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Dynamics of compact quantum electrodynamics at large fermion flavor
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Thanks to the development in quantum Monte Carlo technique, the compact U(1) lattice gauge theory coupled
to fermionic matter at (2 + 1)D is now accessible with large-scale numerical simulations, and the ground state
phase diagram as a function of fermion flavor (Nf ) and the strength of gauge fluctuations is mapped out. Here we
focus on the large fermion flavor case (Nf = 8) to investigate the dynamic properties across the deconfinement-
to-confinement phase transition. In the deconfined phase, fermions coupled to the fluctuating gauge field to form
U(1) spin liquid with continua in both spin and dimer spectral functions, and in the confined phase fermions
are gapped out into valence bond solid phase with translational symmetry breaking and gapped spectra. The
dynamical behaviors provide supporting evidence for the existence of the U(1) deconfined phase and could
shine light on the nature of the U(1)-to-VBS phase transition which is of the QED3-Gross-Neveu chiral O(2)
universality whose properties are still largely unknown.
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I. INTRODUCTION

For several decades, the topic of dynamical coupling be-
tween lattice gauge fields and fermionic matter fields have
attracted considerable attention [1] among physicists from
high-energy [2–8] and condensed matter [9–26] communities.
Previous works have quickly established the understanding at
the large fermion flavor (Nf ) limit [9–17], as 1/Nf expansion
is controlled thence, but left the physically most interesting
cases of small Nf —for example Nf = 2 corresponds to the
spin-1/2 case of electrons—unsolved. The very recent break-
through of quantum Monte Carlo (QMC) simulations of Z2
[23–25,27] and U(1) [1] gauge fields coupled to fermions
provides the possibility of concrete investigations at the small
Nf , and the expected deconfinement-to-confinement phase
transitions and special properties of these phases are discov-
ered. In such settings, the interactions between fermions are
mediated via the fluctuating gauge bosons, which resemble the
situation of fractionalized particles and emergent gauge fields
in several prototypical strongly correlated systems including,
but not limited to, the low-energy description of the high-
temperature superconductors [11,15,19], frustrated magnets
[19,28,29] and deconfined quantum criticalities [30–35]. The
quantum phases and phase transitions discovered are clearly
beyond the Landau-Ginzburg-Wilson paradigm built upon the
concepts of symmetry-breaking and local order parameters
and served as the building bulks of the new paradigm of
quantum matter.

As for the discrete Z2 gauge field coupled to fermionic
matter in (2 + 1)D [23–25], the deconfined phase with frac-
tionalized fermionic excitations at weak gauge fluctuation

and confined phase with symmetry breaking at strong gauge
fluctuation have been revealed. The (Z2) deconfinement-to-
confinement transitions are continuous and associated with
fermion gap opening in the excitation spectrum. Further
developments that involve not only Z2 gauge but also Z2
matter fields to dynamically couple to Fermi surface (FS)
give rise to the long-thought orthogonal metal phase which
has metallic transport but no quasiparticles at the FS [27],
probably the simplest non-Fermi liquid that can be generated
without ambiguity [36] in (2 + 1)D lattice models.

As for the continuous U(1) gauge field coupled to
fermionic matter at (2 + 1)D, such as the compact quantum
electrodynamics (cQED3), there are fundamental physical
questions awaiting an affirmative answer. The pure gauge
theory at (2 + 1)D is known to be always confined [16,37–39],
but whether the coupling to gapless fermionic matter could
drive the system towards deconfinement have been de-
bated [16,37–40]. As mentioned above, large Nf limits
[17,20,21,41] demonstrated the existence of the U(1) decon-
fined phase, but previous QMC works at medium and small
Nf values are shown inconclusive [3–6] due to the difficulties
in effectively simulating the continuous gauge fields in the
(2 + 1) space time with zero modes at the fermion spectra.
It is only until very recently that in Ref. [1], with the help
of fast updates and high level parallelization, that the phase
diagram of U(1) gauge field coupled to fermion field at small
Nf has been mapped out, and the existence of U(1) deconfined
phase, or algebraic quantum spin liquid in the condensed
matter parlance [19], for Nf = 2, 4, 6, 8 are discovered with
certainty. However, even the latest QMC simulations are still
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by no means easy, suffering long autocorrelation time in the
critical phase of U(1) deconfined spin liquid, the transitions
from U(1) deconfined phase to various confined phases [anti-
ferromagnetic insulator (AFM) phase for Nf = 2, and valence
bond solid (VBS) phase and AFM for Nf = 4, 6, 8] have
not been able to investigated in detail, both statically and
dynamically.

These transitions, dubbed QED3-Gross-Neveu chiral
Heisenberg [QED3-GN-O(3)] or XY [QED3-GN-O(2)] tran-
sitions, are of high interest to both condensed matter and
high-energy physicists, as the phase transition of algebraic
quantum spin liquid to other magnetically order phases have
experimental relevance. Inspired by the numerical work of
Ref. [1], there are recently several analytical works addressing
the critical properties of them [42–47]. The conclusions drawn
there are that the U(1)-to-AFM and U(1)-to-VBS phase tran-
sitions are indeed possible and the higher-order perturbative
RG calculations performed also suggest the possible range of
critical exponents of these QED3-GN transitions within 1/Nf

and 4 − ε expansions [42–47].
While the QMC evaluation of the critical exponents are

still difficult (currently the largest system accessed are L = 20
due to the aforementioned computational complexity), the
dynamical signatures of the transition would then provide
guiding evidence for comprehensive understanding of them.
Similar as the case of deconfined quantum critical point
with emergent O(4) symmetry, where the coupling effects of
fractionalized spinon and emergent U(1) gauge fields manifest
in the spin spectral functions [33], the unearthiness of the
QED3-GN dynamical signatures will provide similar physical
understanding. In terms of quantum Monte Carlo simulations,
the dynamical signatures can be obtained in two steps. One
first measures the imaginary time correlation functions with
good statistics, then performs analytic continuation to convert
the correlation from imaginary to real frequencies. The re-
cent developments of stochastic analytic continuation (SAC)
scheme [48] is proven to be more reliable and could reveal
nontrivial results in both unfrustrated and frustrated magnetic
systems in 2D and 3D [33,49–52]. Therefore the techniques
for investigating the dynamical properties of the QED3-GN
transitions are available.

Aware of the high interests and great difficulty in studying
the U(1) deconfined to confined transition, and with the help
of the state-of-art QMC methodology and SAC machinery, in
this work, we nevertheless take the first step to investigate
the dynamical signature of the QED3-GN transition at a
large but finite fermion flavor of Nf = 8. As a function of
the strength of the gauge fluctuations, the deconfined phase
(the algebraic quantum spin liquid) and the confined phase
(VBS) are investigated in detail, and the dynamical signature
of their transition in the form of the spin and dimer spectra
with continua are discovered. The physical meaning of such
continua inside the U(1) deconfined phase and at the transition
are addressed as well. These results set the stage for the further
investigations of the smaller and physically more relevant
Nf and can be used to guide the experimental detection in
inelastic neutron scattering and nuclear magnetic resonance
for condensed matter materials which could host fraction-
alized excitations coupled with emergent gauge structures
[53,54]. For example, the observation of the conserved current

correlations in the spin and dimer spectra [55–57] would be
the decisive evidence for the deconfinement and emergent
gauge fields.

With these thoughts in mind, we organize the rest of the
paper as follows. In Sec. II, a quantum rotor model that
describes the setting of compact QED3 coupled to fermions
is introduced. The QMC and SAC methods employed to
solve the model are also explained in a concise manner. The
analysis of the theoretical interpretation of the continua and
associated symmetry properties of the U(1) deconfined phase
are given in Sec. III. In Sec. IV, QMC numerical results
including the net gauge flux and most importantly, the spin
and dimer spectra are presented, with the physical meaning
of the continua therein thoroughly discussed, which serve as
the dynamical signature of the U(1) phase and U(1)-to-VBS
QED3-GN transition. Conclusion and outlook are presented
in Sec. V.

II. MODEL AND METHOD

In this work we study a 2D quantum rotor model coupled
to fermions considered in Ref. [1], whose Hamiltonian can be
written as

H = 1

2
JNf

∑
〈i, j〉

1

4
L̂2

i j − t
∑
〈i, j〉α

(c†
iαeiφ̂i j c jα + H.c.)

+ 1

2
KNf

∑
�

cos(curlφ̂), (1)

where ciα (c†
iα) is the annihilation (creation) operator for a

fermion with fermion flavor α. The α runs from 1 to Nf and
here we focus on the case of Nf = 8. As shown in Fig. 1(b),
the nearest hopping of fermions is associated with a phase
φi j ; this phase inserts magnetic flux through each plaquette.
The flux term with K > 0 favors π flux in each elementary
plaquette �. Following the convention in Ref. [1], we fixed
t = 1 and K = 1 and scan the J axis. L̂i j is the canonical
angular momentum operator and it satisfies the commutation
relation of [L̂i j, e±iφ̂i j ] = ±e±iφ̂i j , and J is the strength of the
gauge field fluctuations. The overall phase diagram of Eq. (1)
is obtained in the previous QMC work [1] and is adapted here
in Fig. 1(a).

In the quantum Monte Carlo simulation in Ref. [1],
the quantum critical points can be extracted by means
of correlation ratio, which is defined as r = 1 − χ (X+δq)

χ (X) ,
where X is the order wave vector for AFM [X = (π, π )]
or VBS [X = (π, 0)] on the square lattice and δ(q) =
( 2π

L , 0) is the smallest momentum away from X. The
χ is the correlation function of the corresponding order
that one probes, for example, the AFM order is deter-
mined by the χ of spin-spin correlation function χS (k) =
1

L4

∑
i j

∑
αβ〈Sα

β (i)Sβ
α ( j)〉eik·(ri−r j ) where the spin operator

Sα
β (i) = c†

iαciβ − 1
Nf

δαβ

∑
γ c†

iγ ciγ , and the VBS order is deter-
mined by the χ of dimer-dimer correlation function χD(k) =
1

L4

∑
i j (〈DiDj〉 − 〈Di〉〈Dj〉)eik·(ri−r j ) with the dimer opera-

tor Di = ∑
αβ Sα

β (i)Sβ
α (i + x̂) is defined as dimer along the

nearest-neighbor bond in the x̂ direction.
By monitoring the corresponding correlation ratios,

Ref. [1] gives that for Nf = 2, the transition of U1D-to-AFM
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FIG. 1. (a) Phase diagram spanned by the fermi flavors Nf and the strength of gauge field fluctuations J of the quantum rotor model in
Eq. (1). U1D stands for the U(1) deconfined phase, AFM stands for the antiferromagnetic Mott insulator phase and VBS stands for the valence
bond solid phase. The diagram and the values of critical points are adapted from Ref. [1]. (b) The illustration of the quantum rotor model in
Eq. (1). L and β = 1/T are the space-time dimensions of the lattice model. The yellow balls represent fermions and the white balls represent
the gauge field attached to the nearest-neighbor fermion hopping. The blue circle lines stand for the flux term per plaquette. The gauge fields
fluctuate from φi j at imaginary time slice τ to φ′

i j at time slice τ ′.

is at J = 1.6(2); for Nf = 4, the transition of U1D-to-VBS
is at J = 1.2(3), and the transition of VBS-to-AFM is at
J = 17(4); for Nf = 6, the transition of U1D-to-VBS is at J =
1.9(3); for Nf = 8, the transition of U1D-to-VBS is at J =
2.5(1). The illustration of the model in Eq. (1) is shown in
Fig. 1(b).

This compact U(1) lattice gauge theory coupled to
fermionic matter at (2 + 1)D is now accessible with large-
scale QMC simulations. The Hamiltonian in Eq. (1) can be
formulated in a coherent-state path integral. To simulate the
above model with determinantal QMC method, we start with
the partition function as detailed in Refs. [1,58],

Z = Tr e−βH =
∑
[φ]

ωB[φ]ωF [φ], (2)

where the configuration space of [φ] is comprised of the (2 +
1)D gauge field. The bosonic part of the partition function is

ωB[φ] =
1∏

τ=M

e
− 4

JN f �τ

∑
〈i j〉(1−cos(φi j (τ+1)−φi j (τ )))

× e− 1
2 KNf �τ cos(

∑
〈i, j〉∈� φi, j (τ )), (3)

and the fermionic part of the partition function is

ωF [φ] = (det[I + BMBM−1 · · · Bτ · · · B2B1])Nf . (4)

Here all the flavors of fermion are subject to the same gauge
field configuration, so for every fermion flavor, the Bτ matrix
in the fermionic weight ωF [φ] is given by

Bτ =
∏
〈i j〉

exp

⎛
⎜⎜⎜⎝�τ

⎡
⎢⎢⎢⎣

0
0 eiφi j (τ )

0
e−iφi j (τ ) 0

0

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ =

∏
〈i j〉

⎡
⎢⎢⎢⎣

1
cosh �τ 0 eiφi j sinh �τ

0 1 0
e−iφi j sinh �τ 0 cosh �τ

1

⎤
⎥⎥⎥⎦. (5)

Since the gauge field φi, j (τ ) are continuous variables at the (2 + 1)D space time, and matrix elements in Bτ are complex
numbers, it is very important to use an efficient strategy to update the gauge field [φ] [1]. We update the U(1) gauge field on
lth imaginary-time slice at i jth lattice bond from φi j to φ′

i j . The ratio which determines whether we accept the updating can be
expressed as

r = ωB[φ′]
ωB[φ]

· ωF [φ′]
ωF [φ]

. (6)

For the boson part, the ratio of the weight is

ωB[φ′]
ωB[φ]

=
exp

(
4

JNf �τ
(cos (φi j (τ + 1) − φ′

i j (τ )) + cos(φi j (τ − 1) − φ′
i j (τ )))

)
exp

(
4

JNf �τ
(cos (φi j (τ + 1) − φi j (τ )) + cos(φi j (τ − 1) − φi j (τ )))

) · exp
(− 1

2�τKNf cos
( ∑

〈i j〉∈� φ′
i, j (τ )

))
exp

(− 1
2�τKNf cos

( ∑
〈i j〉∈� φi, j (τ )

))

= exp

⎡
⎣ − 16

JNf �τ
· cos

(
φi j (τ + 1) − φi j (τ − 1)

2

)
· sin

(
φi j (τ + 1) + φi j (τ − 1) − φ′

i j (τ ) − φi j (τ )

2

)
·

× sin

(
φi j (τ ) − φ′

i j (τ )

2

)
− �τKNf

2

⎛
⎝cos

⎛
⎝ ∑

〈i j〉∈�
φ′

i j (τ )

⎞
⎠ − cos

⎛
⎝ ∑

〈i j〉∈�
φi j (τ )

⎞
⎠

⎞
⎠

⎤
⎦, (7)
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and for the fermionic part, the ratio of the weight is

ωF [φ′]
ωF [φ]

= det [I + B(β, τ )(1 + �)B(τ, 0)]

det [I + B(β, τ )B(τ, 0)]

= det{1 + �[1 − G(τ, τ )]}. (8)

If the update is accepted, we also need to update the equal-
time Green’s function as

G′(τ, τ ) = G(τ, τ )[1 + �(1 − G(τ, τ ))]−1, (9)

with the 2 × 2 matrix of �

� =
[
�ii �i j

� ji � j j

]
, (10)

where

�ii = 1 − e−i(φi j−φ′
i j ) sinh2 �τ,

� j j = 1 − ei(φi j−φ′
i j ) sinh2 �τ,

�i j = (−eiφi j + eiφ′
i j ) sinh �τ cosh �τ,

� ji = (−e−iφi j + e−iφ′
i j ) sinh �τ cosh �τ. (11)

More details on DQMC method used in this work can be
found in Ref. [1]. It is with such QMC methodology that the
ground state phase diagram as a function of fermion flavor
Nf and the strength of gauge fluctuations J is mapped out, as
shown in Fig. 1(a).

In this paper, we focus on the large fermion flavor
case (Nf = 8) by means of stochastic analytic continuation
(SAC) of imaginary-time correlation functions obtained from
DQMC, where the deconfine-confine phase transition is inves-
tigated in detail [1], the 1/L extrapolation of the correlation
ratio crossings estimates U1D-to-VBS transition point at Jc =
2.5(1) for Nf = 8.

The time displaced correlated function [defined as
Gi, j (τ ) = 〈Ôi(τ )Ô j (0)〉 and G(q, τ ) = 1

N2

∑
i, j eiq·ri, j Gi, j (τ )]

of an operator Ô for a set of imaginary times τi (i =
0, 1, · · · , Nτ ) with statistical errors can be obtained from
DQMC simulations. By SAC method [48–51], the corre-
sponding real-frequency spectral function A(ω) can be ob-
tained from them according to the relationship of G(τ ) =∫ ∞
−∞ dωA(ω)K (τ, ω), where the kernel K (τ, ω) depends on

the type of the spectral function, i.e., fermionic or bosonic,
finite or zero temperature. The spectra at positive and negative
frequencies obey the relation of A(−ω) = e−βωA(ω) and we
are restricted at the positive frequencies and the kernel can
then be written as K (τ, ω) = 1

π
(e−τω + e−(β−τ )ω ). In order to

work with a spectral function that is itself normalized to unity
on the positive frequency axis, we modify the kernel and the
spectral function and arrive at the transformation between the
imaginary time Green’s function G(q, τ ) and real-frequency
spectral function B(q, ω)

G(q, τ ) =
∫ ∞

0

dω

π

e−τω + e−(β−τ )ω

1 + e−βω
B(q, ω) (12)

where B(ω) = A(ω)(1 + e−βω ).
In the practical calculation, we parametrize the B(ω) with

a large number of equal-amplitude δ functions sampled at lo-
cations in a frequency continuum as B(ω) = ∑Nω−1

i=0 aiδ(ω −
ωi ). Then the relationship between Green’s function obtained

from Eq. (12) and from DQMC can be described by the good-
ness of fit χ2, i.e., χ2 = ∑Nτ

i=1

∑Nτ

j=1(Gi − Ḡi )C−1
i j (Gj − Ḡ j ),

where Ḡi is the average of DQMC measurement and Ci j is
covariance matrix Ci j = 1

NB(NB−1)

∑NB
b=1(Gb

i − Ḡi )(Gb
j − Ḡ j ).

Here NB is the number of bins in the measurement of DQMC.
Then we update the series of δ functions in a Metropolis
process, from (ai, ωi ) to (a′

i, ω
′
i ), to get a more probable con-

figuration of B(ω). The weight for a given spectrum follows
the Boltzmann distribution P(B) ∝ exp(−χ2/2
), with 
 a
fictitious temperature chosen in an optimal way so as to give
a statistically sound mean χ2 value, while still staying in
the regime of significant fluctuations of the sampled spectra
so that a smooth averaged spectral function is obtained. The
resulting spectra will be collected as an ensemble average
of the Metropolis process within the configurational space of
{ai, ωi}, as explained in Refs. [33,48–52].

III. FIELD THEORY ANALYSIS
OF U(1) DECONFINED PHASE

A. π-flux state mean-field theory

Before presenting our numerical result, we first provide a
mean-field study of the spin and dimer excitation spectra in
the U1D phase ignoring the U(1) gauge fluctuation [or con-
sidering the J → 0 limit of the Eq. (1) model]. The mean-field
treatment will be asymptotically exact in the large Nf limit.
At the mean-field saddle point, the fermions experiences a
π -flux (per plaquette) background, described by the following
Hamiltonian on the square lattice

HMF = t
∑

i

i(c†
i+x̂ci + (−)xc†

i+ŷci ) + H.c. (13)

where ci, c†
i are the creation and annihilation operators for

the fermions on site i with Nf = 8 internal flavors. The Nf

lattice fermions will give rise to 2Nf Dirac fermions at low
energy following the fermion doubling theorem. To see this,
we transform the Hamiltonian to the momentum space,

HMF = −2t
∑

k

c†
k(sin kxσ

10 + sin kyσ
31) ⊗ 18×8ck, (14)

where we have chosen the four-site unit cell (sublat-
tices are arranged surrounding a plaquette) such that ck =
(ckA, ckB, ckC, ckD)ᵀ and each component cka further contains
Nf = 8 flavors. Here σ i j··· ≡ σ i ⊗ σ j ⊗ · · · denotes the ten-
sor product of Pauli matrices and σ 0 stands for 2 × 2 identity
matrix. 18×8 is identity matrix with dimension 8 × 8, we will
use 1 for short. The fermion dispersion is given by εk =
±2t (sin2 kx + sin2 ky)1/2, which is gapless at the momentum
k = (0, 0). Expand around the Dirac point and rescale the
theory to eliminate t , the low-energy continuum model can
be written in terms of the Lagrangian density as

L = c̄(iγ μ∂μ)c, (15)

where γ μ = (iσ 211,−σ 311, σ 101) and c̄ = c†γ 0. Note that
the gamma matrices are of dimensions 4Nf × 4Nf . Given that
the minimal dimension of gamma matrices for (2 + 1)D Dirac
fermion is 2 × 2, the above flavor counting confirms that the
π -flux model contains 2Nf Dirac fermions at low energy.
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B. Spin and dimer excitation spectrum

Given Nf = 8 fermions on each site, our model has the
SU(8) flavor symmetry on the lattice level. The SU(8) spin
operators are defined as

Sa
i = 1

2 c†
i T aci, (16)

where T a (with a = 1, · · · , 63) are the N2
f − 1 = 63 genera-

tors of SU(8). The dimmer operators along x and y directions
are defined as Dx

i = ∑
a Sa

i Sa
i+x̂ and Dy

i = ∑
a Sa

i Sa
i+ŷ, respec-

tively. One may expect to expand them to four-fermion oper-
ators by inserting Eq. (16). However, the following fermion
bilinear operators

Dx
i = −(c†

i+x̂eiφi+x̂,i ci + H.c.)/2

= (ic†
i+x̂ci + H.c.)/2,

Dy
i = −(c†

i+ŷeiφi+ŷ,i ci + H.c.)/2

= (−)x(ic†
i+ŷci + H.c.)/2, (17)

are gauge invariant [where we have replaced the dynamic
gauge connection φi j by its mean field value specified in
Eq. (13)] and symmetry-wise equivalent to the dimer oper-
ators. In the large Nf limit, the fermion bilinear operators
are generally more relevant at low energy. So under the
renormalization group flow, the dimer operators should be
represented by the fermion bilinear operator in Eq. (17).

The Fourier transform for generic operator is defined via
Oq = ∑

i Oie−iq·ri . For fermion bilinear operators, they take
the general form of

Oq =
∑

k

c†
kvqck+q, (18)

where vq is the vertex function (matrix) that depends
on the momentum transfer q. When q goes beyond the
fermion Brillouin zone, we apply the following rules to map
ck+q back: ck+(π,0) = σ 301ck, ck+(0,π ) = σ 031ck, ck+(π,π ) =
σ 331ck. Applying to the spin and dimer operators, we explic-
itly have

Sa
q = 1

2

∑
k

c†
kσ

00T ack+q,

Dx
q =

∑
k

c†
k

(
sin

(
kx + qx

2

)
e−iqx/2σ 101

)
ck+q,

Dy
q =

∑
k

c†
k

(
sin

(
ky + qy

2

)
e−iqy/2σ 311

)
ck+q. (19)

With these, we can evaluate the correlation function for spin
or dimer operators

χO(q, ω) =
∫

dt eiωt 〈O−q(t )Oq(0)〉, (20)

from which the spectral function AO(q, ω) =
−2 Im χO(q, ω + i0+) can be obtained. In the zero
temperature limit, the spectral function is given by

AO(q, ω) =
∑
m,n,k

〈m, k|v−q|n, k + q〉〈n, k + q|vq|m, k〉

× δ(ω + ξm,k − ξn,k+q)(
(ξm,k) − 
(ξn,k+q))

(21)

where |n, k〉 is the nth eigenstate of the single-particle Hamil-
tonian Eq. (14) with momentum k and ξn,k is the correspond-
ing eigenenergy, and 
 denotes the step function. Given the
vq in Eq. (19), the above calculation will provide us the
understanding of the overall shape of the spectral function
for both spin and dimer correlations in the J → 0 limit of the
lattice QED model in Eq. (1), where U(1) gauge fluctuation
is suppressed. We will demonstrate the spectra in Fig. 3 and
Fig. 5 in Sec. IV and compare them with our QMC result
involving gauge fluctuations. We find that the low-energy
spectral features match nicely on the qualitative level between
the free fermion and the QMC results (although the scaling
dimensions will be altered by gauge fluctuations).

C. Emergent symmetry and conserved currents

The mean-field understanding of the excitation spectrum
helps us to identify signatures of emergent symmetry in
the U1D phase. Let us restore the U(1) gauge fluctuation
in the following discussion and consider the compact QED
theory with 16 Dirac fermions in (2 + 1)D spacetime. The
Lagrangian in Eq. (15) becomes

L = c̄γ μ(i∂μ − aμ)c + g(M + M†) + · · · , (22)

where M and M† are the annihilation and creation operators
of the 2π flux of the U(1) gauge field, also known as the
monopole operator (event) in the spacetime [40,59]. Such
monopole terms are generally allowed if not forbidden by the
physical symmetry. Here the physical symmetry includes the
spin SU(8) symmetry and the fourfold rotation symmetry Z4

of the square lattice, which act on the fermion field c as

SU(8) : c → eiθaT a
c, Z4 : c → ei π

4 τ 3
c, (23)

where τ 3 = σ 121 generates the rotation between x-VBS and
y-VBS. Based on operator-state correspondence, the U(1)
gauge monopole operator with charge 1 can be effectively
mapped to the state on S2 × R with one unit of background
magnetic flux through S2, and the states contain fermion zero
mode guaranteed by the Atiyah-Singer index theorem [60].
Therefore, when a U(1) monopole operator is inserted, each
Dirac cone will contribute a zero mode, so there are totally
16 zero modes. Different ways of filling these zero modes
leads to different monopole states that are degenerated in
energy. A gauge neural monopole must have these fermion
zero modes half filled (i.e., filling eight fermions on 16 zero
modes), which results in C8

16 = 12 870 different monopole
states. Among them, only nine states preserve the spin SU(8)
symmetry. They can be labeled by the following quantum
number

m = 1
2 c†τ 3c = 0,±1,±2,±3,±4, (24)

which corresponds to the monopole angular momentum be-
cause τ 3/2 is the generator of the Z4 lattice rotation sym-
metry. For example, the m = 4 state is created by M† ∼∏8

α=1
1+τ 3

2 c†
α , which fills all eight fermions on the monopole

modes of the same valley (of τ 3 = +1). Each fermion occu-
pies a distinct SU(8) spin flavor, such that the monopole state
is SU(8) symmetric. Further imposing the Z4 rotation symme-
try to the monopole, its angular momentum must satisfy m =
0 mod 4, which further singles out three monopole states
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labeled by m = 0,±4. These states span the Hilbert space of
a single monopole that preserve all the SU(8) × Z4 physical
symmetry, so their corresponding monopole operators are
generally allowed to appear in the Lagrangian of the QED
theory Eq. (22).

Depending on the relevance of the single monopole term g
at the large-Nf fixed point, the lattice QED model in Eq. (1)
can have different emergent symmetry in the U1D phase. The
scaling dimension �M of the single monopole operator has
been calculated in the large-Nf limit in Refs. [60–62], which
reads �M = 0.265 × (2Nf ) − 0.0383 + O(1/Nf ) [63]. With
Nf = 8, �M = 4.2 > 3, so the single monopole operator is
irrelevant to the leading orders in 1/Nf , nevertheless the
conclusion may still change at higher orders of 1/Nf . But if we
accept that the single monopole term is irrelevant, the theory
will flow to the QED3 fixed point, where the emergent symme-
try is the full SU(16)/Z16 = PSU(16) flavor symmetry of the
16 Dirac fermions, where the Z16 center of the SU(16) group
should be quotient out because this subgroup is shared with
the U(1) gauge group. The SU(16) generators can be enu-
merated as {τ, T a, τT a}. Here τ = (σ 011, σ 131, σ 121) are the
generators of valley rotations. These generators are found by
requiring them to commute with γ μ, such that the Lagrangian
in Eq. (22) remains invariant under the fermion flavor rotation.
Using the SU(16) generators, one can define the SU(16)
currents (labeled by i = 1, 2, 3 and a = 1, · · · , 63)

jμi0 = c̄γ μτ ic, jμ0a = c̄γ μT ac, jμia = c̄γ μτ iT ac. (25)

There are 255 current operators in total (each current further
contains three spacetime components labeled by μ = 0, 1, 2).
All these currents are emergent conserved currents at low
energy.

However, although unlikely, if the single monopole oper-
ator turns out to be relevant and if we assume the theory
flows to another nontrivial conformal fixed point (when Nf

is within the conformal window), the emergent symmetry can
be lowered by the nonvanishing monopole term. The single
monopole term g will break the emergent symmetry from
PSU(16) to

SU(8)

Z8
× SU(8)

Z8
× Z8

Z2
= PSU(8) × PSU(8) × Z4. (26)

The above symmetry group is most easily seen for the m = 4
monopole: The two SU(8) acts on the spin flavors in the two
valleys (τ 3 = ±1), respectively, Z8 is the opposite eightfold
rotation of fermion phases in opposite valleys, and all the
center subgroups must be quotient out as they are shared be-
tween the U(1) gauge group. More careful symmetry analysis
for the other monopoles of different m shows that the above
symmetry is indeed the largest possible residual symmetry
of a single monopole operator. In this case, the emergent
conserved currents are reduced to

jμ0a = c̄γ μT ac, jμ3a = c̄γ μτ 3T ac. (27)

In this case, there are 126 emergent conserved currents in
total. We summarize the above analysis in Table I.

Our analysis shows that the relevance of the U(1) gauge
monopole crucially affects the emergent symmetry and the
emergent conserved currents that can be probed at low energy.
Identifying these current fluctuations in the spin and dimer

TABLE I. Emergent symmetry and conserved currents for the
Nf = 8 lattice QED model.

Monopole operator irrelevant relevant

Emergent symmetry PSU(16) PSU(8) × PSU(8) × Z4

Conserved currents jμi0, jμ0a, jμia jμ0a, jμ3a

Number of currents 255 126

excitation spectra will be the first step towards pinning down
the emergent symmetry and studying the monopole effects
in the lattice QED model. The analysis can be carried out
on the mean-field level. According to Eq. (19) and c̄ =
c†γ 0, γ μ = (iσ 211,−σ 311, σ 101), τ i = (σ 011, σ 131, σ 121),
we can identify the following spin and dimer operators to
current operators

Sa
(0,0) ∼ c†σ 00T ac = −c̄γ 0T ac = − j0

0a,

Sa
(π,0) ∼ c†σ 30T ac = c̄γ 2τ 1T ac = j2

1a,

Sa
(0,π ) ∼ c†σ 03T ac = c̄γ 1τ 2T ac = j1

2a,

Dx
(π,π ) ∼ −c†σ 231c = c̄γ 2τ 3c = j2

30,

Dy
(π,π ) ∼ −c†σ 021c = −c̄γ 1τ 3c = − j1

30. (28)

They are summarized in Table II. Among them, j0
0a is the

conserved current of the physical spin SU(8) symmetry,
and the remaining currents j2

1a, j1
2a, j2

30, j1
30 are all emergent

conserved current of PSU(16) but not of PSU(8) × PSU(8),
see Table I. By measuring the scaling dimension of these
currents from the spin and dimer correlation functions, one
can decide if they are conserved or not to further deter-
mine the emergent symmetry and the relevance of the sin-
gle monopole operator [55]. At current stage, our numerical
resolution is not sufficient to fully resolve the scaling di-
mension of these current fluctuations, nevertheless we will
first map out the overall shape of the excitation spectra and
identify these low-energy spectral features in this work and
provide a road map for future study of the emergent conserved
currents.

It is worth mentioning that the dimer fluctuation at (0,0)
momentum is gapless, but its spectral weight fades away much
faster towards low energy as shown in Figs. 5(a) and 5(b). This
continuum corresponds to the energy-momentum tensor T μν

which is the conserved current associated with the translation
symmetry,

T μν = ∂L
∂ (∂μc)

∂νc − δμνL = ic̄(γ μ∂ν − δμνγ λ∂λ)c. (29)

TABLE II. Identification of operators at high symmetry points.

q (0,0) (π, 0) (0, π ) (π, π )

Sa
q − j0

0a j2
1a j1

2a Néel

Dx
q L − T 11 x-VBS −ic̄γ 0τ 2∂xc j2

30

Dy
q L − T 22 −ic̄γ 0τ 1∂yc y-VBS − j1

30
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Based on this definition, we can identify that

Dx
(0,0) ∼ −ic†σ 101∂xc = −ic̄γ 1∂xc = L − T 11,

Dy
(0,0) ∼ −ic†σ 311∂yc = −ic̄γ 2∂yc = L − T 22. (30)

The scaling dimensions of L, T μν ∼ δL/δgμν are 3, which
follows from the fact that the action S = ∫

d3xL and the
metric gμν must be dimensionless. Because of the relatively
high scaling dimension of the Dx

(0,0) fluctuation, it is much
more irrelevant under renormalization compared to the current
and order parameter fluctuations. Therefore the low-energy
spectral weight of Dx

(0,0) is expected to be much weaker
compared to other continua (e.g., Dx

(π,0), Dx
(π,π )) in the dimer

excitation spectra in Fig. 5 in Sec. IV.

IV. QUANTUM MONTE CARLO RESULTS

Here we present the QMC results, first beginning with the
definition of the physical observables.

A. Physical observables

To understand the deconfine-confine phase transition, we
focus on gauge-invariant dynamical structure factors obtained
in QMC simulations, including the spin and dimer dynamical
structure factor. They can be defined as the following forms
[1,64]

S(q, τ ) = 1

N2
s

∑
i, j

∑
α,β

〈
Sα

β (i, τ )Sβ
α ( j, 0)

〉
eiq·(ri−r j ), (31)

D(q, τ ) = 1

N2
s

∑
i, j

(〈Di(τ )Dj (0)〉

− 〈Di(τ )〉〈Dj (0)〉)eiq·(ri−r j ). (32)

where the spin operator is Sα
β (i) = c†

iαciβ − 1
Nf

δαβ

∑
γ c†

iγ ciγ

and the dimer operator is Di = ∑
αβ Sα

β (i)Sβ
α (i + x̂). The

dimer operator is defined along the nearest-neighbor bond in
the x̂ direction.

As mentioned in Sec. II, the time displaced correlated
functions S(q, τ ) and D(q, τ ) can be obtained in QMC for
a set of imaginary times τi (i = 0, 1, · · · , Nτ ) with statistical
errors from which the SAC will be further applied to extract
the real-frequency spectral functions S(q, ω) and D(q, ω).

Another quantity that has distinctively different behaviors
in U1D and VBS confined phases is the net fluctuation of
flux in each time slice with Monte Carlo steps [1,65]. Flux
in each plaquette can be written as

∑
b∈� φb = �� + 2πm�

with � ∈ [0, 2π ) and m� an integer. The fluctuation of net
flux in one time slice M(τ ) is defined as a sum of m� of each
plaquette at time slice τ , M(τ ) = ∑

� m�(τ ). The evolution
of M(τ ) with Monte Carlo time series, both inside U1D and
VBS phases at time slices τ1 and τ2, are shown in Figs. 2(a)
and 2(b), respectively. The parameters of calculation were
given as L = 12 and β = 2L. Inside the U1D phase (J =
1.80 < Jc), as shown in Fig. 2(a) the net flux favors π flux in
each plaquette, and the net fluctuation M(τ ) at each time slice
seldom changes, M(τ1) and M(τ2) follow closely to each other
and their value only take the integers 0, ±1, and ±2; while
in the VBS phase (J = 3.50 > Jc), as shown in Fig. 2(b) the
net fluctuations change almost randomly with more extended

FIG. 2. Monte Carlo sweep serials of M, the fluctuations of the
net flux at time slice τ1 and τ2 at with L = 12 (a) inside U1D phase
at J = 1.80 and (b) inside VBS phase at J = 3.50. Here τ1 = �τ =
0.05 and τ2 = 8�τ . The flux sweep serials are plotted in the interval
of 20 sweeps.

values, 0, ±1,±2,±3,±4,±5,±6 (in units of 2π ), and large
deviation between different time slices τ1 and τ2 can all be
seen. These large fluctuations in the net flux indicate the
proliferate of monopoles in the confined VBS phase.

B. Spectra and excitation gaps

In this part we present S(q, ω) and D(q, ω) inside both the
U1D and VBS phases; these results are obtained from QMC-
SAC simulations. We also show the corresponding spectra
from the noninteracting π -flux model of Dirac fermions with-
out gauge fluctuations, which are the spectra at the limit of
J = 0 derived in Sec. III B.

1. Spin spectra in UID and VBS phases

Figure 3 shows the features of the spin spectra through
the U1D-VBS transition; the results are shown along the
high-symmetry-path of (0, 0) − (π, 0) − (π, π ) − (0, 0). We
present results for the noninteracting Dirac fermions corre-
sponding to J = 0 [Fig. 3(a)], inside the U1D phase with
J = 2.00 < Jc [Fig. 3(b)], close to the QED3-GN critical point
at J = 3.10 [Fig. 3(c)] and inside the VBS confined phase at
J = 4.50 > Jc [Fig. 3(d)].

The π -flux spinons, as discussed in Sec. III B with the U(1)
gauge fluctuations suppressed, give rise to gapless spin spectra
at momenta (0,0), (π, 0), and (π, π ) in Fig. 3(a). The situation
persists as one introduces the U(1) gauge fluctuations, for
example at J = 2 in Fig. 3(b). Of course on a finite size system
L = 14 for Fig. 3(b), the spectra look gapped due to finite
size effect, we have performed the 1/L extrapolation of the
spin gaps at (π, 0) and (π, π ) with the gaps directly obtained
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FIG. 3. (a) Spin spectra of noninteracting π -flux model and (b), (c), (d) the spectra obtained from QMC-SAC calculations through the
phase transition of U1D-to-VBS with fermions flavorsNf = 8, L = 14, and β = 2L. (b) is inside the U1D phase with J = 2.00 < Jc, (c) is
close to the critical point at J = 3.10, and (d) is inside the VBS phase at J = 4.50 > Jc.

from fitting the imaginary time decay of S(q, τ ) without SAC;
the results are shown in Figs. 4(a) and 4(d), and it is clear
that in the U1D phase, the spin excitations at (π, 0) and
(π, π ) are gapless in the thermodynamic limit. As discussed
in Sec. III C, the (π, π ) excitation corresponds to the spin
SU(8) order parameter fluctuation, and the (π, 0) excitation
corresponds to the current fluctuation whose charge operator
generates the AFM-VBS rotation. If the emergent symmetry
is PSU(16), the scaling dimension of the spin excitation at
(π, 0) will be pinned at 2. However if the emergent symmetry
is PSU(8) × PSU(8) × Z4, the scaling dimension will deviate
from the integer. More importantly, we also observed broad
and prominent continuous spectra in Fig. 3(b), which reflects
the expected deconfinement and fractionalization of spinons
and their interactions mediated by the fluctuating U(1) gauge
field. Similar S(q, ω), with gapless excitations at (0,0), (π, 0),
and (π, π ) and pronounced continua up to high energy, have
also been seen at the deconfined quantum critical point with
emergent O(4) symmetry [33,55].

As one moves towards the critical point [actually slightly
above it in Fig. 3(c) with J = 3.1 > Jc = 2.5], broad and
prominent continuous spectra can still be observed, signifying
the effects of gauge fluctuations. The 1/L extrapolation of
the spin gap is shown in Figs. 4(b) and 4(e). It is clear now
that once inside the VBS confined phase, the spin spectra

are gapped due to the translational symmetry breaking of the
VBS phase. Deep inside the VBS phase, as shown in Fig. 3(d)
with J = 4.5, the spin spectra are fully gapped and the con-
tinua above it also become less extended in the frequency
domain. This is expected as well since here both the gauge
fields and the fermions are interacting at the length scale
shorter than that associated with the excitation gaps. Below
the gap, the system is an insulator with fermions forming
singlets along the (π, 0) or (0, π ) directions, i.e., translational
symmetry breaking. The corresponding 1/L extrapolation of
the gaps at (π, 0) and (π, π ) are shown in Figs. 4(c) and 4(f),
respectively.

2. Dimer spectra in UID and VBS phases

Figure 5 shows the dynamic dimer spectra through the
U1D-to-VBS transition. The dimer spectra of the noninteract-
ing π -flux Dirac fermions are given in Fig. 5(a). The spectra
are gapless at momenta (0,0), (π, 0), and (π, π ), similar to
that of the spin in Fig. 3(a), but the spectral weights have
different distribution. The calculation details of the noninter-
acting spin and dimer spectra are given in Sec. III B.

As one moves into the U1D phase at J = 2.0 < Jc

[Fig. 5(b)], the gapless dimer spectra persist. Again the spec-
tral gaps at the high symmetry points are due to the finite size
effect. The interesting observation here is that the continua

FIG. 4. The 1/L extrapolation of the spin gap at (π, 0) and (π, π ). (a) and (d) inside the U1D phase at J = 2.00 < Jc; (b) and (e) near the
critical point at J = 3.10 < Jc; (c) and (f) inside the VBS phase at J = 4.50 > Jc.
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FIG. 5. (a) Dimer spectra from noninteracting π -flux model and (b), (c), and (d) are the spectra obtained from QMC-SAC calculations
through the phase transition of U1D-to-VBS with fermions flavors Nf = 8, L = 14, and β = 2L. (b) is in the U1D phase with J = 2.00 < Jc.
(c) is close to the critical point at J = 3.10. (d) is in the VBS phase at J = 3.20 with pinning field.

are very broad, extending all the way from ω = 0 to ω = 8J ,
i.e., beyond the upper boundary of the noninteracting spectra.
This points to the importance of higher order continua of mul-
tispinon excitations due to the strong interaction effect medi-
ated by the U(1) gauge field fluctuations. It is also interesting
to notice that at low energy, ω/J � 2, the spectral weight
bears similar distribution with that of the noninteracting one,
in particular, the weight is greatly reducing as one approaches
momentum (0,0); this is related to the fact that Dx

(0,0) is the
energy-momentum tensor with larger scaling dimensions, as
pointed out in Sec. III C. Also, the scaling dimension of Dx

(π,π )
could help with distinguishing the emergent symmetry of
PSU(16) or PSU(8) × PSU(8) × Z4 in the U1D phase, given
larger system sizes could be simulated.

Near and slightly above the critical point at J = 3.1, as
shown in Fig. 5(c), broad and prominent continuous spec-
tra can still be observed and there are gapless spectra at
(π, 0). The gapless excitation close to (π, 0) are the critical
fluctuations associated with the QED3-GN transition. With
larger system sizes and lower temperature in the future QMC
studies, one will be able to measure the anomalous dimension
exponent η from the momentum and frequency dependence
of such critical fluctuation and could compare with the pre-
dictions of QED3-GN transitions from the recent perturbative
RG calculations [42–45].

Inside the VBS phase, the dimer spectra are gapped due
to the (π, 0) or (0, π ) translational symmetry breaking. How-
ever, since the dimer order parameter will contribute a Bragg
peak at (π, 0) and ω = 0, the analytic continuation is notori-
ously difficult for finding such not-smoothed spectra, i.e., one
delta peak at ω = 0 followed with a gap and then continua
above it. To solve this problem, we add a small pinning
field to strengthen the VBS order [66] in the simulation of
Fig. 5(d). The pinning fields are added according to the pattern
of Fig. 6(a), with t ′ = 1.05t , and the simulation results are
consistent with the expectation, in that, in Fig. 5(d), the spec-
tra looked gapped at low energy, however, a fixed momentum
cut at (π, 0), as shown in Fig. 6(b), indeed reveals that there
is a Bragg peak at ω = 0 and a continuous spectra beyond a
gap due to the break of discrete symmetry in VBS phase.

V. CONCLUSIONS AND DISCUSSION

In this work, we have performed both numerical and ana-
lytical analyses of the dynamics of a model realizing the com-
pact QED3 at large fermion flavor (Nf = 8). As mentioned
in the introduction, the question of U(1) gauge field coupled

to fermionic matter field at (2 + 1)D is of high interests to
both condensed matter and high-energy physics communities.
The U1D phase is a realization of the algebraic quantum
spin liquid in which Dirac spinons dynamically coupled to
the emergent U(1) gauge field. The transition of U1D-VBS
is the deconfinement-to-confinement transition in the QED3
setting and is also the transition from symmetric quantum spin
liquid to the symmetry-breaking phase that several potential
quantum spin liquid compounds could have already realized
by tuning the doping concentration, pressure, and magnetic
field [67,68]. The dynamical information of the U1D phase
and U1D-VBS transition revealed here—the continua in spin
and dimer spectra and their field theoretical interpretations
in the emergent symmetries and conserved currents—provide
the first piece of concrete evidence of the aforementioned
exotic physical phenomena.

Looking forward, better algorithm in QMC simulations
would certainly be desirable to access larger system sizes
and lower temperatures. In particular, the critical properties
of the U1D-VBS transition, that of the QED3-GN types, have
already been discussed in the high-order perturbative RG
calculations [42–45], but the system sizes in this work are
too small to extract accurate values of the critical exponents.
Further developments, in terms of algorithm improvement and
more focus close to the QED3-GN critical points, are ongoing.

From an analytical perspective, calculation of the spec-
tra with the fluctuations of the U(1) gauge fields included
would be very useful, similar as the analysis in Ref. [33],

FIG. 6. To strengthen the VBS order, a pinning field is added as
shown in (a), where the black bonds represent the original hopping
t in Eq. (1) while the blue bonds represent the enhanced hopping
t ′ = 1.05t . (b) shows the obtained spectrum at (π, 0) as a line cut in
Fig. 5(d) in a log scale; it is clear that inside the VBS phase, with the
help of a small pinning field, a Bragg peak (δ function) at ω = 0 plus
a small gap and weight above it are revealed.
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the dynamical signature of the strongly correlated systems
of fractionalized spinons and their coupling effects with the
emergent gauge field could be revealed and provide clearer
guidance for future numerical simulations and eventually to
experiments.
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