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Effect of propagator renormalization on the band gap of insulating solids
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We present momentum-resolved spectral functions and band gaps from bare and self-consistent second-order
perturbation theory for insulating periodic solids. We establish that, for systems with large gap sizes, both
bare and self-consistent perturbation theory yield reasonable gaps. However, smaller gap sizes require a
self-consistent adjustment of the propagator. In contrast to results obtained within a quasiparticle formalism
used on top of bare second-order perturbation theory, no unphysical behavior of the band gap is observed.
Our implementation of a fully self-consistent, �-derivable, and thermodynamically consistent finite-temperature
diagrammatic perturbation theory forms a framework on which embedding theories such as the dynamical
mean-field theory and self-energy embedding theories can be implemented.
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I. INTRODUCTION

A truly ab initio quantitative many-body description of
weakly correlated systems beyond density functional theory
[1,2] remains challenging despite enormous theoretical [3]
and computational [4–9] advances in the last 30 years. While
such calculations are important for explaining the behavior of
insulating materials, they are also necessary as a first step for
many strongly correlated computational techniques such as
some derivatives [10–14] of the dynamical mean-field theory
[15–17], where the first calculation step consists of evaluating
the system by a perturbative weak-coupling method.

Three types of perturbation theories exist: bare (non-self-
consistent) perturbation theory based on the expansion of
the original Hamiltonian in interaction terms, where neither
propagators nor interactions are renormalized; self-consistent
perturbation theories where propagators but not the interac-
tions are renormalized, and perturbation theories with both
propagators and interactions renormalized.

Bare second-order perturbation theory is known as Møller-
Plesset second-order (MP2) [18–27] when applied to real
materials. The self-consistent second-order Green’s function
perturbation theory (GF2) [28–33] renormalizes propagators
but not interactions. While fully self-consistent GW (scGW)
[3] renormalizes both propagators and interactions, its non-
self-consistent variants such as G0W0 [4,34] (partially) renor-
malize interactions without renormalizing propagators.

The differences in the treatment of propagators and inter-
actions between all these types of perturbation theories are
crucial since approaches that do not renormalize the interac-
tions are expected to fail in metallic three-dimensional (3D)
systems [27,35]. This breakdown is not expected to occur in
insulators.

For weakly correlated materials, most results so far have
been obtained within approaches such as MP2 [23,24,27,36]
and GW [37–39] at zero temperature. Recently, finite-
temperature results for solids have started to appear [40–43].

It was demonstrated that MP2 gaps are wildly inaccurate
for materials with band gaps smaller than 6 eV [27], lead-
ing to a breakdown of the band gap estimation for silicon
and silicon carbide. In contrast, zero-temperature, non-self-
consistent GW [3] has been very successful in predicting band
gaps for semiconductors. This success is usually attributed
to the renormalization of the interactions by an infinite se-
ries of “bubble” (random-phase approximation (RPA) [3])
diagrams—the same diagrams that render this method con-
vergent in the metallic limit.

The renormalization of interactions and propagators is
commonly discussed in many-body textbooks [35,44], usually
at the example of weakly interacting or uniform systems.
Due to both the computational cost and implementation dif-
ficulties, their effect in realistic solids is difficult to explore.
Since there is no obvious reason for the breakdown of the
perturbative series in semiconductors and band insulators,
it is interesting to explore how the renormalization with
self-consistent propagators but unrenormalized interactions
affects the band gaps and to compare these results to the
ones obtained by MP2. Moreover, since the MP2 band gap
is evaluated using approximate band energies for the lowest
unoccupied and highest occupied bands [27] reminiscent of
the formulas usually employed to solve the quasiparticle (QP)
equations in GW [45], it is interesting to compare these band
gaps to gaps evaluated without solving the QP equations.

In this paper, we focus on quantifying the effects of the
renormalization of propagators and self-energies on the value
of band gaps in simple 3D solids. This is made possible by the
implementation of a fully self-consistent finite-temperature
second-order perturbation theory (GF2) that so far has not
been available for realistic 3D systems. Comparison between
renormalized calculations, unrenormalized calculations, and
experimental data also allows us to indirectly infer the contri-
bution of higher-order terms excluded from our calculations.
Among these are the “RPA”-like screening terms included in
the GW approximation.
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II. METHOD

We investigate the physics of 3D solids by choosing a finite
basis set on each atom and choosing a finite lattice of atoms
periodic in all three spatial directions. This yields a periodic
electronic structure Hamiltonian best expressed in a Bloch
basis in reciprocal space, resulting in the Coulomb integrals

V k1k2k3k4
i jkl =

∫∫
φ∗

ik1,rφlk4,rφ
∗
jk2,r′φkk3,r′

|r − r′| drdr′, (1)

where φ are basis functions in reciprocal space. Transla-
tional invariance is guaranteed by the momentum conserva-
tion k1 + k2 = k3 + k4. These integrals can be decomposed
[46–49] into a product of two low-rank tensors, V k1k2k3k4

i jkl =∑
Q Ṽ Q

ik1,lk4
Ṽ Q

jk2,kk3
, where Q is an auxiliary basis index. For

the first-order diagram we employ Ewald summation to treat
the divergence at zero momentum. For the second-order di-
agram we excluded this point to avoid the divergence of the
exchange diagram.

The second-order self-energy is then evaluated in recipro-
cal space in an imaginary-time formalism,

�
k,(2)
i j (τ ) = −(

2Ṽ Q′
qk1, jkṼ Q′

lk2,nk3
− Ṽ Q′

lk2, jkṼ Q′
qk1,nk3

)
Ṽ Q

ik,pk1
Ṽ Q

mk3,kk2

× Gk1
pq(τ )Gk2

kl (τ )Gk3
nm(−τ )δk+k3,k1+k2 , (2)

with τ denoting imaginary time 0 � τ � β and β = 1/kBT
being the inverse of the physical temperature T (assuming
Einstein summation over repeated indices).

In bare second-order perturbation theory, the Hartree-Fock
Green’s function is employed in Eq. (2), and the Dyson equa-
tion is evaluated only once to yield the interacting Green’s
function.

In renormalized perturbation theories such as GF2, to
achieve self-consistency in both the density matrix (or, corre-
spondingly, the Fock matrix and the frequency -independent
term of the self-energy �∞) and the dynamical self-energy
�(τ ), we employ a modification of the iterative procedure
described in Ref. [28] for molecular systems. First, we adjust
the chemical potential to find the correct particle number of
the Hartree-Fock (HF) solution. We then obtain the HF prop-
agator, calculate the second-order self-energy, and recompute
the interacting Green’s function and density matrix using the
Dyson equation, adjusting the chemical potential until the cor-
rect density is found. This propagator is then used for the
next second-order self-energy evaluation, until convergence is
achieved in all quantities.

Energies, entropies, free energies, and specific heats
are then computed using standard thermodynamic formulas
[31,35,50–52]; for detailed derivations see Appendix B.

Quantities obtained in diagrammatic approximations by
thermodynamic integration are, in general, dependent on the
integration path [53,54]; that is, the integration of a quan-
tity such as the energy or the entropy may differ if it is
obtained by integration from zero T , infinite T , or infinite
chemical potential or via coupling constant integration. So-
called �-derivable [50], self-consistent methods, such as the
self-consistent GF2 method investigated here and the fully
self-consistent GW approximation, avoid this problem and are
intrinsically thermodynamically consistent.
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FIG. 1. Thermodynamics of solid LiH. Clockwise from the top:
Internal energy, Helmholtz energy, specific heat, and entropy as a
function of temperature. Data evaluated on a periodic 4 × 4 × 4
lattice in the pob-TZVP [75] basis.

Standard finite-temperature perturbation theories are for-
mulated on the imaginary axis; thus, static quantities such as
the density matrix, the energy, the entropy, the static magnetic
susceptibility, and the specific heat are directly accessible.
In contrast, real-frequency-dependent quantities such as the
spectral function, the gap, the optical conductivity, and the
dynamical magnetic susceptibility require analytical contin-
uation to the real axis in order to be compared to experiment.
This analytical continuation is ill conditioned and leads to
an amplification of uncertainties, even for data known up to
numerical precision, in particular at high temperature and high
frequency. The problem is intrinsic to the finite-temperature
field-theory formalism on the imaginary axis and can be
overcome only by reformulating the method in frequency
space or real time. In the present work, we used the maximum
entropy method [55,56]. Other methods, such as the spectral
method [57], Padé [58], stochastic analytical continuation
[59–61], and consistent constraints [62], could be explored,
as could the continuation of the self-energy to obtain spectra
and gaps via the quasiparticle equation [63].

III. RESULTS

We analyze five solids in this paper: Ne, LiF, MgO, LiH,
and diamond. The experimental band gaps of these solids
are listed in Table I, along with literature values obtained by
other methods. To confirm the thermodynamic consistency of
our implementation, we present the evaluation of thermody-
namic properties for solid LiH in Fig. 1. Smooth curves have
been obtained by Chebyshev interpolation on a temperature
grid.

As these insulators have such vastly different band gaps,
a different amount of Green’s function renormalization is
expected to be necessary, allowing us to examine how the
iterative nature of GF2 changes the results in comparison to
bare perturbation theory and Hartree-Fock. Moreover, since
evaluating band gaps using either the QP equation as used in
Ref. [27] or analytical continuation [55] may give different
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TABLE I. Band gaps. Columns show numerical results as obtained in Refs. [27,27,39,42] or as described in text. Last column shows
experiment.

System HF [27] Quasiparticle MP2 [27] MP2 GF2 scGW [39] QSGW [42] Expt.

C 13.1 1.9 7.19 4.6 6.41 6.18 5.5a

LiH 11.2 7.33 5.93 4.99b

MgO 15.5 7.1 9.49 7.32 9.53 9.42 7.8c

LiF 21.8 14.2 13.03 13.03 16.63 14.2d

Ne 25.3 20.3 20.55 20.55 21.7e

aReferences [64–68].
bReferences [69,70].
cReference [71].
dReference [72].
eReferences [73,74].

results, we compare our values for band gaps (obtained using
analytical continuation) to the ones available in the literature,
where QP equations were used with the bare perturbation
theory.

Our GF2 implementation for periodic systems uses a com-
pact Chebyshev polynomial [76] representation of Green’s
functions that converges exponentially (for alternative tech-
niques see [77,78]) and relies on the open-source ALPS li-
brary [79]. We use periodic density-fitted integrals in Gaus-
sian orbitals, evaluated using the open-source PYSCF package
[80,81]. Our calculations result in a set of imaginary-time
self-energies on discrete k points in the Brillouin zone. In
order to obtain smooth spectral functions, we perform a three-
dimensional periodic spline interpolation [82,83]. The validity
of this procedure is assessed by repeating calculations on a set
of grid sizes and obtaining convergence of the interpolated
quantities. Throughout this work we show data at an inverse
temperature of β = 100 Ha−1 (T ∼ 3158 K ∼ 0.27 eV). This
temperature is much lower than other energies in the system,
in particular much lower than the gaps of the solids discussed
here, so that results can be considered to be close to the ground
state.

Solid neon has a large experimental band gap of 21.7 eV
[73]. Consequently, we do not expect strong “screening” or
a substantial renormalization of the Green’s function. The
left panel of Fig. 2 shows the momentum-resolved spectral
function obtained with bare and self-consistent second-order
techniques along a standard path in the Brillouin zone (from
� via X and W back to �) for this system, illustrating that

self-consistency leads to a negligible change of the Green’s
function renormalization. Data are evaluated in the 6-311+G∗
basis of Gaussian orbitals [84,85]. Thick lines denote points
in the Brillouin zone that coincide with our momentum grid.
Thin lines denote interpolated values. All spectral functions
are plotted as a function of frequency in eV.

In this system, the band gap and the spectral functions are
converged with respect to the momentum discretization. This
is illustrated in the middle panel of Fig. 2, where we show
results on a 3 × 3 × 3 lattice and on a 4 × 4 × 4 lattice along
the 	 direction in momentum space. Thick lines denote values
on the respective momentum grids (black for 4 × 4 × 4, green
for 3 × 3 × 3); thin lines are obtained by interpolation. The X
point is absent on the smaller grid. Data have been obtained in
the 6-311+G* basis set.

Our calculations also demonstrate that, in the frequency
window shown, the spectral function is relatively insensi-
tive to the choice of the basis set (see the right panel of
Fig. 2). However, it should be stressed that while our results
do not show significant differences between the augmented
correlation-consistent polarized valence double zeta (aug-cc-
pVDZ) [86] and 6-311+G∗ basis sets, they may not be con-
verged with respect to the basis set size since both bases are
small. Converging our calculations with respect to the basis
set size would require a systematic increase of the cardinal
number X in the series of aug-cc-pVXZ basis sets. This is
exceedingly difficult in ordinary solid-state calculations since
regular Gaussian basis sets such as aug-cc-pVXZ become
linearly dependent for higher cardinal numbers.
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FIG. 2. Momentum-resolved spectral function for solid neon obtained at β = 100 Ha −1. Left: Comparison between self-consistent GF2
(black lines) and bare second-order perturbation theory (orange lines) on a periodic 4 × 4 × 4 lattice. Thick lines: directly evaluated k points.
Thin lines: interpolation. Results are listed in the 6-311+G* basis set. Middle: Comparison of the momentum-resolved GF2 spectral function
along the 	 direction on a periodic 4 × 4 × 4 (solid black lines) and 3 × 3 × 3 (dashed green lines) lattice. Right: GF2 on a periodic 4 × 4 × 4
lattice, in the basis sets 6-311+G* (black lines) and aug-cc-pVDZ (purple lines).
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FIG. 3. Momentum-resolved spectral function of solid LiF (top left), MgO (top right), LiH (bottom left), and diamond (bottom right)
obtained from GF2 (black lines) and bare second-order perturbation theory (orange lines) on a periodic 4 × 4 × 4 lattice. Results are listed in
the pob-TZVP basis. Inset: zoom of the upper gap edge as indicated in the main panel.

Hartree-Fock gaps can be extracted directly from the eigen-
values. The determination of the gap in correlated methods
via the spectral function leaves some arbitrariness, as finite-
temperature Green’s functions are broadened by self-energy,
temperature, and analytical continuation artifacts. For GF2,
we chose to define the band gap as the peak-to-peak distance
of the k-space peaks closest to the Fermi energy from above
and below. For solid neon, GF2 in both the aug-cc-pVDZ
and the 6-311+G∗ bases yields a band gap of 20.55 eV at
the � point. We find that the difference between the GF2
gap (20.55 eV) and the experimental band gap (21.7 eV) is
consistent with the previous bare perturbation theory studies
[27].

Solid LiF also has a wide experimental band gap of 14.2 eV
[72]. For the 4 × 4 × 4 k-point grid, we observe a band gap of
13.03 eV in self-consistent GF2, as extracted from the peak-
to-peak distance of the spectral function. The difference of the
spectral function between the first iteration and self-consistent
GF2 is negligible (see the left panel of Fig. 3). For k-grid
convergence of the unit cell energy and band gap see Table III
and Fig. 5 in Appendix A.

Both LiH and diamond have moderate band gaps. There-
fore, a significant change of the band gap between the first
iteration of GF2 and the fully self-consistent result is ex-
pected. Indeed, both the middle and right panels of Fig. 3
confirm that the band gaps obtained in the initial GF2 iteration
are much wider than the self-consistent result and gradually
shrink during the self-consistent iteration progress. Here, to
evaluate spectral functions during the first iteration of GF2,
we use the analytical continuation of G(iω) = [(iω + μ)1 −
FHF − �(2)]−1, where �(2) was obtained in the first iteration of
the GF2 method, i.e., using GHF(iω) = [(iω + μ)1 − FHF]−1

as the propagator in Eq. (2). The Fock matrix FHF comes
from a preceding HF calculation. Consequently, the first it-
eration of GF2 lacks two types of renormalization: first, the
renormalization coming from the self-consistently updated
�∞ and then consequently updated Fock matrix and, sec-
ond, the one from the fully self-consistent evaluation of �(2)

which in subsequent iterations is evaluated with renormalized
propagators.

For diamond in the pob-TZVP basis, we observe an in-
direct band gap of 4.8 eV between � and the point halfway
between the � and X points. The direct band gap at the
� point is about 6.6 eV. The positions and values of the
direct and indirect band gaps are in good agreement with
previous experimental and theoretical results [65–68]. It is
worth emphasizing that the band gap for diamond obtained
from self-consistent GF2 is 4.8 eV, while the MP2 band
gap obtained using a QP formalism listed in Ref. [27] is
1.9 eV. This underestimation of band gaps smaller than 6 eV is
very noticeable (as listed in Ref. [27]) for bare second-order
perturbation theory coupled with band gap evaluation based
on the QP formalism. This deficiency seems to be avoided
when the fully self-consistent GF2 is employed, as we observe
in the cases of LiH and of diamond.

In order to compare results to implementations of MP2,
scGW, and self-consistent quasiparticle GW (QSGW), we
also present results for MgO, which has an experimental band
gap of 7.8 eV.

For LiH, we plot the convergence of the band gap and
unit cell energy for different k grids in Table II and in
Fig. 4. The data clearly show that while the unit cell energy
converges rather quickly, the convergence of the band gap is
less rapid. While the width of the obtained band gap is bigger
than the experimentally observed value, we did not achieve

TABLE II. HF and GF2 total energies E and band gaps eg of LiH
for different system sizes in the pob-TZVP basis.

Size E (HF) eg (HF) E (GF2) eg (GF2)

3 × 3 × 3 −8.0659 11.82 −8.1097 10.08
4 × 4 × 4 −8.0629 11.44 −8.1079 7.73
5 × 5 × 5 −8.0618 11.31 −8.1076 6.66
6 × 6 × 6 −8.0612 11.24 −8.1075 5.93
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FIG. 4. Gap size in solid LiH for different k grids. Results are
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convergence with system size. An extrapolation of the gap
with inverse system size yields a gap value close to 4.0 eV.

IV. CONCLUSIONS

In conclusion, we illustrated the effect of propagator renor-
malization on the example of gaps and momentum-resolved
spectral functions for Ne, LiH, MgO, LiF, and diamond. In
all of these cases, we found reasonable agreement of GF2
with experimental values. Wide-gap insulators were found to
be fully converged with respect to the k-point grid, whereas
larger momentum grids are needed to converge the band gap
(but not the total energy) of LiH. We showed that thermo-
dynamic consistency is obeyed in our calculations, opening
the door for systematic thermodynamic calculations of the
electronic system of real materials.

Our study reveals three major results. First, the comparison
between our results for bare perturbation theory and self-
consistent perturbation theory to experiment shows that renor-
malized propagator diagrams are responsible for most of the
difference between bare results and the experiment. This illus-
trates the importance of propagator renormalization to obtain
the reasonable band gaps for insulators. Second, the fact that
our results from bare second-order perturbation theory yield
reasonable gap values that differ substantially from the pub-
lished MP2 values indicates a breakdown of the QP formalism
for gap extraction. The approximations inherent in this for-
malism allow the expression of the results in a convenient real-
frequency “band” picture but, in light of our discrepancies,
will need to be revisited. Finally, our results show that con-
trolled self-consistent diagrammatic many-body calculations
in standardized Gaussian basis sets are now routinely possible.
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APPENDIX A: SYSTEM-SIZE CONVERGENCE FOR LIF

Table III shows convergence of the unit cell energy and
band gap with momentum grid. Figure 5 shows the band
structure obtained from two momentum grids.

APPENDIX B: EVALUATION OF THERMODYNAMIC
PROPERTIES

The grand potential is defined in terms of Green’s func-
tions, self-energies, and a � functional as [50]

� = 1

β
{�[G] − Tr[ln(−G−1)] − Tr[�G]}. (B1)

In practice, the direct evaluation of the second term in this
form is complicated by the slow decay of Green’s functions
as a function of frequency [52]. We therefore, by defining

G−1 = (iωn + μ)S − F − �c[G], (B2a)

G−1
HF = (iωn + μ)S − F, (B2b)

G−1
0 = (iωn + μ)S − H0 (B2c)

in terms of Matsubara frequencies iωn, the chemical potential
μ, the overlap matrix S, the noninteracting (V = 0) Hamilto-
nian H0, and the Fock matrix F , can evaluate the logarithmic
term as [52]

Tr[ln(G−1)] = Tr
[

ln
(
�c − G−1

HF

)]
= Tr

{
ln

[( − G−1
HF

)
(−GHF � + 1)

]}
= Tr

[
ln

( − G−1
HF

)] + Tr[ln(1 − GHF �)]. (B3)
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FIG. 5. Band structure for the LiF obtained from GF2 calcula-
tions on 3 × 3 × 3 (dashed red lines) and 4 × 4 × 4 (green lines)
periodic lattices in the pob-TZVP basis set.
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The � functional is expressed as

�[G] =
∞∑

n=1

�(n)[G] =
∞∑

n=1

1

2n
Tr(�(n)[G]G), (B4)

where �(n)[G] is the total nth-order self-energy part. Within
the second-order theory, the self-energy is approximated as
� ≈ �[2] = �(1) + �(2), and using Eq. (B4) � ≈ �[2] =
�(1) + �(2) = 1

2 Tr[�(1)γ ] + 1
4 Tr[�(2)G]. Using Eqs. (B2)

�(1) = F − H0, such that

Tr(�[G]G) = Tr[�(1)γ ] + Tr[�(2)G]. (B5)

Combining Eqs. (B3)–(B5), we obtain the second-order
approximation of the grand potential as

�[2] = 1

β
{�[2][G] − Tr[ln(−G−1)] − Tr[�[2]G]}

= 1

β

{
1

2
Tr[�∞γ ] + 1

4
Tr[�(2)G] − Tr

[
ln

( − G−1
HF

)]

− Tr[ln(1 − GHF �(2) )] − Tr[�(1)γ ] − Tr[�(2)G]

}

= 1

β

{
−1

2
Tr[�∞γ ] − 3

4
Tr[�(2)G] − Tr

[
ln

( − G−1
HF

)]

− Tr[ln(1 − GHF �(2) )]

}
. (B6)

Standard textbook relations yield the entropy, specific heat,
total energy, and free energy as thermodynamic derivatives,

S = −∂�

∂T
, (B7a)

CV = T
∂S

∂T
, (B7b)

E = T 2 ∂lnZ

∂T
, (B7c)

F = � + μN. (B7d)

Alternatively, the entropy can be evaluated from the Gibbs-
Duhem relation � = E − T S − μN ; the specific heat can be
evaluated from its definition CV = ∂E

∂T , and the energy can be
evaluated from the Galitskii-Migdal formula [51].
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