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In the absence of rotational symmetry, a fractional quantum Hall (FQH) system can exploit a geometric degree
of freedom to minimize its ground-state energy. The mass anisotropy of bare particles interacting isotropically
is partially inherited by the many-body FQH state, to an extent that depends on the type of interaction, filling
fraction, and ground-state phase. Using numerical infinite density matrix renormalization group simulations, we
investigate the transference of elliptical (C2-symmetric) anisotropy from the band mass of the bare particles to the
FQH states, for various power-law interactions. We map out the response of FQH states to small anisotropy as a
function of power-law exponent, filling, and statistics (bosonic or fermionic) of the constituents. Interestingly, we
find a nonanalyticity in the linear response of the FQH state at a special filling-dependent value of the power-law
exponent, above which the interactions effectively become zero-range (pointlike). We also investigate the effect
of C4-symmetric band distortions, where we observe a strikingly different dependence on filling.
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I. INTRODUCTION

Fractional quantum Hall phases are extreme examples of
strongly correlated matter. In a high perpendicular magnetic
field, the single-particle spectrum of a two-dimensional elec-
tron gas splits into highly degenerate Landau levels separated
by cyclotron gaps which may be made arbitrarily large. In
this regime, a plethora of interesting phases can be realized
[1,2] as a function of Landau level filling, interaction type
and disorder. Some examples are (i) a gapped incompressible
fractional quantum Hall (FQH) liquid [3,4], (ii) a gapless
composite Fermi liquid (CFL) [5], and translation symmetry-
breaking states such as (iii) Wigner crystals [6], and (iv)
charge density waves (CDWs), including stripe and bubble
phases [7–9].

Following Laughlin’s variational wave function [4], the
hierarchy [10], and flux attachment [11] pictures have paved
the way for our understanding of many of the FQH plateaus.
This understanding was initially confined to rotationally sym-
metric Hamiltonians. While it was known that the continuous
rotational symmetry was not a necessary ingredient for FQH
physics, and that it could be externally broken, e.g., by an
anisotropic band mass [12], anisotropic FQH states received
limited attention until Haldane [13] pointed out the presence
of an intrinsic geometric degree of freedom of FQH states,
acting as a hidden variational parameter in the Laughlin wave
function. In the past decade, this geometric degree of freedom
has received considerable attention [14–34].

Within this framework, theoretical efforts to understand
the effects of anisotropy have focused on anisotropic model
wave functions [14,20] and pseudopotentials [28,29]. These
studies have been complemented by computational work on
the effects of anisotropy due to band mass, interaction, tilted
magnetic fields, and curved space [15,16,18,21], as well as
the role of filling fraction [31]. Connecting these results to
experiments is not straightforward [35] as gapped states lack a

Fermi contour and transport involves anisotropy of scattering
as well.

In this work, we study the response of the ground state to
anisotropy for various power-law interactions. This provides
us with a numerical probe of the “non-Laughlin-ness” of the
true ground state as the interaction is tuned from Coulomb
to shorter ranged. We also investigate the response of FQH
states on higher-order anisotropy, i.e., beyond the simplest
case of elliptical distortion. This case has not received as much
attention, though a few studies exist [27,36–38].

In contrast, for gapless fractions like ν = 1/2, the presence
of a composite Fermi contour makes direct experimental
determination of the effects of Fermi surface deformation fea-
sible [39–44]. In all cases, the competition between isotropic
interaction and an anisotropic bare Fermi contour leads to a
measurable effect on the anisotropy of the composite fermion
Fermi surface. Numerical calculations [25] agree well with
experimental observations; further the extent to which the
anisotropy carries over to the composite Fermions depends on
the interaction (e.g., its exponent for power-law interactions).
It is therefore of interest to see if the dependence of the
CFL’s response to anisotropy as a function of interaction is
qualitatively similar or different to that of gapped FQH states.

Historically, the most popular experimental platforms for
the FQH effect have been two-dimensional electron gases
confined in semiconductor quantum wells [3,45–48] and,
more recently, graphene [49–52]. In recent years, there have
been efforts to synthesize the FQH states in nonelectronic
systems, for example, using ultracold atoms [53–55] and pho-
tons [56,57]. In these systems, interparticle interaction is not
expected to be Coulombic, and short range or contact interac-
tions are typically assumed. These are compelling motivations
for us to study the interplay of anisotropy and interaction for
both fermionic and bosonic quantum Hall fractions.

The effect of anisotropy of the Hamiltonian will depend
on the Landau level in question. Higher Landau levels are
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known to be more prone to instabilities towards rotational
and translational symmetry breaking phases. The problem of
anisotropy-induced phase transitions in n > 0 Landau levels
has received much attention both from theory [34,58,59] and
from experiment [60–63] and holds many interesting open
questions. In this paper, however, we focus on incompressible
FQH states in the lowest (n = 0) Landau level (LLL) that
are stable to the application of anisotropy, and study their
linear response to weak distortions that are far from any
instability. For strong enough distortions, we generally expect
every FQH state to transition into a symmetry-broken phase.
Characterizing this transition and its dependence on filling and
interaction type is left to future work.

This paper is organized as follows. In Sec. II, we describe
the Hamiltonian of our system and sketch the computational
method underlying our calculations. In Sec. III, we provide a
theoretical analysis of what should be expected in the case of
fermionic FQH states, and present numerical results which are
in agreement with those expectations. Section IV describes
our exploration of corresponding bosonic FQH states. In
Sec. V, we present our results for C4 symmetric distortions
in the ν = 1/3 and 1/5 fermionic FQH states. We conclude in
Sec. VI with a discussion of our results.

II. MODEL AND METHOD

Our system is described by the usual quantum Hall Hamil-
tonian for Ne electrons in perpendicular magnetic field B =
Bẑ, and corresponding magnetic vector potential A:

H =
Ne∑

i=1

Ti + Hint

= 1

2

Ne∑
i=1

(m−1)abπi,aπi,b + 1

2

Ne∑
i �= j

V (ri − r j ). (1)

The first term above is the kinetic energy, defined in terms
of the dynamical momentum of the ith electron πi = pi − eAi.
The inverse mass tensor is denoted m−1. Summation over the
spatial indices a, b ∈ {x, y} is implicit.

The second term in Eq. (1) is the interaction poten-
tial Hint, which we take to be of the form V (r) ≡ V (|r|ε ).
The distance |r|ε depends on the dielectric tensor ε, which
defines a spatially uniform metric |r|2ε ≡ εabrarb. The two
metrics described by mab and εab are independent. A linear
change of coordinates can get rid of the anisotropy in either
one of them, but not both simultaneously. Without loss of
generality, we take the interaction to be isotropic, ε = 1,
which is accomplished by applying the linear transformation
ε−1/2 to the coordinates. We can then rotate coordinates to
make the mass tensor diagonal, though not proportional to
the identity: mab = diag(mxx, myy ), mxx �= myy. The single-
particle kinetic energy Ti of Eq. (1) then becomes

Ti = π2
i,x

2mxx
+ π2

i,y

2myy
. (2)

We define α ≡ √
myy/mxx as the anisotropy of the noninter-

acting system.

We refer to this type of anisotropy, which is invariant
under C2 discrete rotational symmetry, as elliptical or twofold
anisotropy [27]. The first part of the present work analyzes
this case. In Sec. V, we consider a generalization of the kinetic
energy term of Eq. (1) to nonquadratic functions Ti(πi ) whose
equal-energy contours are not ellipses. Such a description
allows us to study N-fold anisotropy (N > 2), as may arise
naturally from the symmetries of crystalline band structures.

In the limit of high magnetic field B, the cyclotron energy
ωc is much larger than other energy scales in the problem, and
we may safely project all the dynamics to the lowest Landau
level (LLL). In this limit, mixing with higher Landau levels is
negligible. The kinetic energy of the system is thus quenched,
and the Hamiltonian reduces to

HLLL = 1

2

Ne∑
i �= j

∑
q

V (q)|F0(q)|2eiq·(Ri−R j ), (3)

where Ri ≡ ri − l2
B
h̄ πi × ẑ is the guiding center operator of

the ith electron and V (q) is the Fourier transform of the
interaction potential V (r). The form factor F0(q) accounts for
the projection of the potential into the basis of anisotropic
LLL orbitals, and encodes their anisotropy:

|F0(q)|2 = exp

[
− l2

B

2

(
αq2

x + q2
y

α

)]
. (4)

We seek to compute the anisotropy of the many-body
quantum Hall ground state from its structure factor S(q),
which is related to the momentum space charge distribution.
This anisotropy, denoted by αQH, quantifies the deviation
from circular symmetry of the contours of S(q) in (qx, qy )
space, similar to how α quantifies the same for the single-
particle kinetic energy in (πx, πy) space. We introduce a more
convenient parametrization of the anisotropies α and αQH,
following Ref. [31]. Since a π/2 rotation maps α �→ 1/α and
αQH �→ 1/αQH, in the 2D thermodynamic limit one has the
reciprocity relation

αQH(1/α) = 1

αQH(α)
. (5)

In terms of the logarithmic quantities

γ ≡ ln α and σ ≡ ln αQH, (6)

Eq. (5) becomes

σ (−γ ) = −σ (γ ). (7)

For small anisotropy, one can expand around the isotropic
point γ = σ = 0 and obtain

σ (γ ) ≈ c1γ + O(γ 3). (8)

The quadratic coefficient is automatically absent due to sym-
metry, and the linear coefficient 0 � c1 � 1 quantifies the
extent to which the band mass anisotropy is transferred to the
quantum Hall state, with deviations O(γ 3).

For our numerical calculations, we set up the system on
an infinite cylinder, with axis along x̂ and circumference
Ly. Combined with the choice of Landau gauge A = Bxŷ,
this allows us to map the problem to a one-dimensional
fermion chain and take advantage of the matrix-product states
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formalism. We use the infinite density matrix renormalization
group (iDMRG) algorithm for quantum Hall states [64,65].
This introduces a second cutoff in the problem, besides Ly:
The bond dimension χ , i.e., the maximum dimension of the
matrices used to approximate the many-body ground state.
After converging to the approximate ground state for a given
anisotropy γ and circumference Ly, we calculate the guiding
center structure factor S(q), defined below. The effect of
anisotropy is quantified by the long-wavelength behavior of
S(q) (for gapped FQH states), or the nonanalyticities of S(q)
at the composite fermion surface (for gapless CFL states).
We briefly review the procedure by which the anisotropy is
calculated from S(q) below. A detailed discussion may be
found in Ref. [31].

The guiding center structure factor S(q) is defined as

S(q) = 1

Ne
〈δρ(q)δρ(−q)〉, (9)

where δρ(q) ≡ ρ(q) − 〈ρ(q)〉 and

ρ(q) =
Ne∑
j=1

eiq·R j (10)

is the Fourier transform of the guiding center density oper-
ator. Due to the incompressiblity of gapped FQH states, the
structure factor is quartic at long wavelengths [66,67]. Since
our simulations are on an infinite cylinder, we have access
to a continuum of wave vectors qx, and may express the
long-wavelength structure factor

S(qx, 0) ≈ λ(γ )q4
x as qx → 0. (11)

The prefactor λ(γ ) is obtained numerically by taking the limit

λ(γ ) = lim
qx→0

S(qx, 0)/q4
x . (12)

The dependence of this prefactor on γ may be split into even
and odd parts as λ(γ ) = e2(D(γ )+σ (γ )). The even term D(γ )
represents an isotropic rescaling of the structure factor, and
was found in Ref. [31] to be nearly constant in Laughlin frac-
tions with Coulomb interaction. The term we are interested
in is σ (γ ), which flips sign when we rotate the anisotropy by
an angle of π/2 (i.e., transform γ → −γ ). This is the term
that controls the ellipticity of contours of S(q) and is a useful
proxy for the anisotropy of the many-body ground-state wave
function itself. It is calculated as

σ (γ ) = 1

4
ln

λ(γ )

λ(−γ )
. (13)

We sweep over a range of anisotropies −0.3 < γ < 0.3
(0.74 < α < 1.35) to obtain a linear fit σ (γ ) 
 c1γ .

For the gapless state at ν = 1/2, the structure factor
S(q) has singularities at q values corresponding to scattering
processes between different points on the composite Fermi
surface of the CFL. As described in Refs. [25,68], placing
the system on an infinite cylinder discretizes the momentum
in the ŷ direction, qy ∈ (2π/Ly)Z, so that the Fermi contour
consists of isolated points. Sharp features in S(qx, qy) allow
us to pinpoint the coordinates of these points. By aggregating
data from multiple values of the circumference Ly, we can
gather enough points to accurately reconstruct the elliptical

shape of the two-dimensional Fermi contour and extract its
anisotropy.

Capturing the behavior of the system in the thermody-
namic limit from finite size iDMRG calculations requires
care. The circumference of the cylinder Ly must be large
enough to avoid spurious effects from periodic boundary
conditions along that direction. However, the entanglement
entropy S across a constant-x cut in the cylinder obeys an
area law, and thus grows linearly in Ly. The bond dimension
χ required to capture this entanglement accurately increases
exponentially: ln χ � S ∼ Ly. Since the computational com-
plexity of iDMRG is at least O(χ4), we are limited to a
range of circumferences 14lB � Ly � 30lB, for which bond
dimensions χ � 4096 provide accurate results.

The only form of the interaction V (r) for which the ana-
lytical expression of σ (γ ) is known is that of a Gaussian in-
teraction with characteristic length slB, i.e., V (r) = e− 1

2 (r/slB )2
,

due to Yang [69]. Since the form factor of the LLL is also a
Gaussian, a clever rearrangement of terms provides a closed-
form expression for the anisotropy of the quantum Hall state:

σ (γ ) = 1

2
ln

(
eγ + s2

e−γ + s2

)

= 1

s2 + 1
γ + s2(s2 − 1)

6(s2 + 1)3
γ 3 + · · ·. (14)

The linear coefficient c1 = 1
s2+1 decreases as the range s of

the isotropic interaction is made larger. For power-law inter-
actions, which we consider here, there is no simple expression
for c1, and we must compute it numerically as described in the
following sections.

III. FERMIONIC STATES

Any interaction V (r) can be expanded in terms of its
Haldane pseudopotentials Vm in the lowest Landau level. In
terms of these pseudopotentials, the ground-state energy Egs

of a configuration of Ne electrons with many-body wave
function |ψ〉 is

Egs = 〈ψ |HLLL|ψ〉/〈ψ |ψ〉

=
(

Ne

2

) ∞∑
n=0

A2n+1V2n+1. (15)

Here, An � 0 is the probability for two electrons to have rel-
ative angular momentum nh̄, and

∑
n An = 1. Antisymmetry

ensures that any valid fermionic ground-state wave function
|ψ〉 has all even An equal to zero.

The Laughlin wave function at filling ν = 1/m is

ψ
(m)
L

(
r1, · · · , rNe

) =
Ne∏

i> j

(zi − z j )
m exp

(
−

Ne∑
i=1

|zi|2
4l2

B

)
, (16)

where z j = (x j − iy j )/lB is the complex valued position of the
jth electron. This wave function has the additional feature
that odd coefficients An vanish for all n < m. By Eq. (15),
the Laughlin state |ψ (m)

L 〉 is a zero-energy ground state of
any interaction with non-negative pseudopotentials such that
Vn = 0 for all n � m; it is the highest-density ground state if
all the Vn with odd n < m are nonzero.
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For a power-law interaction V (r) = U
(r/lB )p , where U is the

interaction energy scale,

Vm =

⎧⎪⎨
⎪⎩

�
(
m + 1 − p

2

)
m!2p

U if p < 2(m + 1)

∞ otherwise

. (17)

The mth Haldane pseudopotential Vm is infinite when p �
2(m + 1), and diverges logarithmically as p → 2(m + 1).
This fact has implications for FQH states at different fillings
as described below.

A. Fermionic FQHE parent states at ν = 1/3 and ν = 1/5

For a power-law interaction with exponent p � 4, the
Haldane pseudopotential V1 becomes divergent. The Laughlin
state |ψ (3)

L 〉, which has coefficient A1 = 0, is then the only
possible antisymmetric state with finite energy at ν = 1/3.
Equivalently, if one normalizes the overall energy scale U
such that V1 ≡ 1, all the higher pseudopotentials vanish, and
|ψ (3)

L 〉 is the only zero-energy state. This implies that, for
fermions in the LLL at filling 1/3, any power-law interaction
with p � 4 becomes effectively a contact interaction, V (r) ∼
∇2δ(r). Such an interaction does not introduce a metric εab

into the problem, and the band mass tensor mab alone sets the
FQH state’s geometry. In other words, the problem is isotropic
up to a rescaling of the coordinates, hence the anisotropy of
the bare fermions carries over completely to the many-body
ground state, giving αQH = α. The linear response coefficient
in particular is c1 = 1.

If the interaction power-law exponent satisfies p � 8, then
both V1 and V3 diverge. At ν = 1/3, the Laughlin state |ψ (3)

L 〉
(which has A1 = 0 but A3 �= 0) has a divergent energy E ∼
A3V3. However it is still the ground state, as V1 diverges
more strongly than V3. If one regularizes the interaction by
introducing a short-distance cutoff � (as we shall do later
to ensure numerical stability), then as � → 0 one has Vm ∼
�2(m+1)−p, hence V3/V1 ∼ �4. Therefore the divergence of V1

is dominant and |ψ (3)
L 〉, being the unique state with A1 = 0

at ν = 1/3, remains the ground state. For ν = 1/5, instead
the divergence of V3 has an important effect: The Laughlin
state |ψ (5)

L 〉 (with A1 = A3 = 0) becomes the unique finite-
energy ground state, with the attendant conclusions about the
transference of anisotropy.

It is straightforward to see how this generalizes to different
fractions: For filling ν = 1/m, there is a critical power law
pc(m) = 2(m − 1) above which αQH = α and thus c1 ≡ 1.
For p < pc(m), we instead expect the anisotropy of the bare
fermions to carry over only incompletely to the quantum Hall
state, giving c1 < 1.

This picture implies a nonanalytical behavior of c1 as the
interaction is made shorter ranged: c1(p) cannot be analytical
at p = pc, as c1(p > pc) ≡ 1 while c1(p < pc) is a nontrivial
smooth function. This may manifest as a kink (a discontinuity
in the first derivative), a discontinuity in higher derivatives,
or a more subtle nonanalytical feature. For comparison, in the
case of Gaussian interaction V (r) = e−r2/2s2l2

B [see Eq. (14)],
we have c1 = (1 + s2)−1. This is a smooth function of s
that flows asymptotically towards 1, in a filling-independent
manner, as the range is made shorter (s → 0).

1 2 3 4 5

interaction power law exponent p

0.2

0.4

0.6

0.8

1.0

c 1

ν = 1/3

ν = 1/5

10−1 10−2 10−3 10−4

Δ

0.85

0.90

0.95

1.00

c 1
(p

=
4)

FIG. 1. The linear coefficient c1 of the response of the ν = 1/3
and ν = 1/5 FQH states to anisotropy is plotted as a function of
interaction power-law exponent p. Simulations are carried out for
five different sizes Ly and bond dimensions χ = 2048 to 4096 to
account for finite size and truncation effects. We estimate errors from
the standard deviation of the three best converged sizes at the highest
bond dimension. The short length scale cutoff � is fixed at 10−3.
(Inset) The value of c1 at the critical power law pc = 4 for ν = 1/3
is plotted as a function of the cutoff �. It appears to flow to the
theoretical value of 1 as � → 0.

We numerically compute the anisotropy for a modified
power-law interaction

V (r) = lB
r

(
r2

l2
B

+ �2

) 1−p
2

, (18)

where � is a small regularizing parameter needed to en-
sure numerical stability at short length scales. In the limit
� → 0, we recover the familiar power-law with exponent
p. For Coulomb interaction (p = 1), it was found [31] that
c1 ≈ 0.43. The result of our numerical fit (Fig. 1) for the
linear anisotropy coefficient c1 is consistent with c1 increasing
monotonically with the power-law exponent p for p < 4, and
attaining a constant value c1 = 1 for p � 4. The deviation
from the theoretical prediction near p = 4 is entirely due to
our use of a short range numerical cutoff �. As we reduce
�, the numerically obtained c1 converges to the expected
value. As the singularity at p = 4 is logarithmic, we must span
several orders of magnitude in � to observe a significant drift
of the result. The approach to � → 0 is ultimately limited by
numerical instability. For the ν = 1/5 FQH state, the value
of c1 is smaller than that for ν = 1/3 at every power-law
considered, indicating that the transference of anisotropy is
much less in this case. The value of c1 also increases much
more slowly as a function of power-law exponent, and is
consistent with reaching a value of c1 = 1 at p = 8, although
numerical stability issues limit the range of our study to
smaller values of p.

In Fig. 2, we show the overlap (per flux quantum) of the
ground state of the power-law interaction, as obtained by
the iDMRG algorithm, with that of the Laughlin wave func-
tion, obtained for a V1 Haldane pseudopotential interaction.
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1 2 3 4 5

interaction power law exponent p

10−7

10−6

10−5

10−4

10−3
1

-
ψ

G
S
|ψ

L
2

ν = 1/3

FIG. 2. The overlap (per quantum of flux) of the ground state of
the power-law interaction at ν = 1/3 with that of the Laughlin wave
function |ψ (3)

L 〉 is plotted as a function of the power-law exponent
at zero anisotropy. The system size is fixed at Ly = 20lB, the cutoff
� = 10−3, and bond dimension for iDMRG is χ = 4096.

The overlap is already very high (>99.9 %) for Coulomb
interaction—a fact that contributed to the initial success of
Laughlin’s ansatz as a description of the FQH effect. However,
as the power law is made shorter ranged by increasing p, the
overlap increases further and rapidly approaches 1 as p → 4,
in agreement with the theoretical arguments made above,
and in a manner compatible with the response to anisotropy
plotted in Fig. 1.

B. Fermionic FQHE daughter state at ν = 2/5

Many different FQH fractions ν �= 1/m have been ex-
plained by the hierarchy [10] or composite fermion (CF)
[11,70] pictures. These can inform our expectation of the
response of these states to anisotropy, and we briefly review
them in the following.

In the hierarchy picture, introducing a number Nqh =
(Ne + 1)/2p of quasiholes or quasielectrons into the Laughlin
state at a parent filling ν = 1/q creates a daughter state
of quasiparticles at electronic filling 2p

2pq±1 . This daughter

state is described by a Laughlin wave function |ψ (q)
L 〉 of

quasiparticles. Starting with any daughter state, the process
can be recursed to obtain a whole tree of states originating
from a single parent. The hierarchy states are FQH liquids
provided the pseudopotentials for quasiparticles decay suffi-
ciently quickly and the energy gaps are large enough. Since
the wave functions of daughter states are related to those of
the parent states, we would expect the response to anisotropy
to follow similarly.

In the CF picture, one starts from the concept of flux
attachment: 2p quanta of magnetic flux are attached to each
electron so that the resulting object, the composite fermion,
sees an effective filling νCF = ν

1−2pν . Then the integer quan-
tum Hall effect of CFs, νCF = n ∈ Z, explains electronic frac-
tions n

1+2pn . The original Laughlin state corresponds to n = 1,
while other integers form a “Jain sequence” that culminates in
the even-denominator CFL state ν = 1

2p . In this picture, since
the entire Jain sequence is ultimately created from the same

1 2 3 4 5

interaction power law exponent p

0.2

0.4

0.6

0.8

1.0

c 1

ν = 1/3

ν = 2/5

FIG. 3. The linear anisotropy coefficient c1 for the FQH state at
filling ν = 2/5. The short-distance cutoff is fixed at � = 10−3. For
comparison, the curve from Fig. 1 for ν = 1/3 is plotted as a dashed
blue line.

object, it is natural to associate a shape to the CF and expect
it to be inherited by all fractions in the sequence.

In Fig. 3, we plot the numerical fit to linear anisotropy
coefficient c1 at filling ν = 2/5. This state is a daughter of
the ν = 1/3 state, and based on the previous discussion we
expect it to show a similar response as its parent state. In line
with our expectations, we see quantitative similarities over the
entire range of interaction with the plot of c1 for the ν = 1/3
state in Fig. 1. In particular, we again see a critical power-law
exponent pc = 4 above which the anisotropy is transferred
completely to the FQH state.

C. Composite Fermi liquid state at ν = 1/2

In Ref. [25], the transference of anisotropy to the CFL for
Coulomb (1/r) and dipolar (1/r3) interactions was studied.
The coefficient c1 for the two cases was found to be 
0.49
and 
0.80. Here, we perform calculations for the intermediate
case V (r) = 1/r2, using system sizes 13lB � Ly � 24lB and
bond dimension χ = 4096. Following the method outlined in
Sec. II, we find a coefficient c1 
 0.61 (Fig. 4). Unlike the
gapped FQH case, here each point is calculated by aggregating

1.0 1.5 2.0 2.5 3.0

interaction power law exponent p

0.4

0.6

0.8

1.0

c 1

CFL ν = 1/2

FQH ν = 1/3

FIG. 4. The linear anisotropy coefficient c1 for the ν = 1/2 CFL,
for three different power laws. For comparison, the curve from Fig. 1
for ν = 1/3 is also plotted.
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data over all sizes, which makes it impossible to characterize
the error from the variation of c1 with system size. We instead
estimate the uncertainty to be approximately 0.02, based on
the extremes of acceptable fits to the elliptical Fermi surface.

This result is consistent with our understanding that
the transference of anisotropy to the CFL becomes larger
as the power-law exponent p increases. It is also interesting
that the c1 coefficient extracted for the CFL is consistently
larger than that for the ν = 1/3 FQH state and its daughter
state ν = 2/5: The discrepancy is small, especially consider-
ing the difficulty of analyzing finite-size effects on the CFL
results, but it is nonetheless reproduced systematically, for
three distinct power laws, with similar magnitude. The hierar-
chy sequence starting from the ν = 1/3 FQH state culminates
in the CFL at ν = 1/2. It is an interesting open question
whether the response to anisotropy of gapped FQH states in
the sequence drifts smoothly towards the CFL value as ν is
increased, or whether the response changes discontinuously
as the gap closes. The small discrepancy between ν = 2/5 and
ν = 1/3 seen in Fig. 3 seems to support the former scenario;
however, more work is needed to settle this issue.

IV. BOSONIC STATES

The FQH can also be realized in systems of bosons
with a repulsive interaction in an external magnetic field.
In this section, we repeat the analysis of fermionic FQH
states of Sec. III on the analogous states for bosonic systems.
Our results, including the singularity at power-law exponent
pc(m) = 2(m − 1) and the identical response of parent and
daughter states, should apply regardless of the statistics of the
underlying constituents. Bosonic FQH states are therefore a
natural testbed for our results.

The projected LLL Hamiltonian remains the same as in
Eq. (3). In this case, the ground state at filling fractions
ν = 1/m is a gapped incompressible liquid for even m. The
ground-state energy Egs depends only the even pseudopoten-
tials V2m. The bosonic Laughlin wave function at filling ν =
1/m with even m is the exact, zero-energy, maximum density
ground state of a potential whose only nonzero Haldane
pseudopotentials are V2k , k < m/2. A gapped FQH phase,
adiabatically connected to the Laughlin state, is stable when
higher pseudopotentials V2,V4, · · · are turned on [71,72], as is
the case for Coulomb interactions.

The same argument we formulated for anisotropy of
fermions applies to bosons as well: Any power law V (r) ∼
r−p with p � 2(m − 1) maps onto a contact interaction and
gives c1 = 1, whereas lower powers may give nontrivial
response 0 < c1 < 1. Below we investigate the effects of
anisotropy on bosonic FQH states at ν = 1/2, 1/4 and 2/3.

For the bosonic FQH state at ν = 1/2, with Coulomb
interaction, we expect the transference of anisotropy to be
partial, with c1 < 1, since the critical power law pc = 2. For
ν = 1/4, the critical power law pc = 6.

In Fig. 5, we see that the linear anisotropy coefficient
c1 ≈ 0.69 for Coulomb interactions at ν = 1/2, and rises
monotonically with p. There is a kink at p = 2, which is
softened by our use of a short length scale cutoff �. For
interaction power-law exponent p � 2, c1 = 1.

1.0 1.5 2.0 2.5

interaction power law exponent p
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0.4

0.6

0.8

1.0

c 1
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ν = 1/4

ν = 2/3

10−1 10−3 10−5

Δ

0.85

0.90

0.95

1.00

c 1
(p

=
4)

FIG. 5. Similar to Fig. 1, but for bosonic parent fractions at
ν = 1/2 and 1/4, and the bosonic daughter state at ν = 2/3. The
variation of linear anisotropy coefficient c1 with power-law exponent
p is plotted. For simulations, a cutoff � = 10−3 is used. Points are
estimated by running simulations over five different sizes Ly and
bond dimension χ = 2048 to 4096. The inset exhibits the variation
of c1 with � for pc = 2 for filling ν = 1/2, showing the convergence
of c1(pc ) → 1 in the � → 1 limit.

For the state at ν = 1/4, the value of c1 is smaller than that
for ν = 1/2. Numerical instability limits our investigations to
small power laws, but nevertheless the slow growth in c1(p)
is consistent with a kink in c1(p) at a much larger power-law
exponent.

The bosonic FQH state at ν = 2/3 is a daughter of the
ν = 1/2 state. The responses of both states to anisotropy are
found to be very close to each other, within the numerical
accuracy of our method. This result parallels the one we found
for fermionic daughter states in the previous section.

V. C4-SYMMETRIC DISTORTIONS

In this section, we extend our discussion beyond ellip-
tical anisotropy to consider band dispersions with discrete
fourfold (C4) rotational symmetry, which is often present in
real band structures but does not seem to play as much of a
role as band mass (C2) anisotropy in shaping the FQH state.
These type of distortions have recently gained attention in
contexts ranging from the integer quantum Hall effect [36],
a field-theoretic approach to the CFL [73], and the out-of-
equilibrium dynamics of the FQH “graviton” [33]. General-
ized anisotropic pseudopotentials [28] have been developed to
address this and other types of distortions beyond band mass
anisotropy.

Previous numerical work [27] has analyzed this problem
for the CFL at filling ν = 1/2, where the effect of C4 sym-
metric distortions was found to be substantially smaller than
that of C2 distortions (by about one order of magnitude at the
level of linear response). The distortions were measured from
the shape of the CFL Fermi contour via the same method
outlined in Sec. III C, which probes momenta q ≈ �−1

B . This
raises the question of long-wavelength (q → 0) response in
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incompressible FQH states, where the quartic behavior of
S(q) may provide a natural channel for C4 symmetric distor-
tions and thus one may expect stronger effects.

A. Model and method

We follow the method used Ref. [27], which we review
below. We consider the dispersion

ε(k, θ ) = k4(1 + tanh(2γ ) cos(4θ )) ≡ EF

(
k

kF (θ )

)4

, (19)

which is C4-symmetric, is a polynomial in kx, ky, and defines
a Fermi contour kF (θ ) whose overall magnitude depends on
electron density (n), but whose shape depends only on γ , not
n. As a result, the zero-field Fermi surface for any electron
density is characterized by a fixed anisotropy

α ≡ kF (π/4)

kF (0)
= eγ . (20)

From Eq. (19), we calculate the generalized LLL orbital by
quantizing

kx �→ a + a†

√
2lB

ky �→ a − a†

i
√

2lB
(21)

and numerically finding the ground state of the resulting
sparse Hamiltonian. The Landau level mixing coefficients in
the expansion of the ground state |0̃〉 in the basis of isotropic
Landau levels {|N〉 : N � 0},

|0̃〉 ≡
∑

N

uN |N〉 , (22)

are such that uN �= 0 only for N = 0, 4, 8, . . . because of
the C4 symmetry. These coefficients can be used to calculate
the anisotropic form factor F0̃0̃ (q) as a linear combination of
isotropic ones, which are known analytically. The resulting
interaction is then used to build the matrix product operator
Hamiltonian for the iDMRG method.

In the 2D thermodynamic limit, the system has C4 symme-
try, so the guiding center structure factor of the many-body
FQH ground state, S(q), must be of the form

S(q, θ ) = e2D(1 + tanh(2σ ) cos(4θ ))q4 . (23)

D is even under C8, i.e., rotations by π/4, while σ and γ

are odd. This directly generalizes the definitions of γ , D and
σ used previously for the case of band mass anisotropy. It
remains true, in particular, that αQH = eσ , if one defines αQH
as the anisotropy of equal-value contours of S(q) at q � l−1

B ,
in analogy to Eq. (20). Letting

λ = lim
qx→0

S(qx, 0)/q4
x , (24)

we have

σ = 1

4
ln

λ(γ )

λ(−γ )
, D = 1

2
ln

(
λ(γ ) + λ(−γ )

2

)
. (25)

In the following, we focus on fermionic states at fillings ν =
1/3 and 1/5 with Coulomb interaction.

B. Laughlin state, ν = 1/3

For the ν = 1/3 state, we obtain the results shown in Fig. 6.
The functions σ (γ ) and D(γ ) are approximately given by

σ (γ ) 
 0.11γ , D(γ ) 
 −0.66 + 0.04γ 2, (26)

where the cubic term in σ is found to be compatible with
zero: c3 = 0 ± 0.01. The linear term in the response σ is
significantly larger than what was found in the CFL [25]
(c1 
 0.06 in this paper’s notation), but still only a quarter
(i.e., much smaller than) the magnitude of the response to C2

band mass anisotropy, c1 
 0.43. Another striking difference
with respect to the elliptical case is that the isotropic dilation,
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Laughlin: D = − ln(2)

FIG. 6. Numerical results for ν = 1/3 with Coulomb interaction,
obtained with DMRG bond dimension χ = 1000. (a) Anisotropy of
the FQH state αQH = eσ as a function of band anisotropy α = eγ .
(Inset) Finite-size oscillations of αQH at fixed α = 3. (b) Logarithmic
parameters σ and D as a function of γ . Finite size effects are very
small. Continuous lines correspond to fits of the data at Lx = 21lB

to fixed-parity polynomials of the form σ = c1γ + c3γ
3 and D =

c0 + c2γ
2. Results for data averaged over all sizes are similar. The

dashed line shows the lower bound D � − 1
2 ln(2), achieved by the

Laughlin state |ψ (3)
L 〉 (with pure V1 interaction), for comparison.
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parametrized by D, is not constant. It is, on the contrary, of
comparable magnitude as the distortion σ itself. The quadratic
coefficient c2 
 0.04 is not compatible with zero, as is clear
from Fig. 6.

C. Laughlin state, ν = 1/5

The ν = 1/5 state, as discussed in Sec. III A, has signifi-
cantly weaker response than the ν = 1/3 state. In Ref. [31],
this was attributed to a general feature of flux attachment: The
single-particle orbitals attached to each electron are most sen-
sitive to anisotropy near the core, and get progressively closer
to circular as one moves outwards; therefore attaching more
fluxes (i.e., lowering the filling) gives rise to less anisotropic
FQH states.
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Laughlin: D = − ln(2)/2

FIG. 7. Numerical results for ν = 1/5 with Coulomb in-
teractions, obtained with DMRG bond dimension χ = 2000.
(a) Anisotropy of the FQH state αQH = eσ as a function of band
anisotropy α = eγ . (b) Logarithmic parameters σ and D as a function
of γ . Finite size effects are stronger in this case, despite the larger
sizes considered (up to Lx = 30lB). Continuous lines correspond to
fits of the data at Lx = 29lB to the same polynomial forms as in Fig. 6.
The drift of D with size must stop before saturating the lower bound
D � − ln(2) attained by |ψ (5)

L 〉.

The results for ν = 1/5, shown in Fig. 7, are therefore
surprising. We find

σ (γ ) 
 0.10γ + 0.08γ 3 , D(γ ) 
 −0.24 + 0.05γ 2 .

(27)

The magnitude of the response σ is not smaller than that of
the ν = 1/3 state: The linear coefficients c1 are compatible
within finite-size uncertainty, while the cubic coefficient c3 is
significantly larger in this case. We also find that the isotropic
rescaling D, despite much stronger finite-size effects, appears
to be consistent with that of the ν = 1/3 state, up to an
expected shift in the constant term: For the Laughlin state
|ψ (m)

L 〉 one has D(0) = 1
2 ln m−1

8 ; this value sets a lower bound
for realistic interactions, e.g., Coulomb [74], hence the offset
in going from m = 3 to m = 5.

The response σ in Eq. (27) is remarkable because it also
signals a qualitatively distinct behavior of the ν = 1/5 state.
For ν = 1/3, the anisotropy αQH is found to be a concave
function of α (close to αQH = α0.11), which may be related to
the apparent saturation of composite fermion anisotropy αCF
observed in Ref. [27]. On the contrary, for ν = 1/5, we find
that αQH is a convex function of α, growing superlinearly in
the interval 1 � α � 3 that we investigated numerically, and
suggesting that much stronger distortions may be possible at
larger α.

This overall stronger response is in striking contrast to the
results for band mass anisotropy and their interpretation given
in Ref. [31]. Secondly, the isotropic rescaling D, despite much
stronger finite-size effects, appears to be consistent with that
of the ν = 1/3 state, up to an expected shift in the constant
term. Since the Laughlin state |ψ (m)

L 〉 has D(0) = 1
2 ln m−1

8 , in
going from m = 3 to m = 5 one expects a shift of 1

2 ln 2 ≈
0.34 even for Coulomb interaction.

This counterintuitive result may be a special feature of
the ν = 1/5 state. At filling ν = 1/m, one can write a de-
formed Laughlin wave function with exact Cm−1 symmetry as
follows [38]:

�m({z}) = e− 1
4

∑
i |zi|2

∏
i< j

(zi − z j )

×
m−1∏
μ=0

(zi − z j − ηe2π iμ/m) , (28)

where η ≡ |η|eiφ is a parameter controlling the magnitude
(|η|) and orientation (φ) of the distortion. In other words, it is
possible to split the m-fold zero into a single zero (necessary
for fermionic antisymmetry) and m − 1 zeros arranged on
the vertices of a regular polygon, which has Cm−1 discrete
rotational symmetry. One can thus construct a C4-symmetric
Laughlin-like state for ν = 1/5, but not ν = 1/3.

On the other hand, a CN symmetric state can be constructed
for all even N < m: For example, by modifying the prescrip-
tion in Eq. (28) to

�m({z}) = e− 1
4

∑
i |zi|2

∏
i< j

(zi − z j )
m−N

×
N∏

μ=1

(zi − z j + ηe2π iμ/N ) . (29)
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This suggests that the Laughlin state |ψ (m)
L 〉 may have a natural

way of responding to distortions with CN symmetry for N �
m − 1, but not for larger N . This would explain the weaker
response of ν = 1/3 to C4 distortions relative to ν = 1/5.

Unfortunately this conjecture is hard to test beyond this
level, for two reasons: (i) the difficulty in studying the next
Laughlin state, |ψ (7)

L 〉 at ν = 1/7, and (ii) the difficulty in
identifying and calculating observables which can display
C6-symmetric distortions. At filling ν = 1/7 Coulomb in-
teractions favor a Wigner crystal over the incompressible
FQH state [6], and while the Laughlin state can be en-
gineered numerically for suitably short-ranged interactions,
finite-size effects are bound to be much worse than for the
ν = 1/3 and 1/5 states. As for signatures of C6-symmetric
anisotropy, any anisotropic terms in S(q) at small q would
occur at O(q6) and would thus be drowned out by the leading
isotropic term q4. One would need to identify higher-order
correlators with a leading q6 behavior, which would also be
considerably harder to calculate numerically. These issues,
while interesting and still largely unexplored, go beyond
the scope of the present work and we leave them to future
investigations.

VI. DISCUSSION

We have systematically studied the response of fractional
quantum Hall states to geometric distortions for a wide va-
riety of interaction potentials and LLL filling fractions, for
both fermionic and bosonic particles. We considered isotropic
interactions and introduced anisotropy by means of the single-
particle dispersion. The anisotropy of the FQH ground state
then results from a competition between the shape of interac-
tions and that of single-particle orbitals.

We have performed infinite density matrix renormalization
group (iDMRG) simulations of the problem and extracted the
anisotropy of the FQH ground state from its static guiding
center structure factor, in particular, from its long-wavelength
limit. This approach relies on the ability to accurately probe
very long wavelength in one direction, which is a unique
strength of the infinite DMRG method.

Generically, for power-law interactions V (r) ∼ r−p, we
found confirmation to the intuition that larger values of p cor-
respond to “shorter-range” interactions and thus are less effec-
tive at washing out the anisotropy of single-particle orbitals.
Even though all power-law interactions are strictly speaking
long-range, we make the above intuition more rigorous by
considering their pseudopotential decomposition. Doing so
reveals singularities at special values of the power-law expo-
nent p, beyond which interactions effectively transition from
long range to contact. When this happens, only one geometry
is left in the problem, and the FQH fluid simply inherits the
same anisotropy as the single-particle orbitals.

In particular, we found that for filling 1/m (with m odd
for fermions and even for bosons) this transition occurs at
p = 2(m − 1). This has several interesting implications. For
one, it supports the idea, presented in Ref. [31], that Laughlin
states in the presence of band mass anisotropy should get
less anisotropic with decreasing filling. Bosonic ν = 1/2
achieves maximal anisotropy at p = 2, followed by fermionic
ν = 1/3 at p = 4, etc; low-filling states thus achieve max-

imal anisotropy only for very large p. Combined with our
numerical data for 1 � p � 4, this strongly suggests that
the transference of anisotropy to this type of FQH states is
monotonically decreasing with m for generic interactions.

One more consequence of these results is the prediction
that certain FQH states with particular kinds of interactions
should have a trivial geometric degree of freedom; i.e.,
that their intrinsic metric should be completely decided by
single-particle physics. This conclusion applies whenever p >

2(m − 1), which applies, in particular, to the bosonic ν = 1/2
state with dipolar (p = 3) interaction. Interestingly, this state
could be realized using ultracold polar molecules in an optical
lattice with synthetic gauge potentials [55].

We also find that “daughter states” derived from the Laugh-
lin states via the hierarchy or composite fermion pictures show
the same response to band mass anisotropy as their parent
state, supporting the idea that parent and daughter states alike
are ultimately created from the same anisotropic object. This
was already observed for Coulomb interactions, but here we
find the same result across a range of power-law interactions,
supporting the universality of this conclusion. Intriguingly, the
nonanalyticity at p = 2(m − 1) is found in the daughter states
as well as the parent states. This does not follow trivially from
the pseudopotential decomposition.

One question that remains open is that of the relationship
between the ν = 1/2 fermionic CFL and the Jain sequence
that emanates from it and culminates at ν = 1/3. Being made
of the same composite fermion building blocks, we would
expect the fermionic ν = 1/2 and ν = 1/3 to have the same
response. However, the CFL appears to have slightly stronger
response to anisotropy than the ν = 1/3 FQH state (though
much weaker response than the bosonic ν = 1/2 FQH state).
This may point to a slow drift of the response along the
Jain sequence, which we fail to resolve numerically; or it
may be a singular feature of the gapless CFL state that sets
it apart from the gapped fractions in the sequence. It is
worth pointing out that the definition of anisotropy for FQH
states relies on their incompressibility (the quartic behavior
of S(q) near q = 0), while for the CFL it is based on the
Fermi contour, at q ≈ �−1

B ; the small discrepancy could be a
consequence of this different definition also. Finally, it may
also arise from finite-size effects, which are better controlled
in gapped FQH states than they are in the CFL. Consequently,
the nature and explanation of this discrepancy remains an
open issue.

Finally, we have extended our investigation to band distor-
tions with discrete fourfold (C4) rotational symmetry. There
we have found surprisingly that trend of decreasing anisotropy
with decreasing filling is inverted, at least in going from
ν = 1/3 to ν = 1/5. We conjecture that this exception to
the trend may come from the ability of Laughlin states with
ν = 1/m to naturally accommodate CN -symmetric distortions
by displacing some of the zeros in their wave function in a
pattern with the appropriate symmetry. For fermionic states,
this is possible only for N � m − 1, as one zero (for each
pair of electrons) is fixed by antisymmetry. In particular, for
C4 symmetry, this distortion is admissible at ν = 1/5 but
not at ν = 1/3. Developing C4-symmetric distortions may
thus be more energetically costly at ν = 1/3; as a result the
ground state may be closer to the isotropic Laughlin state. This
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explanation, if correct, implies that a similar result should hold
for CN -symmetric distortions at filling ν = 1/(N + 1), e.g.,
for C6 and ν = 1/7. However this would be rather challenging
to probe numerically with the method used here, and is left as
another direction for future work.
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