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Non-Abelian twist to integer quantum Hall states
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At a fixed magnetic filling fraction, fractional quantum Hall states may display a plethora of interaction-
induced competing phases. Effective Chern-Simons theories have suggested the existence of multiple interaction-
induced short-range entangled phases also at integer quantum Hall plateaus. Among these, a bosonic phase has
been proposed with edge modes carrying representations based on the E8 exceptional Lie algebra. Through a
theoretical coupled-wire construction, we provide an explicit microscopic model for this E8 Abelian quantum
Hall state, at filling ν = 16, and discuss how it is intimately related to topological paramagnets in 3 + 1
dimensions. Still using coupled wires, we partition the E8 state into a pair of non-Abelian, long-range entangled
states. These two states occur at filling ν = 8, demonstrating that even topological order may also exist at integer
Hall plateaus. These phases are bosonic, carry chiral edge theories with either G2 or F4 internal symmetries, and
host Fibonacci anyonic excitations in the bulk. This suggests that the ν = 8 quantum Hall plateau may provide
an unexpected platform to realize decoherence-free quantum computation by anyon braiding. We also find that
these topological ordered phases are related by a notion of particle-hole conjugation based on the E8 state that
exchanges the G2 and F4 Fibonacci states. We argue that these phases can be tracked down by their electric
and thermal Hall transport satisfying a distinctive Wiedemann-Franz law (κxy/σxy )/[(π 2k2

BT )/3e2] < 1, even at
integer magnetic filling factors.
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I. INTRODUCTION

Quantum particles are generically classified by their ex-
change properties, typically bosonic or fermionic. In two
dimensions, however, quantum many-body interference phe-
nomena are brought to a new level of complexity as anyon
statistics becomes a possibility [1–3]. In this case, the ex-
change of identical particles changes a system’s wave function
by a phase that may interpolate arbitrarily between the 0
(bosonic) and π (fermionic) limits. Fractional quantum Hall
(FQH) fluids form the paradigmatic examples of anyonic sys-
tems. Here, topological order develops, with gapless charge
and energy transporting edge modes and with bulk excitations
displaying anyonic exchange behavior [4].

Due to the magnetically quenched kinetic energy of quan-
tum Hall systems, interactions are known to drive a sen-
sitive competition among topological phases in the FQH
regime. The 5/2 plateau provides a standard example, where
states such as the Pfaffian, anti-Pfaffian, and other composite-
particle pictures appear as candidates to describe the FQH
phase phenomenology [5,6]. Less diversity is discussed, how-
ever, for integer quantum Hall (IQH) fluids. Could interac-
tions drive topological phase transitions in Hall fluids also
at integral magnetic filling fractions? A suggestively positive
answer to this query was first pointed out by Kitaev [7].
Phenomenologically quantum Hall phases conserve charge

and energy. These conservations imply well-defined electric
and thermal Hall transport through gapless edges, which are
determined by the bulk magnetic filling fraction ν and the edge
conformal field theory (CFT) central charge c [cf. Eq. (17)
below]. This phenomenology is well accounted for by Chern-
Simons theories, from which one can also connect ν to the
exchange statistics. Kitaev’s finding was that for all short-
range entangled (SRE) bosonic topological phases the chiral
central charge c is determined by the magnetic filling fraction
ν only modulo 8: c = ν mod 8 [7] (cf. also Appendix D
and the Gauss-Milgram formula discussion). The IQH case
corresponds to the limit of c = ν, but phenomenology is not
limited to this simplest scenario.

The developments regarding time-reversal-broken SRE
bosonic topological phases have been further explored sub-
sequently by Lu and Vishwanath [8] and Plamadeala, Mul-
ligan, and Nayak [9]. Both collaborations have approached
this problem via a phenomenological Chern-Simons per-
spective. Overall, a consensus points to the existence of a
bosonic phase, with edges described by a Wess-Zumino-
Witten (WZW) CFT based on the exceptional Lie algebra E8

at level 1. This is the prime candidate to describe SRE phases
at integer ν that are, nevertheless, distinct from simple copies
of IQH states.

E8 corresponds to the largest exceptional Lie algebra, with
248 generators and representations arranged minimally in an
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eight-dimensional lattice [10]. Despite this complexity, it has
enjoyed attention in physical scenarios, including experimen-
tal verification in the quantum magnetism of the Ising model
[11,12]. In the present context, the algebraic structure of the
E8 WZW CFT fixes the thermal Hall transport with c = 8. Just
as in Kitaev’s original argument, the effective Chern-Simons
approach points to phases at arbitrary values of ν, all differing
from c by some nonzero integer multiple of 8.

The first goal of the present work is to propose a micro-
scopic model for this phase. To do this, we turn to an approach
based on a coupled-wire construction of quantum Hall phases,
relying on a set of one-dimensional (1D) channels forming
a two-dimensional (2D) array [13]. The 2D bulk is gapped
by interactions among the channels, restoring isotropy and
leaving behind gapless edges. A bulk-boundary correspon-
dence relates excitations of these gapless 1D edges to anyonic
excitations in the 2D topological bulks [6,7,14]. This method
has previously succeeded in describing diverse FQH phases
[13,15,16] and topological superconducting phases [17–19].
By including the features of exceptional Lie algebra embed-
dings, we successfully implement a coupled-wire construction
for an E8 quantum Hall state where c = 8 and ν = 16. A
straightforward consequence of this discrepancy between ν

and c is that the E8 quantum Hall state can be distinguished
from the regular IQH state (c = ν = 16) via the ratio between
electric and thermal Hall conductivities by the Wiedemann-
Franz law [20].

While the E8 state competes with the ν = 16 IQH phase,
it does not display a general non-Abelian topological order
[21,22]. This prompts us to consider a more challenging
scenario: could long-range topological order also develop
inside an IQH plateau? Our inclusion of exceptional Lie
algebras to the coupled-wire program proves to be a fruitful
tool to answer this question. We take notice of the convenient
existence of a CFT embedding of two other exceptional Lie
algebras, (G2)1 × (F4)1, into (E8)1 [23]. These groups also
have enjoyed recent attention in physics. Examples include
the classification of particles in the standard model (see,
e.g., Ref. [24], and note the relationship between G2 and the
octonions algebra [19]) and, most importantly here, quantum
information theory, where a connection between the G2 and F4

algebras and Fibonacci anyons is well established [18,19,25]
(see also Appendix D). Fibonacci anyons are a “holy grail”
particle in quantum information physics, offering a venue for
universal (braiding-based) topological quantum computation
[26]. Using our E8 construction as a parent, we build two
distinct (G2 and F4) Fibonacci phases which compete with
the SRE IQH phase at ν = 8. These Fibonacci phases are
long-range entangled, with fractional central charges cG2 =
14/5 and cF4 = 26/5 [27–29], and may again be probed by
nonstandard coefficients in the Wiedemann-Franz law. The
practicality of searching for Fibonacci anyons at integer Hall
plateaus should be contrasted with previous attempts at build-
ing models for Fibonacci topological order: these included the
ν = 12/5 FQH phase of Read and Rezayi [30], a trench con-
struction between ν = 2/3 FQH and superconducting states
[18], and an interacting Majorana model in a tricritical Ising
coset construction [19]. While our analysis does not provide,
yet, the detailed interactions in an electronic fluid picture that
would lead to the Fibonacci phase, it does prove the existence
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FIG. 1. Coupled-wire model of the E8 quantum Hall state at
filling ν = 16. Black lines represent bundles with 11 electron wires,
each carrying a counterpropagating pair of Dirac fermions, in
the presence of a magnetic flux (green). Yellow boxes represent
a unimodular basis transformation U (det(U ) = 1) restructuring
U (11)1 → U (3)1 × (E8)1. The spectator fermionic U (3)1 triplets
and the bosonic (E8)1 are coupled through intrabundle and interbun-
dle backscatterings Hintra and Hinter defined in Eqs. (13) and (14).
The 2D bulk is fully gapped leaving just the chiral (E8)1 modes at
the edges.

of the phase at a specific and achievable ν = 8, bypassing
FQH phases, heterostructures, and topological superconduc-
tivity ingredients.

As a final remark, our construction shows that the F4 and
G2 Fibonacci phases are related by an unconventional particle-
hole conjugation, based on a unifying description coming
from the E8 parent phase. Fibonacci and “anti-Fibonacci”
phases have also been identified in Ref. [19] and discerned by
interferometric analysis. Here they can be distinguished solely
by the Wiedemann-Franz law.

II. THE E8 QUANTUM HALL STATE

Our construction begins with an array of electron wires in
bundles (Fig. 1, black lines) with vertical positions y = dy, d
being their displacement and y an integer label. Each bundle
contains N wires carrying, at the Fermi level, left- (L) and
right-moving (R) fermions whose annihilation operators admit
a bosonized representation

cσ
ya(x) ∼ exp

[
i
(
�σ

ya(x) + kσ
yax
)]

, (1)

forming a U (N )1 WZW theory. Here, a = 1, . . . , N labels the
wires, x is the coordinate along them, σ = R, L = +,− is
the propagation direction, and kσ

ya is the Fermi momentum of
each channel. The bosonic variables obey the commutation
relations[

∂x�
σ
ya(x),�σ ′

y′a′ (x′)
] = 2π iσδσσ ′

δaa′δyy′δ(x − x′). (2)

To couple the fermions of different bundles and introduce
a finite excitation energy gap, while leaving behind gapless
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chiral (E8)1 edges, two ingredients are necessary: (i) a basis
transformation that extracts the (E8)1 degrees of freedom
from U (N )1 (Fig. 1, yellow boxes) and (ii) backscattering
interactions between L and R movers of different bundles to
gap out all low-energy channels throughout the bulk (Fig. 1,
dashed arcs).

For ingredient (i), the bosonization approach provides a
convenient solution. Out of the 240 E8 off-diagonal current
operators, it suffices to generate the eight simple roots, the
basis of the E8 root lattice. These assume, under bosonization,
the general form [27]

[
EE8

]σ
yαI

∼ exp
[
i
(
�̃σ

yI (x) + k̃σ
yIx
)]

, I = 1, . . . , 8. (3)

Here αI is a simple root vector of E8 so that[
∂x�̃

σ
yI (x), �̃σ ′

y′I ′ (x′)
] = 2π iσδσσ ′

KE8
II ′ δyy′δ(x − x′), (4)

and KE8
II ′ = αI · αI ′ is the E8 Cartan matrix

KE8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2 −1 −1
−1 2 −1

−1 2
−1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(5)

The challenge now is to represent the E8 roots as products of
electron operators, so that their bosonized variables are related
to the electronic ones by an integer-valued transformation
�̃σ

yI = U σσ ′
Ia �σ ′

ya. As a consistency condition from Eqs. (2) and

(4), σ ′′U σσ ′′
Ia U σ ′σ ′′

I ′a = σδσσ ′
KE8

II ′ . From Eq. (1), the E8 roots
momenta and charges are related to the fermionic ones,

k̃σ
yI = U σσ ′

Ia kσ ′
ya (6)

and

q̃σ
I = U σσ ′

Ia qσ ′
a , (7)

respectively. Such a basis transformation exists, but is not unique, and requires, in particular, N > 8 wires. To fix a solution, we
demand the extra modes to correspond to a trivial fermionic sector. This way, a possible construction contains N = 11 wires [31],
decomposing into an E8 and three U (1) sectors [22]. In practice, we write

U =
(

U ++ U +−
U −+ U −−

)
(8)

as a unimodular matrix, decomposing UηU T = KE8 ⊕ 13 ⊕ (−KE8 ) ⊕ (−13), where ησσ ′ = σδσσ ′
. For our particular construc-

tion,

(U ++|U +−) = (U −−|U −+)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −1 −1 −1
1 1

−1 1
−1 1

−1 −1
1 1

−1 1
−1 1 1 1 1 −1

1 1 1
3 −5 −2 −1 −2 2 2 2 −2 2 2

2 1 −1 −1 −1 1 −1 −1 −1 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(9)

where the rows and columns of U σσ ′
are respectively labeled

by I, a = 1, . . . , 11. Rows I = 1 to 8 associate to the simple
roots of E8. Substituting the unit electric charge qσ

a = 1 for
all electronic channels in Eq. (7), we find the electric charge
assignments

q̃σ = (−4, 2, 0, 0,−2, 2, 0, 2) (10)

carried by the eight E8 simple roots of each chiral sector;
these may be conveniently organized in the corresponding
Dynkin diagram as in Fig. 2. Rows 9–11 correspond to Dirac

fermions (spin |h| = 1/2) f σ
yn ∼ exp [iU σσ ′

I=8+n,a(�σ ′
ya + kσ ′

yax)],
for n = 1, 2, 3, that generate U (3)1. They are also integral
products of the original electrons and carry odd electric
charges (q̃n=1,...,3) = (3, 1, 1), calculated using the same steps
that lead to Eq. (10).

Returning now to ingredient (ii), electron backscattering
interactions generally require momentum commensurability
to stabilize oscillatory factors [32]. To tune these phases, and
break time reversal as necessary in a quantum Hall fluid, we
introduce a magnetic field perpendicular to the system (Fig. 1,
green crosses). The Fermi momenta of the electron channels
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FIG. 2. The Dynkin diagram of E8 and the charge assignment
q (in units of e) of the simple roots (EE8 )σyαI

, for I = 1, . . . , 8.
Uncolored entries are electrically neutral.

become spatially dependent as

kσ
ya = eB

h̄c
y + σkF,a. (11)

We choose the Lorenz gauge where Ax = −By and label the
bare Fermi momenta in the absence of field as kF,a. The
associated magnetic filling fraction can be expressed as

ν =
1

2π

∑
a 2kF,a

Bd/φ0
= h̄c

eBd

∑
a

2kF,a, (12)

where φ0 = hc/e is the magnetic flux quantum.
At this point, we introduce the wire-coupling interactions

Hy, f
intra = uintra

3∑
n=1

f R
yn

†
f L
yn + H.c., (13)

Hy+1/2,E8
inter = uinter

8∑
I=1

[
EE8

]R
y,αI

†[
EE8

]L
y+1,αI

+ H.c. (14)

From Eq. (3), and the corresponding bosonization of f σ
yn,

Eqs. (13) and (14) carry momentum-dependent oscillating
factors eikx which average to zero in the thermodynamic limit.
Demanding the absence of these oscillations, i.e., requiring
the backscattering interactions to conserve momentum, leads
to the set of equations

(U ++
I,a − U +−

I,a )
(
kR

ya − kL
y+1a

) = 0, I = 1, ..., 8

(U ++
I,a − U +−

I,a )
(
kR

ya − kL
ya

) = 0, I = 9, 10, 11, (15)

whose solution fixes the ratios between the bare kF,a uniquely
and, most remarkably, also fixes uniquely ν = 16. The values
of these momenta are listed in Appendix A.

It is worth noting that the charge vector of Eq. (10) allows
a consistency checking of the ν = 16 magnetic filling frac-
tion. According to the effective Chern-Simons field theory
approach, the filling fraction is uniquely determined by the
K-matrix and quasiparticle charges by

ν = q̃T (KE8 )−1q̃, (16)

where a single chiral sector is used (we omit the label), and
where KE8 is the E8 Cartan matrix. The filling fraction ν = 16
comes from this equation and the momentum commensurabil-
ity condition has, again, a unique solution (up to a single free
Fermi-momentum parameter kF ).

Under the conditions above, and in a periodic geome-
try with Nl bundles, the intra- and interbundle backscatter-
ing Hamiltonians introduce 11 × Nl independent sine-Gordon
terms satisfying the Haldane nullity condition [33]. These
interactions are generically irrelevant in the renormalization

group sense, although this may change in the presence of
forward scattering and velocity terms. At strong coupling,
however, they lead to a finite energy excitation gap in the
coupled-wire model. Also, these interactions are favored over
several other simpler interaction terms due to the momentum
commensurability conditions.

The E8 quantum Hall phase carries distinctive phe-
nomenology. Opening the periodic boundary conditions
leaves behind, at low energies, eight chiral E8 boundary modes
along the top and bottom edges, as illustrated in Fig. 1.
As a consequence of the discrepancy between the magnetic
filling factor and the number of E8 edge modes, we predict
an unconventional Wiedemann-Franz law [20] for the E8

quantum Hall phase: a general set of gapless edge modes, as in
regular IQH states, carries the differential thermal and electric
conductances (or, equivalently, Hall conductances) [7,34–37]

κxy = c
π2k2

B

3h
T, σxy = ν

e2

h
, (17)

where e is the electric charge, h is Planck’s constant, kB is the
Boltzmann constant, c is the chiral central charge, and T is
the temperature. For a standard IQH state, c = ν, identical to
the number of chiral Dirac electron edge channels. A deviation
away from c/ν = 1 indicates the onset of a strongly correlated
many-body phase. Here, the E8 quantum Hall phase carries
eight chiral edge bosons and therefore cE8 = 8, while ν = 16
is necessary to stabilize the phase. This leads to a modified
Wiedemann-Franz law, where cE8/ν = 1/2.

We note in passing that the E8 state is topologically related
to a thin slab of a three-dimensional (3D) e f m f topological
paramagnet with time-reversal symmetry-breaking top and
bottom surfaces [38,39]. Like a topological insulator, hosting
a 1D chiral Dirac channel with (c, ν) = ±(1, 1) along a mag-
netic surface domain wall, the e f m f topological paramagnet
supports a neutral chiral E8 interface with (c, ν) = ±(8, 0)
between adjacent time-reversal breaking surface domains with
opposite magnetic orientations [40–43]. Comparing (c, ν) =
(8, 16) = (16, 16) − (8, 0), the charged edge modes of the
E8 quantum Hall state are therefore equivalent to the neutral
E8 topological paramagnet surface interface up to 16 chiral
Dirac channels, which exists on the edge of the conventional
ν = 16 IQH state. In fact, the matrices KE8 and 116 ⊕ (−KE8 )
are related by a charge-preserving stable equivalence [44].
Finally, the unimodularity of the E8 lattice entails that all
primary fields of the edge E8 CFT are integral products of
the simple roots (3), which are even products of electron
operators. Hence, ignoring any edge reconstruction, the edge
modes of the E8 state support only evenly charged bosonic
gapless excitations.

III. THE FIBONACCI STATES

The E8 state construction above serves as a stepping stone
for building coupled-wire models of other phases based on
exceptional Lie algebras. Here, we focus on demonstrating the
existence of phases carrying (G2)1 or (F4)1 WZW CFTs at the
edges, again at integer magnetic filling fractions. Remarkably,
these phases correspond to Fibonacci topological order (cf.
Appendix D). To build these models, we proceed with a
conformal embedding of G2 × F4 into E8. The existence of
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such embedding is signaled by the relationship among central
charges cE8 = 8 = 14/5 + 26/5 = cG2 + cF4 ; a rigorous proof
of its existence is possible and can be found in Ref. [23].
Conversely, the G2 or F4 Fibonacci phases can be thought
of as arising from a partition or fractionalization of the E8

parent state. In what follows, we start by displaying an explicit
construction of the conformal embedding. We then follow
with the coupled-wire construction and finish with an analysis
of a particle-hole relation between the two Fibonacci states.

A. A G2 × F4 conformal embedding into E8

The conformal embedding is carried out by an explicit
choice of the generators of F4 and G2, denoted by [EF4 ]σy,α
and [EG2 ]σy,α, where α are vectors in the F4 or G2 root lattices
�F4 or �G2 , respectively. This process is not unique. Intu-
itively, it can be understood as follows: algebraically, G2 ⊆
SO(7) ⊆ SO(16) ⊆ E8, i.e., G2 is “slightly smaller” and fits
inside SO(7). Conversely, SO(9) ⊆ F4 ⊆ E8. Altogether, one
has SO(7) × SO(9) ⊆ SO(16) ⊆ E8. The path to follow be-
comes then salient: first we refermionize the E8 generators of
Eq. (3) into bilinear products of eight nonlocal Dirac fermions
dI . Decomposing these into Majorana components as dI =
(ψ2I−1 + iψ2I )/

√
2, I = 1, . . . , 8, we obtain a representation

of SO(16)1. These are the degrees of freedom that we need
and we can then easily accommodate a specific choice split-
ting SO(16)1 = SO(7)1 × SO(9)1, and then embedding G2

into SO(7) and extending SO(9) into F4. Let us follow this
step by step.

From E8 to SO(16). The E8 current algebra is fixed by
its eight mutually commuting Cartan operators and its E8

240-dimensional root lattice denoted by �E8 . The roots act as
raising and lowering operators of the “spin” (weights) eigen-
values. Let us relate the bosonized description of the E8 WZW
current algebra at level 1 based on the eight aforementioned
simple roots in Eq. (3) to the desired SO(16) embedding.

We begin by fermionizing the eight simple roots operators.
This expresses each E8 root as either a pair or a half-integral
combination of a set of eight nonlocal Dirac fermions dσ

yI ∼
exp [i(φσ

yI (x) + kσ
yIx)]. The bosonized variables and momenta

are related to those of the eight simple roots by

�̃σ
yI = RI ′

I φσ
yI ′ , k̃σ

yI = RI ′
I kσ

yI ′ , (18)

where the 8 × 8 R matrix is

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1
1 −1

1 −1
1 −1

1 −1
1 1

− 1
2 − 1

2 − 1
2 − 1

2 − 1
2 − 1

2 − 1
2 − 1

2
1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(19)

The lines of the R matrix form a set of primitive basis vectors
that are commonly adopted to generate the E8 root lattice
in R8.

The R matrix decomposes the Cartan matrix KE8 of E8 as
KE8 = RRT . Consequently, under the transformation (18), the

equal-time commutation relation (4) becomes[
∂xφ

σ
yI (x), φσ ′

y′I ′ (x′)
] = 2π iσδσσ ′

δII ′δyy′δ(x − x′). (20)

This ensures the vertex operators dσ
yI ∼ exp [i(φσ

yI (x) + kσ
yIx)]

represent complex Dirac fermions. As we argue next, these
fermions do not associate to natural excitations in the bulk
or the edge of the quantum Hall states. Inverting matrix (19)
and multiplying by the original unimodular transformation
(8), one sees that all φσ

yI expressed in terms of the origi-
nal electronic bosonized variables �σ

ya involve half-integral
coefficients. This nonlocality is also revealed by their even
charge assignments q = 0,±2. The pair creation of such
nonlocal Dirac fermions requires a linearly divergent energy
in the coupled-wire model and, as a result, these fermions
do not arise as deconfined bulk excitations or gapless edge
primary fields. They should only be treated as artificial fields
introduced to describe the WZW current algebra.

By decomposing the 8 Dirac fermions into 16 Majorana
fermions as dI = (ψ2I−1 + iψ2I )/

√
2 (henceforth, where it

leads to no confusion, we are suppressing the σ, y indices for
conciseness). The E8 WZW current algebra can be related to
an SO(16)1 WZW current algebra. In terms of root systems,
�E8 is shown to be an extension of �SO(16), as follows. The
root lattice of SO(16)1, �SO(16), contains 22 × C8

2 = 112 ele-
ments, with Ck

n being the binomial coefficient. The elements
are given by bosonic spin-1 fermion pairs d±

I d±
I ′ ∼ ei(±φI ±φI′ ),

where 1 � I < I ′ � 8. Besides the root system of SO(16)1,
to generate the root system of �E8 we include the 128 = 27

even SO(16) spinors. The even spinors can be represented
by bosonic spin-1 half-integral combinations dεI /2

I ∼ eiεI φI /2,
where εI = ±1 and

∏8
I=1 εI = +1. By combining with the

even spinors of the root lattice of SO(16), the 112 + 128 =
240 roots of E8 can be represented by the vertex operators[

EE8

]σ
yα ∼ exp

[
iαI
(
φσ

yI (x) + kσ
yIx
)]

= exp
[
iαI (R−1)I ′

I U σσ ′
I ′a
(
�σ ′

ya(x) + kσ ′
yax
)]

, (21)

where the root vectors α = (α1, . . . , α8) are

�E8 ={α ∈ Z8 : |α|2 =2} ∪
{

α = ε

2
: εI = ±1,

8∏
I=1

εI = 1

}
.

(22)

Each root vector α can be expressed as a linear combination
αJ = aI RJ

I , with the R matrix given in Eq. (19) and aI integer
coefficients, which are the entries of the root vectors in the
Chevalley basis. This integer combination ensures that every
E8 root operator in Eq. (22) is an integral combination of local
electrons (1). Since each of these vertex operators is a spin-1
boson, it must be an even product of electron operators and
therefore must carry even electric charge.

The fermionization of the E8 presented above allows
us to represent all the E8 roots using a vertex operator
[EE8 ]σyα ∼ exp [iαI (φσ

yI + kσ
yIx)] [see Eq. (21)], where dσ

yI ∼
exp [i(φσ

yI + kσ
yIx)] are eight nonlocal Dirac fermions and α are

Cartan-Weyl root vectors in �E8 [recall Eqs. (18) and (22)]. To
complete the algebra structure, the eight Cartan generators of
E8, which are identical to the Cartan generators of SO(16),
are given by the number density operators [HE8 ]σyI ∼ i∂φσ

yI ∼
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(dσ
yI )†dσ

yI . This also allows an explicit conformal embedding
of the G2 and F4 WZW CFTs in the E8 theory at level 1.

From SO(16) to G2 × F4. We are ready to analyze
the G2 and F4 constructions. First, since G2 ⊆ SO(7), the
(G2)1 current operators have free field representations using
ψ1, . . . , ψ7, which generate SO(7)1. Second, SO(9) ⊆ F4.
The work is a little more involved in this case: the root system
of F4 is composed of (i) 24 (long) roots, (ii) 8 vectors, and
(iii) 16 (even and odd) spinors of SO(8), all of which may act
on ψ9, . . . , ψ16. As we see below, accompanying the SO(8)
vectors with the remaining Majorana ψ8 in SO(9) and with
two special emergent fermions, we are able to embed the F4

currents in E8 in a way that is fully decoupled from G2. To
abridge, G2 is a “bit smaller” than SO(7) while F4 is a “bit
bigger” than SO(9), and the two WZW algebras at level 1
completely decompose (E8)1.

To construct the embedding explicitly, we start by rep-
resenting the SO(7) Kac-Moody currents with Majorana
fermions as Ja

SO(7) = −i : ψi�
a
i jψ j : /2, where �a are gen-

erators of the SO(7) Lie algebra. We introduce the complex
fermion combinations and bosonized representations, c j =
(ψ2 j−1 + iψ2 j )/

√
2 = eiφ j

, where the bosons obey

〈φ j (z)φ j′ (w)〉 = −δ j j′ log(z − w) + iπ

2
sgn( j − j′), (23)

with the sign function accounting for mutual fermionic ex-
change statistics (Klein factors). We then follow Ref. [45]
to embed G2 generators into SO(7). The resulting Cartan
generators H1,2

G2
of G2 are

H1
G2

(z) = i

√
1

6
(−2∂φ1 + ∂φ2 + ∂φ3),

H2
G2

(z) = i

√
1

2
(∂φ2 − ∂φ3), (24)

while the positive long roots are

E1
G2

(z) = −ei(φ2−φ3 ),

E2
G2

(z) = −ei(φ3−φ1 ),

E3
G2

(z) = −ei(φ2−φ1 ). (25)

To bosonize the positive short roots, we need to include the
fermion ψ7 = (eiφ4 + e−iφ4 )/

√
2, yielding

E4
G2

(z) = 1√
3

[−e−i(φ1+φ2 ) − i(ei(φ3+φ4 ) − ei(φ3−φ4 ) )],

E5
G2

(z) = 1√
3

[−e−i(φ1+φ3 ) + i(ei(φ2+φ4 ) − ei(φ2−φ4 ) )],

E6
G2

(z) = 1√
3

[−ei(φ2+φ3 ) − i(e−i(φ1−φ4 ) − e−i(φ1+φ4 ) )]. (26)

The negative roots can be obtained by Hermitian conjugation.
Now we move on to F4. Our goal is to define the F4 currents

in terms of SO(16) degrees of freedom in a way that the oper-
ators decoupled from G2, in the operator product expansion
(OPE) sense. Since we used the SO(7) part, generated by
fermions ψ1,...,7 to define the G2 operators, we may facilitate
the decoupling of the currents by using the remaining SO(8)
subalgebra, generated by ψ9,...,16. This is achieved by carefully

sewing F4 into the full degrees of freedom of SO(16). The
Cartan generators can be chosen to be the ones in the SO(8)
subalgebra

Ha
F4

(z) = i∂φ4+a, a = 1, . . . , 4. (27)

The group F4 has 48 roots, 24 short and 24 long. The 24
long roots are identical to those of SO(8) and may be written
in bosonized form as

Eα
F4

(z) = eiα·φ, (28)

where α1 = · · · = α4 = 0 and (α5, . . . , α8) ∈
Z4||(α5, . . . , α8)|2 = 2. The 24 short roots of F4 correspond
to 8 vector and 16 spinor representations of SO(8). To write
the 8 vector roots, we increment the vertex operators with the
fermion ψ8, obtaining

E±a
F4

∼ ψ8e±iφ4+a ∼ 1√
2

(ei(φ4±φ4+a ) + ei(−φ4±φ4+a ) ). (29)

Finally, the 16 spinors read

E s±
F4

∼ ψ±eis±·φ/2, (30)

where the spinor labels are s± = (0, 0, 0, 0, s5, s6, s7, s8) with
s5s6s7s8 = ±1; the critical step here lies in the inclusion of the
Majorana fermions

ψ+ = 1√
2

(ω+ei(φ1+φ2+φ3+φ4 )/2 + H.c.),

ψ− = 1√
2

(ω−ei(φ1+φ2+φ3−φ4 )/2 + H.c.), (31)

where ω± are U (1) phases to be determined. Combining the
vertices with the fermions,

E s+
F4

∼ 1√
2

(ω+ei(φ1+φ2+φ3+φ4+s+·φ)/2

+ω∗
+ei(−φ1−φ2−φ3−φ4+s+·φ)/2),

E s−
F4

∼ i√
2

(ω−ei(φ1+φ2+φ3−φ4+s−·φ)/2

−ω∗
−ei(−φ1−φ2−φ3+φ4+s−·φ)/2). (32)

Our goal is to decouple the G2 and F4 currents in the
SO(16) embedding. Computing the OPEs between all G2 and
F4 operators, one recognizes that singular terms only arise
between G2 short roots and F4 short roots from SO(8) spinors.
These singular terms, however, can be made to vanish with an
appropriate choice of ω± following

ω+ + e−iπ/4ω∗
+ = ω− − e−iπ/4ω∗

− = 0. (33)

Distinct solutions only differ by a sign, which can be absorbed
in the Majorana fermion ψ±. We pick

ω+ = ei3π/8, ω− = e−iπ/8. (34)

This completes the proof that the G2 and F4 embeddings
decouple and act on distinct Hilbert spaces.

Besides the OPE decomposition, as a nontrivial com-
plementary check of the conformal embedding involves the
computation of energy-momentum tensors, we see that the E8

tensor decouples identically into those of G2 and F4 under
the construction above. The calculation is possible, albeit
involved; the results are presented in Appendix B.
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y

y+1

y−1

B

HG2
intra

HF4
inter

G2 at level 1F4 at level 1
F4

Hf
intra

FIG. 3. The coupled wire model (36) for the F4 Fibonacci quan-
tum Hall state at filling ν = 8.

B. G2 and F4 Fibonacci topological order via coupled wires

We have all the structure necessary for the coupled-wire
construction of the F4 and G2 phases. Similar to the E8 state,
these quantum Hall phases are based on an array of 11-wire
bundles. Figure 3 shows the schematics of the backscattering
terms in the F4 quantum Hall Hamiltonian case. The G2

state can be described using a similar diagram by switching
the roles of G2 and F4. The models are written with the
intrabundle backscattering (13), which leaves behind a coun-
terpropagating pair of E8 modes per bundle. The G = F4 or
G2 currents are then dimerized within or between bundles
according to

Hy,G
intra = uintra

∑
α∈�G

[EG]R
y,α

†
[EG]L

y,α + H.c.,

Hy+1/2,G
inter = uinter

∑
α∈�G

[EG]R
y,α

†
[EG]L

y+1,α + H.c. (35)

The F4 and G2 quantum Hall states consist, respectively, of the
ground states of the following Hamiltonians:

H[F4] =
Nl∑

y=1

(
Hy, f

intra + Hy,G2
intra

)+
Nl −1∑
y=1

Hy+1/2,F4
inter , (36)

H[G2] =
Nl∑

y=1

(
Hy, f

intra + Hy,F4
intra

)+
Nl −1∑
y=1

Hy+1/2,G2
inter . (37)

The momentum-conservation conditions have to be reim-
plemented to the many-body interactions in either Eq. (36)
or Eq. (37). Each phase is stabilized by its own distribution
of electronic momenta kσ

ya (cf. Appendix C), but both have
the same integer magnetic filling ν = 8. At strong coupling,
H[F4] (H[G2]) gives rise to a finite excitation energy gap in
the bulk, but leaves behind a gapless chiral F4 (G2) WZW CFT
at level 1 at the boundary. As a consequence, the Wiedemann-
Franz law is again unconventional in these phases, displaying
cF4/ν = 13/20 and cG2/ν = 7/20.

According to the bulk-boundary correspondence, the
anyon content of the F4 and G2 phases can be read from
their boundary theories. In Appendix D we present an

extensive discussion about the relationship of these phases
with Fibonacci topological order; here we just describe the
general facts. In addition to the vacuum 1, each edge carries
a Fibonacci primary field τ̄ for (F4)1 and τ for (G2)1, with
conformal scaling dimensions 3/5 and 2/5, respectively.
Each consists of a collection of operators, known as a
superselection sector, that corresponds to the 26-dimensional
(7-dimensional) fundamental representation of F4 (G2) that
rotates under the WZW algebra. Our construction allows
an explicit parafermionic representation of these fields (see
Appendix D). Here, we notice that since the current operators
[EF4 ]α are even combinations of electrons, the Fibonacci
operators within a supersector differ from each other by pairs
of electrons, and therefore correspond to the same anyon type.
Moreover, they all have even electric charge and therefore
the gapless chiral edge CFT only supports even-charge
low-energy excitations. An analogous analysis follows for the
G2 case.

C. Particle-hole conjugation and Fibonacci versus
anti-Fibonacci phases

As our final comments, notice that the G2 and F4 Fibonacci
states at ν = 8 half-fill the E8 quantum Hall state, which
has ν = 16. Remarkably, they are related under a notion of
particle-hole (PH) conjugation that is based on E8 bosons
instead of electrons. A similar generalization of PH symmetry
has been proposed for parton quantum Hall states [16]. The
PH conjugation manifests in the edge CFT as the coset identi-
ties (G2)1 = (E8)1/(F4)1 and (F4)1 = (E8)1/(G2)1, which re-
flect the equality TG2 + TF4 = TE8 between energy-momentum
tensors. The coset E8/G can be understood as the subtraction
of the WZW subalgebra G from E8. In other words, this
is equivalent to the tensor product E8 ⊗ G, where the time-
reversal conjugate G pair annihilates with the WZW subalge-
bra G in E8 by current-current backscattering interactions sim-
ilar to Eqs. (35). The coset identities are direct consequences
of the conformal embedding (G2)1 × (F4)1 ⊆ (E8)1.

The conventional PH symmetry of the half-filled Landau
level has been studied in the coupled-wire context [46–49].
Here, the E8-based PH conjugation has a microscopic descrip-
tion as well. It is represented by an antiunitary operator C that
relates the E8 bosonized variables between the two Fibonacci
states

C�̃R
y,IC−1 = �̃L

y,I − qIx/2,

C�̃L
y,IC−1 = �̃R

y−1,I − qIx/2, (38)

while leaving the recombined Dirac fermions unaltered,
C f σ

ynC−1 = f σ
yn. Since the E8 root structure is unimodular the

PH conjugation (38) is an integral action of the fundamental
electrons, CcJC−1 =∏J ′ (cJ ′ )mJ

J′ , where mJ
J ′ are integers, J, J ′

are the collections of indices y, a, σ , and the product is finite
and short ranged so that it only involves nearest-neighboring
bundles |y − y′| � 1. The PH conjugation switches between
intra- and interbundle interactions of the G2 and F4 currents,
exchanging the two Fibonacci phases CH[F4]C−1 = H[G2]
and CH[G2]C−1 = H[F4]. Finally, the coupled-wire descrip-
tion artificially causes the PH conjugation to be nonlocal. Sim-
ilar to an antiferromagnetic symmetry, C2 unitarily translates
the E8 currents from y to y − 1.
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IV. CONCLUSIONS

We presented a coupled-wire construction based on ex-
ceptional Lie algebras of three distinct time-reversal broken
topological phases carrying bosonic edge modes. The first
one, the E8 quantum Hall state, displays short-ranged en-
tanglement. The other two phases are long-range entangled,
non-Abelian, and based on the G2 and F4 algebras. These latter
two define Fibonacci topological ordered states. Crucially, all
of these phases are predicted to exist within integer magnetic
filling fractions, ν = 16 for E8 and ν = 8 for the G2 and
F4, suggesting that interactions inside integer quantum Hall
plateaus may be used to stabilize these phases.

Our findings are allowed by technical advances we in-
troduce regarding the representation of more complex cur-
rent algebras in the coupled-wire program. This microscopic
approach proves to go beyond the standard Chern-Simons
effective field theory of topological phases, allowing us to
settle on a concrete system where the E8 state may be pursued,
namely, the ν = 16 integer quantum Hall plateau. The method
also allows the extra prediction of non-Abelian Fibonacci
topological ordered phases in integer Hall plateaus, as well
as the definition of a particle-hole operation that connects
the Fibonacci and anti-Fibonacci phases. These results are of
practical relevance, given the importance of Fibonacci anyons
in topological quantum computation by anyons.

The most evident phenomenological distinction of the
E8, G2, and F4 states, as we argued, stems from modified
Wiedemann-Franz laws, with distinct c/ν ratios. The presence
of these phases in low temperature at filling ν = 16 or 8
could be verified by thermal Hall transport measurements.
Similar thermal conductance observations have been recently
performed for other fractional quantum Hall states [50,51].
Moreover, all three quantum Hall states here proposed carry
bosonic edge modes that only support even-charge gapless
quasiparticles. This gives rise to a distinct shot-noise signature
across a point contact below the energy gap. The anyonic
statistics of the Fibonacci excitations in the G2 and F4 states
can be detected by Fabry-Pérot interferometry.

Another relevant question, which will be saved for future
inquiries, regards pinpointing specific interactions leading to
these phases at an actual quantum Hall electron fluid setting.
We believe a variational wave-functional approach, similar to
Laughlin’s construction of his wave functions for fractional
quantum Hall systems, might be a promising approach. Fi-
nally, due to thermal fluctuations and disorder, Hall plateaus
as high as ν = 8 or 16 are challenging, albeit not impossi-
ble, to probe experimentally. While nothing precludes such
measurements this fundamentally, a promising future path
of inquiry lies in also searching for other topological phase
transitions in lower, and more stable, magnetic fillings. A
guiding principle for this search involves searching phases
where c and ν are different modulo 8 [7].
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APPENDIX A: E8 QUANTUM HALL STATE
MOMENTUM CONSERVATION

We present here the solution of the momentum commensu-
rability conditions stated in the main text, Eq. (15). There are
11 vanishing (mod 2π ) linear equations for the 11 unknown
momenta, with coefficients that are also linear in the inverse of
the filling fraction ν. A nontrivial solution to kF,a exists only
for a vanishing determinant which fixes ν as

ν − 16

ν
= 0 ⇒ ν = 16. (A1)

Plugging back ν = 16 into Eq. (15) and solving for the
momenta returns

kσ
y,1 = kσ

y,2 = 1
2 ykF , kσ

y,3 = kσ
y,7 = 1

2 (y − σ )kF , (A2)

kσ
y,4 = kσ

y,5 = kσ
y,6 = kσ

y,8 = kσ
y,9 = 1

2 (y + 2σ )kF , (A3)

kσ
y,10 = 1

2 (y + 3σ )kF , kσ
y,11 = 1

2 (y − 3σ )kF . (A4)

With these, the σ = L and R channels of any of the three
recombined fermions f σ

yn, for n = 1, 2, 3, share the same mo-
mentum, and therefore the oscillatory terms in the intrabundle
backscattering interactions of Eq. (13) cancel. Similarly, the
interbundle terms in Eq. (14) also conserve momentum, as
k̃R

y,I = k̃L
y+1,I for I = 1, . . . , 8.

APPENDIX B: A G2 × F4 ENERGY-MOMENTUM TENSOR

Here we compare the energy-momentum tensors of the E8,
G2, and F4 theories at level 1. The goal is to see that, through
our embedding, an exact decomposition of the operators is
obtained. By definition, WZW energy-momentum tensors at
level 1 read [27]

T (z) = (J · J)(z)

2(1 + g)
, (B1)

with Ja the Sugawara current, g the dual Coxeter number, and
the normal ordering defined as

(JaJa)(z) = 1

2π i

∮
z

dw

w − z
Ja(w)Ja(z). (B2)

The contraction of the Sugawara currents can be written in the
Cartan-Weyl basis

(J · J)(z) =
∑

j

(H jH j )(z) +
∑

α

(E−αEα)(z), (B3)

where the α sum is over the full root lattice while j sums over
the generators of the Cartan subalgebra. We have absorbed the
normalization factors into the root operators.
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We are then ready to verify the energy-momentum tensor
decoupling via the conformal embedding. Under the SO(16)
embedding, the E8 tensor reduces to

TE8 (z) = −∂φ · ∂φ

2
, (B4)

which is, in fact, of the same form as the SO(16) energy-
momentum tensor.

To fully verify the conformal embedding, one may com-
pute the energy-momentum tensors of the G2 and F4 CFTs.
This calculation requires lengthy but straightforward book-
keeping, and is not presented in here. The operators TG2 and
TF4 are found to be

TG2 (z) = −1

2

⎡
⎣
⎛
⎝ 3∑

j=1

∂φ j∂φ j

⎞
⎠(z) − 1

5

⎛
⎝ 3∑

j=1

∂φ j

⎞
⎠

2

(z)

⎤
⎦− 1

5
(∂φ4∂φ4)(z)

+ 2

5

{
cos
[
2
(π

8
− φ+(z)

)]
− cos

[
2
(π

8
− φ−(z)

)]
+ cos [2φ4(z)]

}
(B5)

and

TF4 (z) = − 1

2

⎡
⎣ 8∑

j=5

(∂φ j∂φ j )(z) + 1

5

⎛
⎝ 3∑

j=1

∂φ j

⎞
⎠

2

(z)

⎤
⎦− 3

10
(∂φ4∂φ4)(z)

− 2

5

{
cos
[
2
(π

8
− φ+(z)

)]
− cos

[
2
(π

8
− φ−(z)

)]
+ cos [2φ4(z)]

}
, (B6)

where φ± ≡ φ1 + φ2 + φ3 ± φ4. The sum of these two ex-
pressions returns TE8 , as it should, finishing the verification
of the conformal embedding.

APPENDIX C: G2 AND F4 QUANTUM HALL STATES
MOMENTUM COMMENSURABILITY CONDITIONS

To stabilize the G2 and F4 Fibonacci phases, a process of
fixing a distribution of Fermi momenta for the 11 electronic
channels appearing in Eq. (1) is necessary. This procedure
is analogous to the one used for the E8 quantum Hall state
in Appendix A. Demanding commensurability conditions on
the momenta for the F4 Fibonacci phase in Eq. (36) so
that oscillatory terms cancel results in the unique nontrivial
solution (up to the single free parameter kF ) yields

kσ
y,1 = kσ

y,2 = kσ
y,7 = (y − σ )kF , kσ

y,3 = (y − 2σ )kF ,

kσ
y,4 = kσ

y,5 = kσ
y,6 = kσ

y,8 = kσ
y,9 = (y + 2σ )kF ,

kσ
y,10 = (y + 3σ )kF , kσ

y,11 = (y − 4σ )kF , ν = 8. (C1)

Similarly, demanding momentum commensurability in
Eq. (37), one obtains the Fermi momentum distribution for
the coupled-wire model for the G2 Fibonacci quantum Hall
state,

kσ
y,1 = kσ

y,2 = kσ
y,3 = kσ

y,11 = (σ + y)kF ,

kσ
y,4 = kσ

y,5 = kσ
y,6 = kσ

y,7 = kσ
y,8 = kσ

y,9 = kσ
y,10 = ykF ,

ν = 8. (C2)

APPENDIX D: FIBONACCI PRIMARY FIELD
REPRESENTATIONS IN THE G2 and F4 WZW CFTs AT

LEVEL 1

Our prime motivation for studying (G2)1 and (F4)1 WZW
theories stems from the claim that both carry excitations in
the form of Fibonacci anyons. Here we provide a short

demonstration of that, and then follow with a coset
construction that allows us to profit from the embeddings
discussed up to now to explicitly build the corresponding
Fibonacci primary fields.

To see that the only excitations in (G2)1 and (F4)1 are
Fibonacci anyons, we can start by noticing that at level 1, these
theories contain only one nontrivial primary field besides the
vacuum I. We name these fields τ for (G2)1 and τ̄ for (F4)1.
Following, we invoke the Gauss-Milgram formula; this for-
mula is a manifestation of the bulk-boundary correspondence
as it connects quantities that point to the bulk anyon excita-
tions of a topological phase to the CFT degrees of freedom
that live at its boundary. Stating the formula explicitly,∑

a

d2
a θa = Dei2π c

8 , (D1)

where D2 ≡∑a d2
a is the total quantum order expressed

in terms of the quantum dimensions da, quantities that
characterize the bulk anyons. The conformal spins are
θa = ei2πha , determined by quantum dimensions ha, and c is
the chiral central charge. The latter two quantities characterize
the CFT at the edge of the topological phase. The sum is over
all primary fields of the CFT or, correspondingly, all anyons.

The conformal dimension of a primary field a of a WZW
theory is completely determined by its Lie algebra content by
ha = Ca

2(k+g) [27], where k is the level, g is the dual Coxeter
number, and Ca is the quadratic Casimir of the representation.
Let us consider a simple example first: trivial topological
order. In this case we just have the trivial identity anyon a = 1
and D = 1. The Gauss-Milgram formula returns ei2π c

8 = 1,
enforcing that trivial anyon statistics implies that the central
charge is defined only modulo 8, as discussed at the Introduc-
tion.

Moving forward, we consider the G2 and F4 cases. Collect-
ing the dual Coxeter number and the quadratic Casimir, we
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obtain hτ = 2/5 and hτ̄ = 3/5. Furthermore, dI = 1 and hI =
0, leaving a single unknown in the Gauss-Milgram formula
(D1), namely, dτ or dτ̄ for G2 or F4. Solving for these,

dτ = dτ̄ = 1 + √
5

2
, (D2)

which is the golden ratio expected for Fibonacci anyons.
Since the quantum dimensions obey an algebraic version of
the fusion rules, these follow immediately as τ × τ = I + τ .
Equivalently, the fusion rules can be explicitly determined
by the modular (2 × 2) S matrices of the theory using the
Verlinde formula [27].

We thus established that the chiral (G2)1 and (F4)1 WZW
edge CFTs contain primary fields that obey the Fibonacci
fusion rules. They correspond to Fibonacci anyonic excita-
tions in the 2D bulk, and thus we refer to them as Fibonacci
primary fields. Let us now construct explicit expressions for
them based on our conformal embedding here developed.

The nontrivial primary fields [τ ] and [τ̄ ] are associated
with the fundamental irreducible representations of their re-
spective exceptional Lie algebras. Each of them consists of
a superselection sector of fields, [τ ] = span{τm}m=1,...,7 and
[τ̄ ] = span{τ̄l}l=1,...,26, that rotate into each other by the WZW
algebraic actions

[
EG2 (z)

]
γ
τm(w) = 1

z − w
ρG2 (γ )m′

m τm′ (w) + · · · ,

[
EF4 (z)

]
β
τ̄l (w) = 1

z − w
ρF4 (β)l ′

l τ̄l ′ (w) + · · · , (D3)

where z, w ∼ eτ+ix are radially ordered holomorphic space-
time parameters, γ and β are the roots of G2 and F4, and
ρG2 and ρF4 are the 7- and 26-dimensional irreducible matrix
representations of the G2 and F4 algebras. Here, we provide
parafermionic representations of these fields that constitute
the Fibonacci supersectors. Using the coset construction, each
Fibonacci field τm, τ̄l can be expressed as a product of
two components: (1) a non-Abelian primary field of the Z3

parafermion CFT or the tricritical Ising CFT, respectively, and
(2) a vertex operator of bosonized variables.

The (G2)1 WZW CFT can be decomposed into two decou-
pled sectors using its SU (3)1 subalgebra:

(G2)1 � SU (3)1 × (G2)1

SU (3)1
= SU (3)1 × Z3 parafermion.

(D4)

For instance, the decomposition agrees with the partition of
the energy-momentum tensors TZ3 = T(G2 )1/SU (3)1 ≡ T(G2 )1 −
TSU (3)1 and central charges c((G2)1) = 14/5 = c(SU (3)1) +
c(Z3) = 2 + 4/5. First, we focus on the SU (3)1 subalge-
bra. Using the aforementioned fermionization of E8, the
six roots of SU (3) coincide with the long roots of G2,
e±i(φ1−φ2 ), e±i(φ2−φ3 ), and e±i(φ1−φ3 ). The SU (3)1 WZW sub-
algebra has three primary fields, I, [E], and [E−1], with
conformal dimensions hI = 0 and hE = hE−1 = 1/3. I denotes
the trivial vacuum, while [E] and [E−1] are three-dimensional

superselection sectors of fields

[E] = span{ei(φ1+φ2−2φ3 )/3, ei(φ2+φ3−2φ1 )/3, ei(φ3+φ1−2φ2 )/3},
[E−1] = span{e−i(φ1+φ2−2φ3 )/3, e−i(φ2+φ3−2φ1 )/3,

× e−i(φ3+φ1−2φ2 )/3}, (D5)

that rotate according to the two fundamental representations
of SU (3). For example, under the SU (3)1 roots,

ei[φa (z)−φb(z)]ei[φb(w)+φc (w)−2φa (w)]

∼ ei[φa (w)+φc (w)−2φb(w)]/(z − w) + · · · . (D6)

The seven-dimensional fundamental representation of G2 de-
composes into 1 + 3 + 3 under SU (3) and each component is
associated to a distinct SU (3)1 primary field.

Next, we focus on the (G2)1/SU (3)1 coset, which is iden-
tical to the Z3 parafermionic CFT. It supports three Abelian
primary fields I, �, and �−1, and three non-Abelian ones, τ ,
ε, and ε−1. They have conformal dimensions hI = 0, h� =
h�−1 = 2/3, hτ = 2/5, and hε = hε−1 = 1/15. They obey the
fusion rules

� × � = �−1, � × �−1 = I, τ × � = ε,

τ × �−1 = ε−1, τ × τ = I + τ. (D7)

The Fibonacci primary field of (G2)1 is the seven-dimensional
superselection sector

[τ ] = (τ ⊗ I) ⊕ (ε ⊗ [E]) ⊕ (ε−1 ⊗ [E−1])

= span

⎧⎪⎪⎨
⎪⎪⎩

τ, εei(φ1+φ2−2φ3 )/3,

εei(φ2+φ3−2φ1 )/3, εei(φ3+φ1−2φ2 )/3,

ε−1e−i(φ1+φ2−2φ3 )/3, ε−1e−i(φ2+φ3−2φ1 )/3,

ε−1e−i(φ3+φ1−2φ2 )/3

⎫⎪⎪⎬
⎪⎪⎭.

(D8)

All seven fields share the same conformal dimension hτ =
2/5. For example, hε⊗[E] = 1/15 + 1/3 = 2/5. The supersec-
tor splits into three components under SU (3). However, they
rotate irreducibly into each other under G2.

The Fibonacci primary field of (F4)1 can be described in a
similar manner. First, using the SO(9)1 subalgebra, the WZW
CFT can be factored into two decoupled sectors:

(F4)1 � SO(9)1 × (F4)1

SO(9)1
= SO(9)1 × (tricritical Ising).

(D9)

Like the previous G2 coset decomposition, here the energy-
momentum tensor and central charge also decompose accord-
ingly: c((F4)1) = 26/5 = 9/2 + 7/10, where 9/2 and 7/10
are the central charges for SO(9)1 and the tricritical Ising
CFTs. The Fibonacci superselection sector of (F4)1 consists
of fields which are linear combinations of products of primary
fields in SO(9)1 and the tricritical Ising CFTs.

We first concentrate on SO(9)1. It supports three primary
fields I, [ψ], and [�] with conformal dimensions hI = 0,
hψ = 1/2, and h� = 9/16 and respectively associate to the
trivial, vector, and spinor representations of SO(9). Using
the fermionization convention of E8, the SO(9)1 theory is
generated by the nine Majorana fermions ψ8, . . . , ψ16, where
the last eight Majorana fermions are paired into the four Dirac
fermions dI = (ψ2I−1 + iψ2I )/

√
2 ∼ eiφI , for I = 5, 6, 7, 8.
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The vector primary field consists of any linear combinations
of these nine fermions [ψ] = span{ψ8, . . . , ψ16}. We arbitrar-
ily single out the first Majorana fermion ψ8, which is not
paired with any of the others, and associate it to an Ising CFT.
This further decomposes

SO(9)1 = Ising × SO(8)1. (D10)

The spinor primary field of SO(9)1 decomposes into a product
between the Ising twist field σ and the SO(8)1 spinors:

[�] = span

{
σ exp

(
i

2

8∑
I=5

εIφI

)
: ε5, . . . , ε8 = ±1

}
.

(D11)

The conformal dimension of σ is 1/16 and that of the SO(8)1

spinors is 1/2. Thus, they combine to the appropriate con-
formal dimension of h� = 9/16 for each field in the set.
The dimension of the SO(9) spinor representation is 24 =
16. The 26-dimensional fundamental representation of F4

decomposes into 1 + 9 + 16 under the SO(9) subalgebra, and
each component is associated to a unique SO(9)1 primary
field.

We now focus on the (F4)1/SO(9)1 coset, which is identical
to the tricritical Ising CFT or, equivalently, the minimal theory
M(5, 4). The theory has six primary fields arranged in the
following conformal grid:

f s I
τ̄ sτ̄ f τ̄
f τ̄ sτ̄ τ̄

I s f

=
�3,1 �2,1 �1,1

�3,2 �2,2 �1,2

�1,2 �2,2 �3,2

�1,1 �2,1 �3,1

c.d.−→
3/2 7/16 0
3/5 3/80 1/10

1/10 3/80 3/5
0 7/16 3/2

(D12)

with c.d. standing for conformal dimension. They obey the fusion rules

f × f = I, s × f = s, s × s = 1 + f , f × τ̄ = f τ̄ , s × τ̄ = sτ̄ , τ̄ × τ̄ = I + τ̄ . (D13)

The Fibonacci primary field of (F4)1 is the 26-dimensional superselection sector

[τ̄ ] = (τ̄ ⊗ I) ⊕ ( f τ̄ ⊗ [ψ]) ⊕ (sτ̄ ⊗ [�])

= span

{
τ̄ , f τ̄ψ j, sτ̄ σ exp

(
i

2

8∑
I=5

εIφI

)
:

j = 8, . . . , 16
ε5, . . . , ε8 = ±1

}
. (D14)

Each of these fields carries the identical conformal dimension hτ̄ = 3/5. For example, the second field f τ̄ [ψ] has the combined
conformal dimension 1/10 + 1/2 = 3/5, and the third sτ̄ [�] has 3/80 + 9/16 = 3/5. Although the supersector splits into three
under SO(9)1, it is irreducible under (F4)1.
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