′,σ )/
√

2; see
Fig. 1(b). However, according to our convention, the 1-site
in the rotated dimer is j′ so that the true dimer state is
| f−,σ 〉 = (c†

j′,σ − c†
i′,σ )/

√
2. The state | f−,σ 〉 thus acquires a

factor of (−1) under this operation, and the same will hold
true for any dimer state with negative parity. Now assume
that one of the sites—say i—in the dimer is “marked” and
consider the product λi| f−,σ 〉. The marked site in the rotated
dimer then is i′. This is the 2-site in the rotated dimer so that
λi′ = −1 and the product λi| f ,−〉 is invariant. This is easily
seen to be general: any operation that exchanges the 1-site
and the 2-site in a dimer inverts both the sign of a dimer state
with odd parity and the sign of λ for the marked site, so that
their product stays invariant. In (6) and (7) the marked sites
are the ones where the Hamiltonian acts and the factors of λ

are always associated with dimer states of negative parity.
When the hopping term contains longer-range hopping

integrals such as t ′ and t ′′, it may happen that two bonds
are connected by different hopping terms, as in Fig. 2. We
consider the factors of λ in this case. Let us assume the
nearest-neighbor term has λiλ j whereas the longer-range term
has λi′λ j′ as in Fig. 2. Now consider a symmetry operation
of the lattice. If the operation exchanges the 1-site and the
2-site in bond m, both λi and λi′ change sign, whereas if the
operation exchanges the 1-site and the 2-site in bond n, both
λ j and λ j′ change sign. It follows that the products λiλ j and
λi′λ j′ always change sign “in phase” so that they are equal
up to an overall sign. We define ξ = ±1 as the relative sign
of the longer-range term with respect to the sign for nearest-
neighbor hopping (or exchange): λi′λ j′ = ξλiλ j . ξ depends on
the range of the hopping integral, and for t ′ and t ′′ terms one
finds ξ = −1. For any two sites i and j we define ξi, j to be
this relative sign for the hopping term that connects them.

D. Approximations

The representation of the problem in terms of dimer
states is exact but brings about no simplification so that

m

n

i=i’

j j’

FIG. 2. Hopping terms of different range (dashed lines) connect
two dimers in different ways.
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approximations are necessary. As a first step, we reinterpret
the singlet as the vacuum state of a dimer, and accordingly we
replace the corresponding operators s†

m and sm in (6) and (7)
by unity. This is equivalent to the assumption that as in a Mott
insulator at half-filling, the electrons in the lightly doped Mott
insulator form an inert background—the “singlet soup”—and
that the only remaining active degrees of freedom are the spins
of the electrons—represented by the triplets—and the doped
holes, represented by the fermions. Replacing the singlet
operators in (6) and (7) by unity, we obtain terms of second,
third, and fourth order in triplet and fermion operators. The
constraint (5) to have precisely one bond particle per dimer
then becomes

t†
m · tm +

∑
α∈{±}

∑
σ

f †
m,α,σ fm,α,σ + e†

mem ∈ {0, 1}, (9)

which must hold for each bond m. The constraint (9) is
equivalent to an infinitely strong repulsive potential between
bond particles in the same dimer. For small x, however, the
density of triplets and fermions is small—this will be seen
below and is crucial for the present theory. Namely, for Bose
and Fermi systems of low density it is known that even such
infinitely strong repulsive interactions between particles do
not qualitatively change the ground state [73,74]. We therefore
neglect the constraint assuming that it does not lead to a
qualitative change of the results due to the low density of
particles.

The problem with the infinitely strong repulsion between
bond particles also occurs in the treatment of the Kondo lattice
model. There it was found that good qualitative agreement
with numerical results could be obtained by relaxing this
constraint, and even quantitative agreement could be achieved
by augmenting the energy of the bond particles by the loss
of kinetic energy due to the blocking of bonds by a particle
[75]. However, to keep the present treatment simple, we do
not introduce this correction here. A more rigorous way to
treat this repulsion has been carried out explicitly for bond
bosons in spin systems by Kotov et al. [76] and Shevchenko
et al. [77].

Even with the approximation to reduce the number of
active degrees of freedom, we are far from a soluble problem
because the theory still refers to a given dimer covering of
the lattice, thus it is impossible to do any calculation for
large systems. One might consider choosing a particular “sim-
ple” dimer covering. However, since one is forced to make
approximations, the exactness of the dimer representation is
lost and the special symmetry of the covering will make
itself felt in the approximate solutions resulting, e.g., in an
artificial supercell structure. On the other hand, the dimer
Hamiltonian provides an exact representation of the original
t-J model for any dimer covering of the plane. This means
that, for example, the result for the spin correlation function
〈S j (t ) · Si〉 does not depend on the dimer covering in which
the calculation is carried out. Put another way, the way in
which a spin excitation propagates through the network of
dimers from site i → j during the time t does not depend
at all on the geometry of the dimer covering. This might
suggest constructing a translationally invariant approximate
Hamiltonian by averaging the dimer Hamiltonian over all
possible coverings. This means that now every bond in the

m

n

(c)

m

n

(b)

m

n

(a)

FIG. 3. Estimation of the renormalization factor ζ .

lattice may be occupied by a bond particle, and the averaged
Hamiltonian for two bonds n and m is h̄n,m = ζ hn,m, where
hn,m is given by the sum of (6) and (7), and

ζ = Nn,m

Nd
. (10)

Here Nn,m is the number of dimer coverings that contain the
bonds n and m, and Nd is the total number of dimer coverings.
The resulting Hamiltonian is obviously translationally invari-
ant and isotropic. To estimate ζ , we use a crude approxima-
tion: consider two adjacent bonds as in Fig. 3. By symmetry
the bond m is covered by a dimer in exactly 1/4 of all dimer
coverings, and we restrict ourselves to these. Assuming for
simplicity that the number of coverings containing one of the
three possible orientations of the adjacent bond n is equal,
we estimate ζ = 1

12 . Later on, it will be seen that, e.g., the
spin gap depends sensitively on the value of ζ , and we will
consider it as an adjustable parameter, but the values that give
“reasonable” results are always around ζ = 0.1.

In the averaged Hamiltonian there are additional unphys-
ical configurations. For example, two bond particles may
“cross” each other, see Fig. 4, and such configurations have to
be excluded as well. This obviously amounts to an infinitely
strong repulsion between the bond particles that acts whenever
two bond particles share at least one site. Assuming the low-
density limit, we neglect this repulsion.

Lastly, we discuss the operator of the electron number. If all
dimers in a given covering are occupied by singlets or triplets,
the number of electrons in the system is N . Each fermion
reduces the number of electrons by 1, so if we discard the
e†-boson,

x = 1

N

∑
m,σ

( f †
m,+,σ fm,+,σ + f †

m,−,σ fm,−,σ ). (11)

Upon averaging, we increase the number of bonds that can be
occupied by a particle from N/2 to 2N . However, we retain
the expression (11), which guarantees a Fermi surface with a
volume proportional to the number of doped holes.

FIG. 4. Two “crossing” bond particles—such configurations are
forbidden for the averaged Hamiltonian.
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Lastly, we mention the convention for the Fourier trans-
form of bond operators. Defining ρm,α (with α ∈ {x, y}) to be
1 if m is a bond in the α-direction and 0 otherwise, the Fourier
transform of a bond operator is (with α ∈ x, y)

t†
k,α = 1√

N

∑
m

ρm,α eik·Rmt†
m.

III. MEAN-FIELD THEORY

A. Mean-field decoupling

We next treat the bond particle Hamiltonian in Hartree-
Fock approximation, thereby assuming a ground state that is
invariant under spin rotations [46,63]. Accordingly, we drop
the terms in (6) that are of third order in the triplets, and the
terms in (7) that contain a single triplet or the vector product
of two triplets. After Hartree-Fock decoupling, these terms
would give expectation values such as 〈tm〉 or 〈t†

m × tn〉, which
vanish in a spin-rotation invariant state. For better clarity,
we give the remaining Hamiltonian after all approximations
discussed so far have been made. The Hamiltonian is the sum
of the following terms:

H (0)
B = J

∑
m

t†
m · tm + ζ

4

∑
m<n

∑
i∈m
j∈n

Ji, jλiλ j (t†
m · tn + H.c.)

+ ζ

4

∑
m<n

∑
i∈m
j∈n

Ji, jλiλ j (t†
m · t†

n + H.c.),

H (0)
F = − t

∑
m,σ

( f †
m,+,σ fm,+,σ − f †

m,−,σ fm,−,σ )

+ ζ

4

∑
m,n

∑
i∈m
j∈n

ti, j

∑
σ

f †
n, j,σ fm,i,σ ,

H (1)
B = − ζ

4

∑
m<n

∑
i∈m
j∈n

Ji, j (t†
n × tn) · (t†

m × tm),

H (1)
B,F = ζ

4

∑
m,n

∑
i∈m
j∈n

ti, jλiλ j t†
m · tn

∑
σ

f †
n, j,σ fm,i,σ . (12)

Here Ji, j = J if i and j are nearest neighbors and zero oth-
erwise. H (0)

B and H (0)
F are the noninteracting parts for bosons

and fermions, H (1)
B describes the interaction between bosons,

and H (1)
B,F is the interaction between bosons and fermions. The

double cross product in H (1)
B can be rewritten as

(t†
n × tn) · (t†

m × tm)

=
∑
λ �=λ′

(t†
m,λt†

n,λ tn,λ′tm,λ′ − t†
m,λtn,λ t†

n,λ′tm,λ′ ),

where λ, λ′ ∈ {x, y, z} denotes the spin of the triplet. Upon
mean-field factorization and using the spin-rotation invariance
of the ground state, this becomes [63]

(
2
3 〈tm · tn〉 t†

m · t†
n − 2

3 〈t†
m · tn〉 t†

n · tm

) + H.c.

The expectation values of products of two triplet operators
thereby take the form

〈t†
m · tn〉 = λi λ j θm,n,

(13)
〈tm · tn〉 = λi λ j ηm,n,

where i ∈ m and j ∈ n are the sites where the exchange term
acts and the “reduced expectation values” θm,n and ηm,n are
identical for all symmetry-equivalent pairs of bonds m, n.
This follows from the fact that, e.g., (λitm) (λ jtn) is symmetry
invariant by construction. In the mean-field factorization of
H (1)

B,F we again encounter the expectation values 〈t†
m · tn〉 and

in addition fermionic expectation values. We define

χm,n =
∑

i∈m
j∈n

ξi, j
ti, j

t

∑
σ

〈 f †
m,i,σ fn, j,σ 〉. (14)

Thereby, χm,n is the same for all symmetry-equivalent pairs
of bonds m, n, which follows from the fact that f †

m,ν,σ in (8) is
symmetry-invariant by construction. The symmetry properties
of θm,n, ηm,n, and χm,n can also be verified by performing
a Hartree-Fock calculation without imposing any symmetry
properties of the expectation values—it turns out that the
self-consistent expectation values are always the same for all
symmetry-equivalent bonds.

Upon decoupling the boson-fermion interaction term H (1)
B,F

we obtain two separate problems, one for the bosons and the
other for the fermions. The bosonic mean-field Hamiltonian is

HB = J
∑

m

t†
m · tm + ζ

∑
〈m,n〉

[(�m,n t†
m · t†

n + Tm,n t†
m · tn)

+ H.c.], (15)

where 〈m, n〉 indicates a sum over all pairs of bonds m and
n connected by a nearest-neighbor bond of the Hamiltonian,
and

�m,n = λiλ j
J

4

(
1 − 2

3
ηn,m

)
,

Tm,n = λiλ j

[
J

4

(
1 + 2

3
θn,m

)
+ t

4
χn,m,

]
. (16)

Thereby i ∈ m and j ∈ n are the sites where the exchange term
acts—these are necessarily nearest neighbors.

The fermionic mean-field Hamiltonian is (omitting the spin
index for brevity)

HF = −t
∑

m

( f †
m,+ fm,+− f †

m,− fm,−) + ζ
∑
m,n

∑
i∈m
j∈n

T̃ i, j
m,n f †

m,i fn, j,

T̃ i, j
m,n = ti, j

4
(1 + ξi, jθn,m). (17)

Thereby, T̃ i, j
m,n depends only on the type of hopping term (t , t ′

or t ′′), which connects the sites i and j and is the same for all
symmetry-equivalent pairs of bonds m and n. Inserting (8), we
find

f †
m,i fn, j = f †

m,+ fn,+ − λi f †
m,− fn,+

− λ j f †
m,+ fn,− + λiλ j f †

m,− fn,−.
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m

+

+

+

−

−

−

−

+

m

+

+ −

−

−

−

−−

FIG. 5. The factors of λiλ j for all bonds connected to the bond m
by the exchange term (dashed lines). In (a) both bonds are along the
x-direction so that these pairs contribute to ε̃ x,x whereas in (b) one
bond is along the y-direction so that these pairs contribute to ε̃ x,y. In
(a) both bonds connecting parallel bonds have λiλ j = 1.

B. The bosonic problem

We consider HB in (15). The parameters θm,n, ηm,n, and
χm,n are identical for all symmetry-equivalent pairs of bonds.
In the following, we replace, e.g., θm,n → θRm−Rn , and the
latter parameters are the same for all symmetry-equivalent
distances. Fourier transformation of HB then gives

H = 1

2

∑
k

∑
α,β∈{x,y}

(
t†
k,α�

α,β

k t†
β,−k + H.c.

)

+
∑

k

∑
α,β∈{x,y}

t†
k,α ε

α,β

k tβ,k,

with the 2 × 2 matrices �k and εk defined by

�
α,β

k = 1

N

∑
m,n

ρm,α �m,n ρn,β eik·(Rn−Rm )

and an analogous definition for ε
α,β

k . We assume �m,n and Tm,n

to be real so that ε−k = ε∗
k and �−k = �∗

k. Both εk and �k are
Hermitian and εk = J + ζ ε̃k with

ε̃ x,x
k = 4T(0,1) cos(ky) − 2T(2,0) cos(2kx )

− 4T(1,1) cos(kx ) cos(ky),

ε̃
y,y

k = 4T(1,0) cos(kx ) − 2T(0,2) cos(2ky)

− 4T(1,1) cos(kx ) cos(ky),

ε̃
x,y

k = 4T( 3
2 , 1

2 )

[
sin

(
3kx

2

)
sin

(
ky

2

)

+ sin

(
kx

2

)
sin

(
3ky

2

) ]
.

This can be verified using the signs of the products λiλ j in
Fig. 5. The expressions for �k are obtained from those for ε̃k

by replacing TR → �R. To diagonalize H , we make the ansatz

τ†
ν,k =

∑
α∈{x,y}

( uν,k,α t†
k,α + vν,k,α t−k,α ),

τν,−k =
∑

α∈{x,y}
( v∗

ν,k,α t†
k,α + u∗

ν,k,α t−k,α ), (18)

where ν ∈ {1, 2}. Demanding [τν,k, τ
†
μ,k] = δν,μ leads to∑

α∈{x,y}
( u∗

ν,k,αuμ,k,α − v∗
ν,k,αvμ,k,α ) = δν,μ, (19)

whereas [H, τ†
ν,k] = ων,kτ

†
ν,k results in the non-Hermitian

eigenvalue problem(
εk −�k

�∗
−k −ε∗

−k

) (
uν,k

vν,k

)
= ων,k

(
uν,k

vν,k

)
. (20)

For a matrix of the type on the left-hand side, it can be shown
that the eigenvalues come in pairs of ±ω, and if (u, v) is the
right eigenvector for +ω, then (v∗, u∗) is the right eigenvector
for −ω—which justifies the ansatz (18). Moreover, (u∗,−v∗)
can be shown to be the left eigenvector for +ω so that (19)
is equivalent to the condition that left and right eigenvectors
for different eigenvalues are orthogonal—as it has to be. The
mean-field Hamiltonian becomes

HB =
∑

k

[
2∑

ν=1

ων,k

(
τ†

ν,k τν,k + 3

2

)
− 3

2
tr(εk )

]
,

and (18) can be reverted to give

t†
k,α =

2∑
ν=1

(u∗
ν,k,α τ†

k,ν − vν,k,α τ−k,ν ),

t−k,α =
2∑

ν=1

(−v∗
ν,k,α τ†

k,ν + uν,k,α τ−k,ν ).

Using these expressions, the expectation values 〈t†
k,α · tk,β〉

and 〈tk,α · t−k,β〉 can be obtained, from which the parameters
θm,n and ηm,n in (13) can be calculated.

C. The fermionic problem

We consider the fermionic Hamiltonian (17). Fourier trans-
formation gives HF = ∑

k HF,k

HF,k = −t
∑

α∈{x,y}
( f †

k,α,+ fk,α,+ − f †
k,α,− fk,α,−) + ζ v

†
kH̃kvk,

(21)

where the vector vk = ( fk,x,+, fk,y,+, fk,x,−, fk,y,−)T has been
introduced. Here we give the elements of the 4 × 4 matrix
H̃k for the case in which the t-J Hamiltonian contains only
nearest-neighbor hopping:

H̃1,1 = 4T̃(0,1) cos(ky) + 4T̃(1,1) cos(kx ) cos(ky) + 2T̃(2,0) cos(2kx ),

H̃1,2 = 4

[
T̃( 3

2 , 1
2 ) cos

(
3kx

2

)
cos

(
ky

2

)
+ T̃( 1

2 , 3
2 ) cos

(
kx

2

)
cos

(
3ky

2

) ]
,

H̃1,3 = −2i( 2T̃(1,1) sin(kx ) cos(ky) + T̃(2,0) sin(2kx )),
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H̃1,4 = −4i

[
T̃( 3

2 , 1
2 ) cos

(
3kx

2

)
sin

(
ky

2

)
+ T̃( 1

2 , 3
2 ) cos

(
kx

2

)
sin

(
3ky

2

) ]
,

H̃2,2 = 4T̃(1,0) cos(kx ) + 4T̃(1,1) cos(kx ) cos(ky) + 2T̃(0,2) cos(2ky),

H̃2,3 = −4i

[
T̃( 3

2 , 1
2 ) sin

(
3kx

2

)
cos

(
ky

2

)
+ T̃( 1

2 , 3
2 ) sin

(
kx

2

)
cos

(
3ky

2

) ]
,

H̃2,4 = −2i(2T̃(1,1) cos(kx ) sin(ky) + T̃(0,2) sin(2ky)),

H̃3,3 = 4T̃(0,1) cos(ky) − 4T̃(1,1) cos(kx ) cos(ky) − 2T̃(2,0) cos(2kx ),

H̃3,4 = 4

[
T̃( 3

2 , 1
2 ) sin

(
3kx

2

)
sin

(
ky

2

)
+ T̃( 1

2 , 3
2 ) sin

(
kx

2

)
sin

(
3ky

2

) ]
,

H̃4,4 = 4T̃(1,0) cos(kx ) − 4T̃(1,1) cos(kx ) cos(ky) − 2T̃(0,2) cos(2ky).

Note that on the respective right-hand sides we have used the
notation T̃m,n → T̃Rm−Rn and dropped the superscripts on T̃
because they all refer to nearest neighbors. The terms in H̃
originating from longer-range hopping integrals such as t ′ and
t ′′ are also easily written down, but the resulting expressions
are lengthy so we do not give them here.

Diagonalizing −(HF,k − μ), we obtain the dispersion Eν,k
(with ν = 1, . . . , 4) for the electronlike quasiparticles and the
corresponding eigenvectors eν,k, from which the mean-field
expectation values χn,m (14) can be calculated. This allows
us to perform the self-consistency procedure, thereby using
Broyden’s algorithm [78] for better convergence, and we
obtain the self-consistent values of the bosonic parameters
θm,n and ηm,n in (13) and χn,m in (14).

D. Excitation spectra

Having obtained a self-consistent solution, we can eval-
uate physical properties such as the single-particle spectral
function and the dynamic spin-structure factor. We consider
a dimer m, which comprises the sites i and j. Using (3) and
(4), one finds the following representations [63]:∑

ν∈{i, j}
eik·Rν ĉν

→ eik·Rm iτy

[
cos

(
kα

2

)
f †
m,+ + i sin

(
kα

2

)
f †
m,−

]

− tm · τiτy

[
cos

(
kα

2

)
f †
m,− + i sin

(
kα

2

)
f †
m,+

]
,

∑
ν∈{i, j}

eik·Rν Sν

→ −i eik·Rm

[
sin

(qα

2

)
(t†

m + tm) + cos
(qα

2

)
t†

m × tm

]
,

(22)

where α ∈ {x, y} is the direction of the bond. Upon Fourier
transformation, the respective second terms in both equations
describe processes in which a triplet that is already present
in the system is annihilated—since the momentum of the
triplet is not fixed, this would result in incoherent continua.
Accordingly, we drop these terms and retain only the first
terms in both equations, which give δ-peaks. We have for any

operator Oi

1

N

∑
i

eik·Ri Oi = 1

4N

∑
m

( ∑
i∈m

eik·Ri Oi

)
,

where
∑

m denotes a sum over all nearest-neighbor bonds, and
inserting (22) for the parenthetical term on the right-hand side
gives

ĉ−k,↑ = 1

4

∑
α∈{x,y}

[
cos

(
kα

2

)
f †
k,α,+,↑ + i sin

(
kα

2

)
f †
k,α,−,↑

]
,

Sq = − i

4

∑
α∈{x,y}

sin
(qα

2

)
(t†

q,α + t−q,α ).

We then obtain the single-particle spectral function and the
dynamic spin structure factor,

A(k, ω) =
4∑

ν=1

|e∗
ν,k · ak|2δ(ω − Eν,k ), (23)

S(q, ω) =
∫

dω eiωt 〈S−q(t )Sq〉

=
2∑

ν=1

|Fν (q)|2δ(ω − ων,q),

Fν (q) =
∑

α∈{x,y}
sin

(qα

2

)
(u∗

ν,q,α − v∗
ν,q,α ), (24)

where ak = (cos ( kx
2 ), cos ( ky

2 ), i sin ( kx
2 ), i sin ( ky

2 ))T . Using
these expressions, the coherent spectral weight of the individ-
ual bands in the electron spectral function and spin structure
factor can be calculated.

IV. RESULTS

Performing the self-consistency procedure described in the
preceding section gives the self-consistent values of the mean-
field parameters θ , η, and χ . Using these, the triplet frequen-
cies ων,q (with ν ∈ {1, 2}), the energies of the electronlike
quasiparticles Eν,k (with ν ∈ {1, . . . , 4}), and the excitation
spectra can be calculated. The results presented below were
obtained at inverse temperature β = 200.
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FIG. 6. Top: triplet dispersion ων,q [see (20)]. Parameter values
are J = 0.4, t ′ = t ′′ = 0, x = 0.1, and ζ = 0.11. Bottom: spin gap
�s = ω(π,π ) vs x for different ζ , J = 0.4, t ′ = t ′′ = 0.

Figure 6 shows the dispersion ων,q for the the triplet
bosons. There is a dispersive band with a minimum at (π, π )
and a second band with practically no dispersion. The coher-
ent spectral weight |Fν (q)|2 in the spin correlation function
(24) vanishes for this band. Most likely this band therefore is
an artefact of the enlargement of the basis of dimer particles in
the course of the averaging procedure—an obvious drawback
of the present approximation. The lower part of Fig. 6 shows
the energy of the dispersive band at (π, π )—which we call the
spin gap �S—as a function of x. This is shown for different
values of the parameter ζ , which originates in the averaging
procedure. For larger x, �S shows a roughly linear variation
with x but bends down sharply as x → 0 and reaches zero at
a certain x, which depends sensitively on ζ . It is a plausible
scenario that �S → 0 for some small x, so that the triplets
condense into momentum (π, π ) resulting in antiferromag-
netic order [46]. In this case, the triplet dispersion would be
backfolded, resulting in a dispersion that is quite similar to
that of antiferromagnetic magnons. The bandwidth, however,
is only ≈J , whereas it should be 2J , another deficiency of
the present approximation. Since the precise value of x where

TABLE I. Self-consistent mean-field expectation values θR and
ηR in (13) and χR in (14) for J = 0.4, x = 0.1, and ζ = 0.11 whereby
t ′ = t ′′ = 0 (A) and t ′ = −0.2 t ′′ = 0.1 (B).

A B

θ(1,0) −0.0234 −0.0233
θ(1,1) −0.0198 −0.0196
θ(2,0) −0.0229 −0.0228
θ( 3

2 , 1
2 ) −0.0223 −0.0221

η(1,0) −0.1178 −0.1176
η(1,1) −0.0673 −0.0672
η(2,0) −0.0720 −0.0718
η( 3

2 , 1
2 ) −0.0712 −0.0710

χ(1,0) −0.0330 −0.0210
χ(1,1) −0.0347 −0.0356
χ(2,0) −0.0110 0.0013
χ( 3

2 , 1
2 ) −0.0150 −0.0283

antiferromagnetic order sets in is unknown, we fix ζ = 0.11
from now on.

Table I gives the values of the self-consistent parameters
θR, ηR, and χR. These are small so that for any approximate
calculation at finite-doping—where the vanishing of �S is
of no concern—the self-consistent parameters could also be
simply omitted. This was noted previously by Gopalan et al.
in their study of spin-ladders [63]. Figure 7 shows some
self-consistent mean-field parameters as a function of x and
J . Except for a small range near the critical x where the
spin gap closes, the bosonic parameters θ and η show little
variation with either x or J . The fermionic parameter χ is
linear in x as expected, and practically independent of J .
Figure 8 shows the density of bosons per bond, nB, and the
combined density of bosons and fermions per bond, nB + x

2 ,
versus x. As already mentioned, the densities are small so that
relaxing the various constraints on the bond particles may
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FIG. 7. Variation of mean-field parameters with x (for J = 0.4)
and with J (for x = 0.1). The vertical line denotes the x where �S →
0. Other parameter values are t ′ = t ′′ = 0, ζ = 0.11.
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FIG. 8. Density of bosons and density of bosons and fermions
per bond vs hole concentration x. The vertical line denotes the
x where �S → 0. Parameter values are J = 0.4, t ′ = t ′′ = 0, and
ζ = 0.11.

be reasonably justified. Figure 9 shows the band structure
for electronlike quasiparticles, Eν,k. The topmost band has a
maximum between ( π

2 , π
2 ) and (π, π ). For vanishing t ′ and t ′′

-3

-2.5

-2

-1.5

-1

-0.5

0

 0.5

E
k

(0,0) (π,π) (π,0) (0,0)

FIG. 9. Quasiparticle dispersion Eν,k [obtained by diagonalizing
−(HF,k − μ) with HF,k in (21)]. Parameter values are J = 0.4, t ′ =
t ′′ = 0, x = 0.1, and ζ = 0.11.
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FIG. 10. Top: quasiparticle dispersion Eν,k for J = 0.4, t ′ =
−0.2, t ′′ = 0.1, x = 0.1, and ζ = 0.11. Bottom: corresponding spec-
tral density A(k, ω), see Eq. (23). δ-functions have been replaced by
Lorentzians of width ε = 0.02.

this maximum is actually degenerate along a circular contour
around (π, π ), so that the fermi surface for finite x would
be a ring with a tiny width around (π, π ) (the area covered
by the ring would be a fraction x/2 of the total Brillouin
zone). This is obviously unphysical. In addition, there are two
dispersionless bands at ≈ − 0.25t and ≈ − 2.14t . As was the
case for the dispersionless band in the triplet dispersion, these
bands have zero coherent weight in the single-particle spectral
function, so we again interpret them as being artefacts of the
averaging procedure.

From now on we consider the system with additional
longer-range hopping integrals t ′ = −0.2, t ′′ = 0.1, and
x = 0.1. The self-consistent mean-field parameters for this
case are also given in Table I. Figure 10 shows the band
structure Eν,k and the single-particle spectral density A(k, ω),
while Fig. 11 displays the Fermi surface. Figure 10 confirms
that the flat bands have no spectral weight—in fact, the
spectral weight of these bands is not just small but zero
to computer accuracy. Qualitatively, the topmost dispersive
band that crosses μ can be compared to ARPES results in
several aspects. Its maximum is at (0.59π, 0.59π ), so that
the Fermi surface is a hole pocket centered at this point—see
Fig. 11. The spectral weight of this band decreases as one
moves toward (π, π ) so that the outer edge of the pocket
has a smaller spectral weight. However, the hole pocket is
too close to (π, π ) and the drop of spectral weight is far
from being steep enough to really match experiment. Along
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(0,π)

(0,0) (π,0)

FIG. 11. Fermi surface for the parameter values in Fig. 10 (red).
The blue line marks the maximum of the band as a function of the
angle with respect to the line (0, π ) − (π, π ).

(π, 0) → (π, π ) the band first disperses toward μ. Then it
bends down and loses weight around the bending point. This is
qualitatively similar to the experiment in [10], but the bending
point (π, 0.47π ) is too far from (π, 0), the band is too far
from μ at (π, 0), and the drop of spectral weight is much too
smooth. On the other hand, this is only the mean-field result,
and coupling to the triplet bosons may lead to modifications
of the quasiparticle dispersion and spectral weight, as is the
case for hole motion in an antiferromagnet [79–83].

Figure 12 shows the triplet dispersion ων,q and the spectral
intensity in the spin correlation function S(q, ω). The disper-
sionless band has zero spectral weight, so that only a single
mode is visible in S(q, ω). This has a minimum at (π, π ),
and the spectral weight is concentrated sharply around this
wave vector. Experimentally, inelastic neutron scattering from
underdoped cuprates shows an “hourglass” or “X-shaped”
dispersion around wave vector q = (π, π ) [84] (which may
also be “Y-shaped” [85]). This is frequently interpreted [84] as
a magnonlike collective mode above the neck of the hourglass
coexisting with particle-hole excitations of the Fermi gas of
free carriers below the neck. The part above the neck of the
hourglass thus would correspond to the triplet mode in Fig. 12.
The mean-field treatment of the bond-particle Hamiltonian
cannot reproduce the particle-hole excitations below the neck,
but terms like tn · v(n,ν ′ ),(m,ν) in (7), which describe the decay
of a triplet into a particle-hole pair and which have been
ignored in the mean-field treatment, may well produce these
features. The mean-field triplet dispersion also does not re-
produce the paramagnon excitations with q close to the zone
center [86]. These paramagnons show a decreasing frequency
as q → 0 [86], which differs strongly from the calculated ων,q.
On the other hand, in the mean-field approximation we have
neglected anharmonic terms such as t†

n · (t†
m × tm) in (6). By

virtue of such terms, a magnon with momentum q close to
the zone center may decay into two magnons with momenta
(π, π ) + q1 and (π, π ) + q − q1 with small q1 (coupled to a

 0

 0.1

 0.2

 0.3

 0.4

 0.5

ω
q

(0,0) (π,π) (π,0) (0,0)
 0

 0.1

 0.2

 0.3

 0.4

 0.5

ω
q

FIG. 12. Top: triplet dispersion ων,q [see (20)] for the parameter
values in Fig. 10. Bottom: coherent spectral weight in the dynamic
spin structure factor; see Eq. (24). δ-functions have been replaced by
Lorentzians of width ε = 0.02.

triplet), and the true magnetic excitation may be a superposi-
tion of such states. We defer this to a separate study, however.

V. SUMMARY

In summary, we have presented a theory of the lightly
doped paramagnetic Mott-insulator by formulating the t-J
Hamiltonian in terms of bond particles for a given dimer
covering of the plane, and averaging this over coverings.
The major simplification for low doping thereby comes about
because the majority of dimers are assumed to be in the
singlet state, which we reinterpreted as the vacuum state of
the dimer, so that a theory for a low-density system of holelike
fermions and tripletlike bosons resulted. By virtue of the
low density, relaxing the infinitely strong repulsion between
these remaining particles may be a reasonable approximation.
In fact, a similar approach has given reasonable results for
the Kondo lattice, at least in the parameter range where the
density of fermions and bosons indeed was small [75,87,88].

The results describe what might be expected for a doped
Mott insulator after long-range antiferromagnetic order has
collapsed: due to their strong Coulomb repulsion, the elec-
trons are “jammed” so that the all-electron Fermi surface has
collapsed. Instead, the electrons form an inert background—
the “singlet soup”—and the only “active fermions” are the
doped holes. These correspond to spin- 1

2 fermions, and the
fractional volume of the Fermi surface is x/2 rather than (1 ±
x)/2. As is the case in a Mott-insulator, the jammed electrons
retain only their spin degrees of freedom, and the exchange
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coupling between these results in a bosonic spin-triplet mode
with a minimum at q = (π, π ). The Fermi surface consists of
hole pockets centered near ( π

2 , π
2 ) and symmetry-equivalent

points. By and large, this description is consistent with a
large body of experimental results for the pseudogap phase
of underdoped cuprates, as discussed in the Introduction. It
should be stressed that in order to obtain these results, use of
the bond particle theory is advantageous. Namely, in the bond
particle theory we have holelike spin- 1

2 fermions (the f †
m,±,σ

fermions) and tripletlike spin excitations (the t†
m bosons) as

the elementary excitations from the very outset. This can
be contrasted, for example, with the slave-boson/fermion
representation of the t-J model where one replaces ĉ†

i,σ →
f †
i,σ bi, whereby the b-particle represents the empty site [89].

To model fermions that correspond to the doped holes, one
would have to assign Fermi statistics to the b-particle, but
then one would find spinless holes. On the other hand, the
proportionality S = aT χ [22] suggests that the carriers in
underdoped cuprates are spin- 1

2 fermions.
Whereas the overall scenario predicted by the bond-

particle theory is consistent with experiment, a more de-

tailed comparison shows clear deficiencies. Compared to
experiment, the pocket is shifted toward (π, π ) and the width
of the quasiparticle band is too large. The k-dependence
of the spectral weight at the Fermi surface is too weak so
that the spectral weight of the part of the pocket facing
(π, π ) is too large to actually reproduce the Fermi arcs.
Moreover, the bandwidth of the triplet bosons is too small
by a factor of ≈2. On the other hand, this is only the mean-
field result, where moreover the infinitely strong repulsion
between bond-particles has simply been neglected. Taking
this into account as well as the coupling between holes and
triplets may result in modifications. This can be seen from
the reasonably well understood problem of hole motion in
an antiferromagnet [79–83], where it is known that the hole
is heavily dressed by spin fluctuations. For spin-ladders, the
coupling between holes and triplets has already been carried
out [64,65] in the framework of bond particle theory and
given convincing results. Despite its obvious deficiencies, the
bond particle formalism, therefore, may provide a reasonable
starting point for more rigorous treatments of underdoped
cuprates.
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