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We express the recently introduced real-time diagrammatic quantum Monte Carlo [Phys. Rev. B 91, 245154
(2015)] in the Larkin-Ovchinnikov basis in Keldysh space. Based on a perturbation expansion in the local
interaction U , the special form of the interaction vertex allows us to write diagrammatic rules in which vacuum
Feynman diagrams directly vanish: This reproduces the main property of the previous algorithm, without the
cost of the exponential sum over Keldysh indices. In an importance sampling procedure, this implies that only
interaction times in the vicinity of the measurement time contribute, and such an algorithm can directly address
the long-time limit needed in the study of steady states in out-of-equilibrium systems. We then implement and
discuss different variants of Monte Carlo algorithms in the Larkin-Ovchinnikov basis. A sign problem reappears,
showing that the cancellation of vacuum diagrams has no direct impact on it.
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I. INTRODUCTION

The development of high-precision and controlled com-
putational methods for nonequilibrium models in strongly-
correlated regimes is a subject of growing interest in theoreti-
cal condensed-matter physics. Recent years have seen signif-
icant experimental progress with quantum transport through
mesoscopic systems [1], metal-insulator transitions driven by
an electric field [2], or light-induced superconductivity [3–7].

Powerful tools have been designed for the study of
quantum systems at equilibrium. Notably, the combination
of dynamical mean-field theory [8–10] and state-of-the-art
continuous-time quantum Monte Carlo (QMC) algorithms
such as CT-INT [11,12], CT-AUX [13], or CT-HYB [14,15]
have allowed for great advances. When considering out-of-
equilibrium systems, however, early attempts to construct
similar perturbation-expansion-based real-time QMC algo-
rithms encountered an exponential sign problem that pre-
vented them from reaching long times and large interactions
[16–20]. Other approaches such as the density matrix renor-
malization group (DMRG) [21–23] also struggle in the long-
time limit due to entanglement growth. There is therefore
still a great need for high-precision numerical methods that
would be able to access the nonequilibrium steady states of
strongly-interacting quantum systems.

Current efforts to build real-time quantum Monte Carlo
methods mainly explore two routes: the inchworm algorithm
[24–30] and the so-called “diagrammatic” QMC [31–33]
which is the subject of this paper. Using an expansion of phys-
ical quantities in powers of the interaction U , this algorithm
has been shown to directly address the infinite-time steady
states. The name “diagrammatic” refers to its imaginary-time
counterparts that were historically constructing a Markov
chain in the space of Feynman diagrams [34–37].

First introduced in Ref. [31], the real-time diagrammatic
QMC algorithm stochastically samples physical quantities
using an importance sampling. At a given perturbation order
n, its key idea is to regroup a factorial number of Feynman
diagrams in a sum over Keldysh indices of 2n determinants.
This exponential sum has been shown to cancel vacuum
diagrams, a property also used in recent diagrammatic QMC
methods in imaginary time [38–40]. As a direct consequence,
the Monte Carlo sampling only involves interaction times in
a neighborhood around the measurement time tmax: We talk
about the clusterization of times. The computation of the
Monte Carlo weight is exponential in the perturbation order
but uniform in time, at any temperature. The algorithm can
therefore address long, even infinite, times in the computation
of contributions to the perturbation theory. This method was
recently generalized to compute the Green’s function and
tested in quantum impurity models [32,33]. The current form
of the algorithm is able to compute the Kondo resonance at
low temperature in the strongly-correlated Kondo regime.

Coefficients of the expansion being written in terms of
high-dimensional integrals of the sum of determinants, its ex-
ponential scaling limits our capability to compute high orders
with great precision (we typically are limited to 10 of them).
Even though nonperturbative information and Bayesian tech-
niques can overcome noise amplification occurring in the
resummation of the series [33], this can prevent the algorithm
from reaching very large U .

In this paper, we show that we can obtain the cancellation
of diagrams and the long time clusterization property without
summing an exponential number of terms. Using the Larkin-
Ovchinnikov (LO) basis in Keldysh space, we rewrite the
integrand as a sum of 4n determinants, but we show that
diagrammatic rules in this basis are such that every diagram
has the clusterization property. In other words, the elimination
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of vacuum diagrams is directly achieved in the diagrammatics
without the need of an exponential sum. We then implement
and compare two Monte Carlo algorithms based on this
mathematical property. Both sample single determinants at
a polynomial cost, but then one measures in the LO basis
(LO algorithm) while the other measures in the original basis
(mixed algorithm). We obtain that a simple implementation of
the real-time diagrammatic QMC in the Larkin-Ovchinnikov
basis leads to a severe sign problem, which is reduced in
the mixed algorithm. This shows that the main effect of the
exponential sum of determinants, beyond the cancellation of
vacuum disconnected diagrams, is to reduce the sign problem
of this class of algorithms.

This paper is organized as follows. First, we present in
Sec. II the usual Keldysh formalism in the {±} basis, briefly
summarize the diagrammatic rules, and then derive the can-
cellation of vacuum diagrams and the clusterization of the
density when summing over Keldysh indices. We follow the
same structure in Sec. III where we introduce the Larkin-
Ovchinnikov basis, showing that all vacuum diagrams are
equal to zero, so that density contributions directly clusterize
around the measurement time. We then detail in Sec. IV
the Monte Carlo implementation of the original algorithm
presented in Ref. [31] (± algorithm) and two algorithms based
on the Larkin-Ovchinnikov formalism (LO and mixed algo-
rithms). In Sec. V we compute the density of an impurity level
coupled to a bath, present the results of all three algorithms,
and explain the origin of the observed error bars. We finally
conclude in Sec. VI.

II. KELDYSH FORMALISM

We work in the Keldysh formalism [41–44]. In this frame-
work, operators act on the Keldysh contour C consisting of a
forward branch, from an initial time t0 (that we take equal to 0
in the following) to a given time tmax, and a backward branch,
from tmax to t0. The system is initially prepared at equilibrium
without interactions. A Keldysh point k on C is defined as a
pair k ≡ (t, α) with a time t ∈ [0, tmax] and a Keldysh index
α ∈ {±} indicating which branch is to be considered. The +
(resp. −) index denotes the forward (resp. backward) branch,
as depicted below.

Note that both branches are along the real axis and are
displaced only for graphical purposes. In the following, Greek
letters refer to ± indices unless otherwise stated. We define
a contour operator TC that follows the arrows on the above
picture: TC coincides with the usual time-ordering operator T
on the + branch, with the anti-time ordered operator Ť on the
− branch, and considers all Keldysh points on the backward
branch to be later than points on the forward branch.

The formalism we develop in this section is valid for any
general model described by a noninteracting Green’s function
g and a density-density interaction. However, for the sake of
simplicity, we consider interacting electrons on a single en-
ergy level. The operator cσ (resp. c†

σ ) destroys (resp. creates)
an electron with spin σ =↑,↓. The interaction term, turned

on at t = 0, is given by the interaction vertex Un↑n↓, where
nσ ≡ c†

σ cσ is the density operator.
We define the time-dependent Green’s function

Ĝσ (t, t ′) ≡ −i〈TCcσ (t )c†
σ (t ′)〉, (1)

where c(†)
σ (t ) is the Heisenberg representation of c(†)

σ and the
average is taken with respect to the initial noninteracting state.
The Green’s function takes the form of a 2 × 2 matrix in the
{±} basis: Ĝσ =

(
G++

σ G<
σ

G>
σ G−−

σ

)
, where

G<
σ (t, t ′) ≡ i〈c†

σ (t ′)cσ (t )〉, (2a)

G>
σ (t, t ′) ≡ −i〈cσ (t )c†

σ (t ′)〉, (2b)

G++
σ (t, t ′) ≡ −i〈Tcσ (t )c†

σ (t ′)〉, (2c)

G−−
σ (t, t ′) ≡ −i〈Ťcσ (t )c†

σ (t ′)〉. (2d)

Throughout the paper, noninteracting Green’s functions
will be denoted by lower case letters, interacting ones by
upper case letters, and a ˆ denotes a matrix.

A. Diagrammatic rules

In this paper, we construct perturbation series in the in-
teraction U for physical observables of interest. Computing
contributions at different perturbation orders relies on the
evaluation of Feynman diagrams obeying rules that we briefly
summarize.

A straight line represents a noninteracting Green’s function

(3)

Because the interaction has the form Un↑n↓, an interaction
vertex is characterized by a single Keldysh point {t, α}, and
the indices of the four legs all have to be equal to the Keldysh
index α

(4)

Hence, for every interaction time t , there are two possible
vertices. The sum of the different {±} configurations can be
written in the H↑ ⊗ H↓ space, in the form

−iU (m+ ⊗ m+ − m− ⊗ m−), (5)

where m+ =
(

1 0
0 0

)
and m− =

(
0 0
0 1

)
are matrices in the

{±} basis, and Hσ is the Hilbert space for spin σ . Further-
more, an interaction of the form hc†

σ cσ in the Hamiltonian
would give rise to two-leg vertices of the form

(6)

These do not appear directly in the diagrammatics but will be
formally useful when deriving the expression of the fermionic
bubble. The sum over Keldysh indices reads −ih(m+ − m−)
in both H↑ and H↓ spaces.
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With the expression of the four-leg interaction vertex, the
following fermionic bubble reads

(7)

Because of the form of the interaction term, we have

gαα
σ (t, t ) = g<

σ (t, t ). (8)

Hence, the above diagram reduces to αUg<
σ̄ (t, t ), which can

be formulated as a two-leg vertex with a iUg<
σ̄ (t, t ) field

(9)

If M is the quantity we want to compute (later on the den-
sity), its perturbation expansion is given by M = ∑

n MnU n.
Because of the form of the interaction vertex, we have

Mn =
∫
C

dk1 . . . dkn M±
n (k1, . . . , kn) (10)

=
∫ tmax

0
dt1 . . . dtn

∑
α1...αn

M±
n ({ti, αi}1�i�n), (11)

where M±
n ({ti, αi}1�i�n) can be expressed as a product of

determinants, their precise form depending on the measured
quantity. Throughout this paper, the ± superscript will denote
quantities expressed in the {±} basis. Moreover times inte-
grated over are always considered ordered.

B. Cancellation of vacuum diagrams when summing over
Keldysh indices

Due to the forward-backward nature of the contour C, the
partition function Z is exactly equal to 1 in the real-time
Keldysh formalism. Expressing Z as a series in U (Z =∑

n ZnU n), this property implies that all Zn are vanishing for
n � 1. Because of the form of Eq. (10), this cancellation
involves both the integral over times and the sum over Keldysh
indices. However, it was proven by Profumo and co-workers

in Ref. [31] that only the latter is needed. For all n � 1,
{t1, . . . , tn} ∈ [0, tmax]n,∑

α1...αn

Z±
n ({ti, αi}1�i�n) = 0, (12)

where

Z±
n ({ti, αi}1�i�n) = (−iα1) . . . (−iαn) × inin

×
∏
σ

det
[
(ĝσ )αiα j (ti, t j )

]
1�i, j�n

. (13)

Each (−iαk ) comes from Eq. (4), and the two in factors from
the fact that a straight line actually represents an iĝ [Eq. (3)].

For every configuration of times {t1, . . . , tn}, vacuum dia-
grams therefore cancel when performing the explicit 2n sum
over Keldysh indices. Recent developments in imaginary-
time diagrammatic QMC also achieved, through an iterative
procedure, the cancellation of vacuum (and, later on, non-one-
particle irreducible) diagrams at every Monte Carlo step at an
exponential cost in the perturbation order [38–40].

C. Density computation and clusterization

In the following, we compute the density d of electrons
with spin ↑ on the impurity level at the end point of the
Keldysh contour, d ≡ 〈n↑(tmax)〉. In the {±} basis, let us
note that d = (Ĝ↑)01(tmax, tmax)/i. Hence we can represent
the measurement vertex as a “special” vertex bearing time
tmax, such that the ingoing and outgoing Keldysh indices are
0 and 1:

(14)

Note that the surrounding lines are dashed because they
should bear a ĝ propagator (instead of an iĝ one as in the rest
of the formalism). The order-n contribution to d reads

dn =
∫ tmax

0
dt1 . . . dtn

∑
α1...αn

(−iα1) . . . (−iαn)

× in+1in

i2

∏
σ

det D±
σ ({ti, αi}1�i�n), (15)

where

D±
↑ ({ti, αi}1�i�n) =

⎛
⎜⎜⎜⎝

[
(ĝ↑)αiα j (ti, t j )

]
1�i, j�n

(ĝ↑)α11(t1, tmax)
...

(ĝ↑)αn1(tn, tmax)
(ĝ↑)0α1 (tmax, t1) . . . (ĝ↑)0αn (tmax, tn) (ĝ↑)01(tmax, tmax)

⎞
⎟⎟⎟⎠, (16)

and

D±
↓ ({ti, αi}1�i�n) = [

(ĝ↓)αiα j (ti, t j )
]

1�i, j�n
. (17)

Using the cancellation of vacuum diagrams when summing
over Keldysh indices, we reproduce in Appendix A the argu-
ment of Ref. [31] showing that the computation of dn only
involves the sampling of interaction times close to tmax. As
a direct consequence, Monte Carlo algorithms implementing
this sum in the calculation of the weight can address any

measurement time tmax, when earlier methods were limited
to short-term measurements [16–20]. We talk about the clus-
terization of interaction times in the computation of the
density.

III. LARKIN-OVCHINNIKOV FORMALISM

Starting from the expression of the Green’s function in the
{±} basis, we define its counterpart in the LO basis, ĜLO,
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through the following transformation [42,45]

ĜLO
σ (t, t ′) ≡ L†τ3Ĝσ (t, t ′)L, (18)

where L = 1√
2

(
1 1

−1 1

)
and τ3 =

(
1 0
0 −1

)
. The Green’s func-

tion now takes the 2 × 2 form ĜLO
σ =

(
Rσ Kσ

0 Aσ

)
, where R, K ,

and A are, respectively, the retarded, Keldysh, and advanced
Green’s functions defined as

Rσ (t, t ′) ≡ −iθ (t − t ′)〈{cσ (t ), c†
σ (t ′)}〉, (19a)

Aσ (t, t ′) ≡ iθ (t ′ − t )〈{cσ (t ), c†
σ (t ′)}〉, (19b)

Kσ (t, t ′) ≡ −i〈[cσ (t ), c†
σ (t ′)]〉. (19c)

In this basis, the Keldysh index α ∈ {±} is replaced by an
LO index 0 or 1. In the following, l will always denote such
an index unless otherwise stated.

A. Diagrammatic rules

To expose the diagrammatic rules in this formalism, let
us first determine from Eq. (5) the form of the four-leg
interaction vertex in the LO basis. The m+ and m− matrices
transform as

L†τ3m+L = 1

2

(
1 1
1 1

)
≡ 1

2
τ↑, (20a)

L†τ3m−L = 1

2

(−1 1
1 −1

)
≡ 1

2
τ↓. (20b)

Hence the sum of different LO contributions can be written

− iU

4
(τ↑ ⊗ τ↑ − τ↓ ⊗ τ↓) = − iU

2
(1 ⊗ τ↓ + τ↑ ⊗ 1), (21)

where 1 is the 2 × 2 identity matrix. Note that this is consis-
tent with the symmetric form − iU

2 (1 ⊗ τ + τ ⊗ 1) noted in

Ref. [46], where τ =
(

0 1
1 0

)
. The rhs form of Eq. (21) is the

one we will retain in the rest of this paper. We show in Secs.
III B and III C that the identity part of the vertex is essential
in the proof of the cancellation of vacuum diagrams and the
clusterization of times in the computation of observables.

The key point of this expression of the vertex is that we can
reduce the number of indices involved in the diagrammatics
using the fact that τ↑ and τ↓ are rank-1 matrices: τ↑ = v↑v�

↑
with v↑ =

(
1
1

)
and τ↓ = v↓(−v�

↓ ) with v↓ =
(

1
−1

)
. We can

therefore absorb the τσ part of the vertex in a redefinition of
the noninteracting propagator (see below).

An LO vertex can then be characterized by a tuple {t, iτ , l},
where t ∈ [0, tmax], iτ ∈ {−1, 1} and l ∈ {0, 1}. iτ = 1 (resp.
−1) indicates that the ↑ (resp. ↓) spin is carrying the τ↑
(resp. τ↓) side, and l is the LO index entering the identity part
of the vertex. We store the information about both the bare
propagator ĝLO

σ =
(

rσ kσ

0 aσ

)
and the nature of the vertices it is

connected to in the form of a 3 × 3 matrix ˆ̃gσ . The two first
indices corresponds to a connection to the identity (with l =
0 or 1), and the third one to the connection to a τσ :(

ˆ̃gσ

)
ll ′ = (

ĝLO
σ

)
ll ′ , (22a)(

ˆ̃gσ

)
l2 = (

ĝLO
σ vσ

)
l , (22b)

(
ˆ̃gσ

)
2l = (

σv�
σ ĝLO

σ

)
l , (22c)(

ˆ̃gσ

)
22 = σv�

σ ĝLO
σ vσ , (22d)

with the convention that σ =↑ should be understood as +1
and σ =↓ as −1.

We obtain

ˆ̃gσ =
⎛
⎝ rσ kσ rσ + σkσ

0 aσ σaσ

σ rσ σkσ + aσ σ [rσ + aσ ] + kσ

⎞
⎠. (23)

To simplify upcoming equations, we express the indices of
ˆ̃g↑ and ˆ̃g↓ at a vertex {t, iτ , l} in the form of two composite
indices L↑ and L↓:

Lσ =
{

2 if iτ = σ

l otherwise (24)

Note that this 3 × 3 form of the Green’s function comes from
the absorption of the τσ part of the vertex and has nothing to
do with the Baym-Kadanoff L-shaped contour used in thermal
real-time computations.

With this notation, a straight line represents a noninteract-
ing (modified) Green’s function

(25)

As discussed previously, the interaction vertex, proportional to
the identity in the {±} basis, is now proportional to 1⊗τ↓+τ↑⊗1

2
in the H↑ ⊗ H↓ space

(26)

As m+ − m− transforms into the 2 × 2 identity matrix in
the LO basis, a two-leg vertex is simply characterized by an
interaction time t and an LO index l . A term hc†

σ cσ in the
Hamiltonian would therefore give rise to the following vertex

(27)

With this expression of the interaction vertex, the following

fermionic bubble evaluates to

U

2
δLσ 2[rσ̄ (t, t ) + aσ̄ (t, t )]

+ U

2
δLσ l [σ̄ rσ̄ (t, t ) + σ̄aσ̄ (t, t ) + kσ̄ (t, t )]. (28)

For the equal-time limit of the retarded, Keldysh, and ad-
vanced Green’s function, we choose a convention which
ensures the consistency between the {±} and LO basis. We
consider

kσ (t, t ) = 2g<
σ (t, t ), (29a)

rσ (t, t ) = aσ (t, t ) = 0, (29b)

085125-4



CANCELLATION OF VACUUM DIAGRAMS AND THE LONG- … PHYSICAL REVIEW B 100, 085125 (2019)

and we show that this is consistent with Eq. (8). Using
Eq. (29), the above fermionic bubble reduces to Ug<

σ̄ (t, t )δLσ l .
It can be rewritten as a two-leg vertex with a iUg<

σ̄ (t, t )
field

(30)

This equation is, up to a change of basis, the same as Eq. (9).
The choice of equal time limit described in Eq. (29) is
therefore consistent with the {±} basis formalism.

The order-n contribution to the quantity M we want to
measure in an expansion in U is similar to Eq. (10) but has
to take account of the new form of the vertex

Mn =
∫ tmax

0
dt1 . . . dtn

∑
iτ1 . . . iτn
l1 . . . ln

MLO
n ({ti, iτi , li}1�i�n), (31)

where the MLO
n ({ti, iτi , li}1�i�n) can once again be expressed

as a product of determinants, their precise form depending
on the computed quantity. This formalism leads to 4n LO
configurations for a given set of n interaction times, to be
compared with 2n possible configurations in the ± basis.
However, we show in the next section that vacuum diagrams
now directly cancel in this formalism, without the actual need
to perform an explicit sum over all configurations.

B. Cancellation of vacuum diagrams

In this section, we show the main result of this paper:
Contributions to the partition function are directly equal to
zero in the LO basis. For all n � 1, {t1, . . . , tn} ∈ [0, tmax]n,
{iτ1 , . . . , iτn} ∈ {−1, 1}n, {l1, . . . , ln} ∈ {0, 1}n,

ZLO
n

({
ti, iτi , li

}
1�i�n

) = 0, (32)

where the contributions to the partition function are

ZLO
n

({
ti, iτi , li

}
1�i�n

)
=

(
− i

2

)n

inin
∏
σ

det
[
( ˆ̃gσ )Lσ

i Lσ
j
(ti, t j )

]
1�i, j�n. (33)

Each − i
2 comes from Eq. (26) and the two in factors from the

fact that a straight line actually represents an i ˆ̃g [Eq. (25)].
Let us consider an order n � 1 diagram contributing to Z .

The interaction times are denoted t1, . . . , tn. We introduce t̂ =
maxiti and î such that tî = t̂ . We label σ the spin on the identity
side of the (1 ⊗ τ↓ + τ↑ ⊗ 1)/2 interaction vertex at t̂ and l
the corresponding LO index. We consider the diagrammatic
line following spin σ . If t̂ is surrounded by no other interaction

vertex, the diagram is then proportional to

( ˆ̃gσ )ll (t̂, t̂ ) = δl0rσ (t̂, t̂ ) + δl1aσ (t̂, t̂ ) = 0. (34)

In the case where t̂ is surrounded by at least one other inter-
action vertex, we label its surrounding interaction times (that
can be equal) ti and t j , i, j �= î, with corresponding composite
indices Lσ

i , Lσ
j . We then obtain

( ˆ̃gσ )Lσ
j l (t j, t̂ ) = δLσ

j 2δl1[σkσ (t j, t̂ ) + aσ (t j, t̂ )]
+ δLσ

j 1δl1aσ (t j, t̂ ) + δLσ
j 0δl1kσ (t j, t̂ ), (35)

and

( ˆ̃gσ )lLσ
i
(t̂, ti ) = δLσ

i 2δl0[rσ (t̂, ti ) + σkσ (t̂, ti )]

+ δLσ
i 1δl0kσ (t̂, ti ) + δLσ

i 0δl0rσ (t̂, ti ). (36)

The full diagram is then proportional to δl0δl1 = 0. Hence
every diagram contributing to Z in the LO basis is exactly
equal to 0. This formalism directly cancels vacuum diagrams.

Finally, we note that this proof relies only on having the
identity on one side of the interaction vertex and not on the
explicit contraction with τ↑, τ↓. Had we kept the diagrammat-
ics with ĝ lines instead of ˆ̃g ones, we would also obtain the
cancellation of vacuum diagrams.

C. Density computation and clusterization

In order to understand how to write the density of ↑
electrons on the energy level in the LO basis, we use the
following property of the Keldysh formalism: The average
value of an operator does not depend on the branch of C where
it is computed. Considering d on the + branch of the contour,
the computation of the density can be understood as the action
of the m+ matrix in the {±} basis, which transforms in the 1

2τ↑
matrix in the LO basis according to Eq. (20a). Hence we can
represent the measurement vertex as a “special” interaction
vertex at time tmax with iτ = 1:

(37)

As previously, surrounding lines are dashed because they bear
a ˆ̃g (and not an i ˆ̃g). Hence the order-n contribution to d reads

dn =
∫ tmax

0
dt1 . . . dtn

∑
iτ1 . . . iτn
l1 . . . ln

(
− i

2

)n in+1in

i2

×
∏
σ

det DLO
σ

({
ti, iτi , li

}
1�i�n

)
. (38)

The DLO
σ matrices are defined as

DLO
↑

({
ti, iτi , li

}
1�i�n

) =

⎛
⎜⎜⎜⎜⎝

[
( ˆ̃g↑)L↑

i L↑
j
(ti, t j )

]
1�i, j�n

( ˆ̃g↑)L↑
1 2(t1, tmax)

...
( ˆ̃g↑)L↑

n 2(tn, tmax)
( ˆ̃g↑)2L↑

1
(tmax, t1) . . . ( ˆ̃g↑)2L↑

n
(tmax, tn) ( ˆ̃g↑)22(tmax, tmax)

⎞
⎟⎟⎟⎟⎠, (39)

and

DLO
↓

({
ti, iτi , li

}
1�i�n

) = [
( ˆ̃g↓)L↓

i L↓
j
(ti, t j )

]
1�i, j�n. (40)
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Before considering the clusterization of interaction times,
we note that half of the contributions to the density vanish. Let
us consider a given set {ti, iτi , li}1�i�n of LO vertices at order
n, and let us label t̂ = maxi ti and î such that tî = t̂ . If iτî

= 1,
then the ↓ spin is carrying the identity side of the vertex. As
we measure the density on the ↑ spin, the argument used in
the cancellation vacuum diagrams (see III B) applies again
and DLO

↓ ({ti, iτi , li}1�i�n) is the n × n null matrix. If iτî
= −1,

the contribution does not vanish. Hence, when computing the
density, at every order n and for every set of n interaction
times, 4n/2 LO configurations (out of 4n) are exactly zero.

The clusterization of interaction times around tmax in the
calculation of the density is then a direct consequence of the
cancellation of vacuum diagrams and is very similar to the
proof in the {±} basis (now without the exponential sum).
Let n be a given perturbation order and t1 < t2 < · · · < tn
n interaction times. Let us assume that the first j times are
located far away from the measurement time tmax and that the
last n − j times are located in the vicinity of tmax. We can
formally consider

∀1 � i � j, |ti − tmax| → ∞. (41)

Because the Green’s function is a local quantity in time, this
means that for all t ∈ {t1, . . . , t j}, t ′ ∈ {t j+1, . . . , tn; tmax}

‖ ˆ̃gσ (t, t ′)‖ → 0, ‖ ˆ̃gσ (t ′, t )‖ → 0. (42)

We therefore have∏
σ

det DLO
σ

({
ti, iτi , li

}
1�i�n

) �
∏
σ

det Aσ

∏
σ

det Bσ , (43)

with

Aσ = [
( ˆ̃g)Lσ

i Lσ
i′
(ti, ti′ )

]
1�i,i′� j, (44a)

B↓ = [
( ˆ̃g)L↓

i L↓
i′
(ti, ti′ )

]
j+1�i,i′�n, (44b)

and B↑ is the [( ˆ̃g)L↑
i L↑

i′
(ti, ti′ )]

j+1�i,i′�n
matrix where a last

line and column corresponding to tmax are added, similar to
Eq. (39). However,

∏
σ det Aσ is a contribution to Z at order j,

and it vanishes according to (32). Therefore
∏

σ det Dσ � 0,
and this proves the clusterization of times around tmax in the
computation of the density. In the next section, we present
different algorithms to stochastically sample Eqs. (15) and
(38).

IV. MONTE CARLO IMPLEMENTATION

In this section, we describe how to compute the density
d introduced above using quantum Monte Carlo (MC) tech-
niques. We present three different algorithms to compute this
quantity, one using the ± algorithm presented in Ref. [31] and
the other two based on the LO formalism presented above.

A. Monte Carlo algorithms

We first describe how to stochastically generate MC con-
figurations to sample the order-n contribution, dn, as expressed
in Eqs. (15) and (38). The ± algorithm works directly on the
Keldysh contour. A configuration c is determined by a given
perturbation order n and a set of n interaction times (and not

Keldysh points): c = {n; t1, . . . , tn}. The contribution to dn of
a given configuration is

w±
c = −in+1

∑
α1...αn

α1 . . . αn

∏
σ

det D±
σ ({ti, αi}1�i�n). (45)

In the Monte Carlo, configurations are sampled stochastically
according to their weight, which we choose to be |w±

c |. We
then have

dn =
∫ tmax

0
dt1 . . . dtn w±

c ∝
MC ±∑

c

sign w±
c . (46)

Note that it was shown in Ref. [31] that w±
c ∈ R.

In the LO algorithm, a configuration c is now determined
by a given perturbation order n and a set of n interaction LO
vertices: c = {n; y1, . . . , yn}, where yi = {ti, iτi , li}. Because
the density is a real quantity, the contributions to dn of a
configuration c can be written as

wLO
c = − 1

2n+1
Re

(
in+1

∏
σ

det DLO
σ (c)

)
. (47)

If |wLO
c | is the statistical weight of c in the Monte Carlo

process, then

dn =
∫ tmax

0
dt1 . . . dtn

∑
iτ1 . . . iτn
l1 . . . ln

wLO
c ∝

MC LO∑
c

sign wLO
c . (48)

The third algorithm that we study is a mixed algorithm
that samples the configurations according to their LO weight
|wLO

c | but computes dn in the original {±} basis, from the
contributions w±

c at the sampled times. A configuration c is
then determined by a given perturbation order n and a set
of n interaction LO vertices: c = {n; y1, . . . , yn} and the MC
weight is |wmixed

c | = |wLO
c |, so that

dn = 1

N

∫ tmax

0
dt1 . . . dtn

∑
iτ1 . . . iτn
l1 . . . ln

∣∣wLO
c

∣∣ w±
c∣∣wLO
c

∣∣

∝ 1

N

MC mixed∑
c

w±
c∣∣wLO
c

∣∣ , (49)

where N is the number of nonzero LO configurations. When
computing the density, N = 4n/2 at order n (see Sec. III C).

In all three techniques, we use a standard Metropolis algo-
rithm [47] to generate Markov chains distributed according to
the weights |wc|. Starting from a given configuration c, a new
configuration c′ is proposed according to one of the following
two Monte Carlo updates:

(1) Remove a randomly chosen interaction time (for the
± algorithm) or interaction LO vertex (for the LO and mixed
algorithms) from c.

(2) Add a new interaction time (for the ± algorithm) or
an interaction LO vertex (for the LO and mixed algorithms).
In all three techniques, because of the clusterization of times
around tmax, we choose the new interaction time according to
a Cauchy law (see below). We randomly choose the iτ and l
indices.
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The new configuration c′ is accepted or rejected with the
usual Metropolis ratio

paccept
c→c′ = min

(
1,

Tc′c|wc′ |
Tcc′ |wc|

)
, (50)

where Tcc′ is the probability to propose c′ after c.

B. Proposition of times

We have shown previously that times clusterize around
tmax. It is therefore more efficient to propose times located
around it compared to uniformly distributed between 0 and
tmax. We consider a Cauchy law determined by two parameters
t0 and a

ρ(t ) = 1

C

1

1 + ( t−t0
a

)2 . (51)

C is a normalization factor such that the integral of ρ between
0 and tmax gives 1, defined as C = a[C2 − C1], where C1 =
arctan (− t0

a ) and C2 = arctan ( tmax−t0
a ).

To obtain a new time that follows this probability law, one
can perform these three steps:

(1) Choose a random number u uniformly distributed be-
tween 0 and 1.

(2) Construct

x = 1

2
+ 1

π
[(1 − u)C1 + uC2], (52)

uniformly distributed between 1
2 + 1

π
C1 and 1

2 + 1
π

C2.
(3) Compute

t = t0 + a tan
(
π

(
x − 1

2

))
, (53)

distributed between 0 and tmax according to ρ.
The parameters t0 and a are then fitted to the 1D projection

of times visited by the Monte Carlo, accumulated during the
first part of the computation.

C. Redefinition of noninteracting propagators

As shown in previous works [12,31,48,49], there is some
freedom in the choice of the noninteracting propagator used
to construct the perturbation expansion, since the interaction
can be redefined as

Un↑n↓ = U (n↑ − α)(n↓ − α) + Uα(n↑ + n↓) + const.

(54)

Note that in this subsection α does not denote a Keldysh
index but a scalar, in order to be consistent with the existing
literature. In particular, it was shown that α can strongly
modify the radius of convergence of the perturbation series
[31,48]. This redefinition of the interaction term in Eq. (54)
is taken into account by subtracting α on the diagonal of
the determinants as explained and proved in Ref. [31]. The
second term in Eq. (54) acts as a shift in the chemical potential
and can be absorbed in a redefinition of the noninteracting
propagators.

Let us first consider the LO basis. This shift acts a diagonal
term in the self-energy and hence in

(
ĝLO

σ

)−1 =
(

r−1
σ −kσ /|rσ |2
0 a−1

σ

)
. (55)

α therefore modifies rσ and aσ into

r̄σ (ω) = [r(ω)−1 − Uα]−1, (56)

āσ (ω) = [a(ω)−1 − Uα]−1. (57)

As kσ /|rσ |2 is not impacted by the shift, the modified Keldysh
Green’s function is then

k̄σ (ω) =
∣∣∣∣ r̄σ (ω)

rσ (ω)

∣∣∣∣
2

kσ (ω). (58)

From these expressions, we can then deduce the modified
Green’s functions in the {±} basis through a change of basis
transformation.

D. Normalization procedure

All Monte Carlo algorithms presented above compute the
order-n contribution to the density d , however the MC results
need to be normalized. Hence we restrict our calculation to
two consecutive orders, n and n + 1, and a time or vertex can
be added (resp. removed) only if the current configuration c

is at order n (resp. n + 1). We measure both the density (dn

and dn+1) and a normalization factor (ηn and ηn+1). In all
algorithms, the normalization factor is chosen to be the sum
of the absolute value of the contributions to the density:

ηn ∝
MC∑
c

|wc|, (59)

where the proportionality constant is the same as in the
calculation of dn. If d̃n and η̃n are the unrenormalized sums of
the contributions accumulated in the Monte Carlo procedure,
then the normalized values for dn and ηn are obtained as

dn+1 = ηn

η̃n
d̃n+1; ηn+1 = ηn

η̃n
η̃n+1, (60)

and ηn is then used to normalize the following simulation
between orders n + 1 and n + 2. The lowest order is computed
analytically to close the equations.

V. RESULTS

A. Density

In this section, we present actual computations of the
density according to the algorithms described in the previous
section and compare their efficiency. In the following, we con-
sider an energy level εd coupled to a bath described by a semi-
circular density of states of bandwidth 4t . The Green’s func-
tion describing this bath is defined on the complex plane as [8]

gbath(ζ ) = ζ − sgn(Imζ )
√

ζ 2 − 4t2

2t2
. (61)

The noninteracting retarded Green’s function of the impurity
level is

rσ (ω) = 1

ω − εd − γ 2gbath(ω)
, (62)
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FIG. 1. Comparison of the error bar divided by the mean value in
a density computation, for the three different MC algorithms consid-
ered: the one working in the Keldysh ± basis (blue dots), the one in
the LO basis (orange stars), and the mixed algorithm (green dots,
see text). t = 1, βt = 100, γ 2 = 0.04t2, εd = −0.36t , U = 1.2t ,
α = 0.3. Computational effort is 240 CPU*hours for every order.

where γ is a coupling term between the energy level and the
bath. The Keldysh Green’s function is then deduced using the
fluctuation-dissipation theorem

kσ (ω) = tanh

(
βω

2

)
[rσ (ω) − r∗

σ (ω)]. (63)

In the following, t = 1 is our energy unit. We consider
βt = 100, γ 2 = 0.04t2, εd = −0.36t . Electrons on the im-
purity experience a local Coulomb interaction U = 1.2t . We
choose the α shift to be α = 0.3 (see Sec. IV C), such that
Uα = −εd . The bath being particle-hole symmetric, this cre-
ates a shifted retarded Green’s function r̄(ω) that is itself
particle-hole symmetric [see Eq. (56)]. However, we have
checked that this particular choice of α does not influence our
conclusions. We provide in Appendix B a table benchmarking
the LO and mixed algorithms against the original ± algorithm.
This shows in particular that the LO and mixed algorithms
yield correct results and that we can indeed reach long times in
the LO algorithm without an exponential sum of determinants.

Our main result is shown in Fig. 1 where we compare the
relative error bar in the density computation as a function
of the perturbation order. Blue dots denote the ± algorithm,
orange stars the LO algorithm, and green dots the mixed
algorithm. The order-9 relative error is not shown for the
LO algorithm as it exceeds 1 and is therefore meaningless.
In all three cases, dotted lines are guides to the eye. The
computational time is 240 CPU*hours for each order.

We see that all three relative error bars increase with
perturbation order. This can either come from the increasing
difficulty of computing the series coefficients, or an error
propagation coming from the normalization factor η. We plot
in Appendix C the relative error bar on η, which is much
smaller than the final relative error on the density, showing
that the latter mainly comes from the increasing difficulty to
compute higher order coefficients. Moreover, the LO relative

0.0

0.5

1.0

LO weights

−10

0

10

Sum over all LO indices

−1.0

−0.5

0.0

0.5

1.0 Partial sum

−20

0

20

40
Partial sum

FIG. 2. Upper panel: Sorted array of the LO weights according
to their absolute value (blue dots) and their sum (red line), nor-
malized to 1. Lower panel: Partial sum of the above LO weights,
from left to right, the red dot being the last point, by defini-
tion 1. Left panels correspond to the T1 = {273.2, 277.8, 280.9,

331.7, 366.4, 390.5} time configuration, and the right panels to T2 =
{338.3, 343.2, 366.9, 369.7, 393.9, 394.5}. Order 7, tmax = 400.

error bars very quickly become much larger than the ± ones,
their difference nearly reaching two orders of magnitude at
order 8. The mixed algorithm is found to perform better than
the LO algorithm but its error bars slowly grow larger than
the ± ones. This is surprising, as one could have expected
to at least gain the decorrelation time over the algorithm of
Ref. [31]. We discuss the origin of the error bars in both
algorithms in the next section.

B. The return of the sign problem

In this section, we discuss the origin of the large variance
in the computation of the density in the LO algorithm in terms
of a sign problem in the Monte Carlo sampling and we show
how this impacts the error bars of the mixed algorithm.

In the upper panel of Fig. 2, we plot as blue dots the
nonzero LO weights for two different time configurations,
sorted according to their absolute value. The left and right
panel correspond to two different time configurations (Cf
caption). In both cases, the red line indicates the full sum
over all LO indices, normalized to 1 (which coincides with
the ± weight). The lower panel shows the partial sum, from
left to right, of the LO weights plotted above. The last point,
equal to 1 by construction, is emphasized as a red dot. As
roughly half of the weights are positive and half negative, we
see that the sum of the LO weights over the indices at fixed
time configuration is characterized by a massive cancellation.
This is the origin of the large error bar in the Monte-Carlo,
i.e., another manifestation of the sign problem. Furthermore,
the partial sum shows that there is no clear feature or cutoff
from which one could extract the value of the full sum.

Let us now turn to the mixed algorithm. In both the left
and right panels of Fig. 2, the sum over all LO indices, which
coincides with the ± weight, is normalized to 1. However, in
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FIG. 3. Histograms of the times visited by the Monte Carlo
algorithms, projected in one dimension. Order 9, tmax = 400.

the left panel, the weights of the different LO configurations
are small compared to the final result, reaching at most 20%
of it. In the right panel, those same weights are much bigger,
reaching up to 1700% of the full sum. Hence the Monte Carlo
implemented in the LO basis does not sample the same time
configurations as the algorithm in the {±} basis. This is illus-
trated in Fig. 3 where the histograms of the times visited by the
Monte Carlo, projected in one dimension, are plotted for both
the ± algorithm (blue line) and LO one (orange line). First, we
observe the clusterization of times proved at the beginning of
this paper: Interaction times contributing to the density tend
to be in the vicinity of tmax. Then, we see that some times
located far away from the measurement but still contributing
significantly to the ± algorithm are almost never visited in the
LO algorithm. On the other hand, times close to tmax are more
sampled in the latter. As times visited by the mixed algorithm
coincide with the LO ones, this explains the difference in error
bars between the mixed and ± algorithms observed in Fig. 1.

VI. CONCLUSION

In conclusion, the explicit sum over the Keldysh indices of
the original ± algorithm of Ref. [31] has two functions: (i)
it allows us to reach the very long times due to the clusteri-
zation of the integrand caused by the cancellation of vacuum
diagrams; (ii) it strongly reduces the error bar by performing
a massive cancellation of terms. In this paper, we have shown
that one can obtain the first properties for each determinant
using the Larkin-Ovchinnikov basis, hence without the expo-
nentially large sum of determinants. A direct implementation
of the algorithm in the LO basis indeed reaches the steady
state but also has an error bar growing quickly with the order
n due to a sign problem. An interesting possibility would be
the existence of an optimum between the LO and original ±
algorithms, using partial groupings of terms in the LO basis
with less than 2n terms that would reduce the sign problem
and yields a better scaling than the original algorithm in the
{±} basis. Work is in progress in this direction.
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APPENDIX A: CLUSTERIZATION OF THE DENSITY
IN THE {±} BASIS

We reproduce here the argument of Ref. [31] showing that
the cancellation of vacuum diagrams when summing over
Keldysh indices implies the clusterization of interaction times
near tmax. Let n be a given perturbation order, and t1 < t2 <

· · · < tn n interaction times. Let’s assume that the first j times
are located far away from the measurement time tmax and that
the last n − j times are located in the vicinity of tmax. We can
formally consider

∀1 � i � j, |ti − tmax| → ∞. (A1)

Because the Green’s function is a local quantity, this means
that for all t ∈ {t1, . . . , t j}, t ′ ∈ {t j+1, . . . , tn; tmax}

||ĝσ (t, t ′)|| → 0, ||ĝσ (t ′, t )|| → 0. (A2)

We therefore have∑
α1...αn

α1 . . . αn

∏
σ

det D±
σ

({
ti, iτi , li

}
1�i�n

)

�
∑

α1...α j

α1 . . . α j

∏
σ

det Aσ

∑
α j+1...αn

α j+1 . . . αn

∏
σ

det Bσ ,

(A3)
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FIG. 4. Comparison of the error bar divided by the mean value of
the normalization coefficient, for the three different MC algorithms
considered: the one working in the Keldysh ± basis (blue dots), the
one in the LO basis (orange stars) and the mixed algorithm (green
dots). t = 1, βt = 100, γ 2 = 0.04t2, εd = −0.36t , U = 1.2t , α =
0.3. Computational effort is 240 CPU*hours for every order.
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with

Aσ = [
(ĝσ )αiα

′
i
(ti, ti′ )

]
1�i,i′� j, (A4a)

B↓ = [
(ĝ↓)αiα

′
i
(ti, ti′ )

]
j+1�i,i′�n

, (A4b)

and B↑ is the [(ĝ↑)αiα
′
i
(ti, ti′ )] j+1�i,i′�n

matrix where a last line and column corresponding to tmax are added, similar to

Eq. (16). However,
∑

α1...α j
α1 . . . α j

∏
σ det Aσ is a contribution to Z at order j, and it vanishes according to (12). Therefore∑

α1...αn
α1 . . . αn

∏
σ det D±

σ � 0, and this proves the clusterization of times in around tmax in the computation of the density.

APPENDIX B: BENCHMARK

The table below benchmarks the contributions to the density between the ±, LO, and mixed algorithms. We take t = 1 as our
energy unit, and parameters are βt = 100, γ 2 = 0.04t2, εd = −0.36t , U = 1.2t , α = 0.3. Computation effort is 240 CPU*hours
for each perturbation order.

± LO mixed

Order 1 −1.7013454 ± 0.00014% −1.7013431 ± 0.00026% −1.7013466 ± 0.00073%
Order 2 14.47243 ± 0.0015% 14.47252 ± 0.0015% 14.47214 ± 0.0022%
Order 3 −33.3479 ± 0.014% −33.3610 ± 0.030% −33.3583 ± 0.022%
Order 4 −431.09 ± 0.041% −431.51 ± 0.071% −431.30 ± 0.028%
Order 5 5094.7 ± 0.025% 5100.6 ± 0.18% 5092.6 ± 0.039%
Order 6 −16173 ± 0.12% −15802 ± 1.8% −16171 ± 0.21%
Order 7 −1.6411 × 105 ± 0.13% −1.6595 × 105 ± 3.9% −1.6554 × 105 ± 0.26%
Order 8 2.2332 × 107 ± 0.18% 2.1071 × 107 ± 9.0% 2.2316 × 107 ± 0.42%
Order 9 −7.865 × 107 ± 0.66% 2.852 × 107 ± 240% −8.079 × 107 ± 2.1%

APPENDIX C: ORIGIN OF ERROR BAR

We have seen in Sec. IV D that the contributions to the density have to be normalized by a factor η, see Eq. (60). To verify that
the error bars on the density are not due to this normalization factor, we plot its relative error bars in Fig. 4. Blue dots denote the
± algorithm, orange stars the LO algorithm, and green dots the mixed algorithm. Comparing it to Fig. 1, we see that the relative
error bars on η are much smaller than the ones on the density.
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