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Berry curvature unravelled by the anomalous Nernst effect in Mn3Ge
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The discovery of topological quantum materials represents a striking innovation in modern condensed matter
physics with remarkable fundamental and technological implications. Their classification has been recently ex-
tended to topological Weyl semimetals, i.e., solid-state systems which exhibit the elusive Weyl fermions as low-
energy excitations. Here we show that the Nernst effect can be exploited as a sensitive probe for determining key
parameters of the Weyl physics, applying it to the noncollinear antiferromagnet Mn3Ge. This compound exhibits
anomalous thermoelectric transport due to enhanced Berry curvature from Weyl points located extremely close to
the Fermi level. We establish from our data a direct measure of the Berry curvature at the Fermi level and, using
a minimal model of a Weyl semimetal, extract the Weyl point energy and their distance in momentum space.
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I. INTRODUCTION

Weyl semimetals [1–4] are certainly one of the most
stunning representatives of topological material classes. Their
electronic band structure is predicted to host Weyl points,
i.e., three-dimensional linear band crossings that represent
massless Weyl fermions of defined chirality. Two Weyl points
always form a pair of opposite chirality which is separated
in momentum space due to spin-orbit coupling and breaking
of the time-reversal symmetry or inversion symmetry. Weyl
points act as source or sink of Berry curvature, a vector field in
momentum space which represents the topological properties
in a material. Understanding, probing, and controlling this
quantity is of enormous importance to emergent fields of
basic and applied research. For example, in spintronics [5] the
Berry curvature is causing a spin-orbit torque that drives spin
dynamics in transition-metal bilayers [6]. A further example is
quantum computing, where the Berry curvature provides a su-
perior robustness to noise in photonic networks of solid-state
qubits [7].

The Berry curvature can be seen as an effective magnetic
field in the reciprocal lattice, determining an additional com-
ponent to the electron velocity v(k), the so-called anomalous
velocity, which is always perpendicular to the force driving
the electron motion [8]. As a natural consequence, anomalous
transverse transport properties, namely, the anomalous Hall
effect (AHE) and its thermoelectric counterpart, the anoma-
lous Nernst effect (ANE), are expected to arise [8–11] and
have been measured in several systems [12–14]. The Nernst
effect often is dominated by the transverse Peltier coefficient
αi j , which probes the electrons only within the energy window
determined by the thermal broadening of the Fermi function.
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The ANE is thus expected to be a more sensitive probe for the
Berry curvature at the Fermi level than the AHE which probes
the whole Fermi sea [12,15].

Recently the isostructural noncollinear antiferromagnets
Mn3Ge and Mn3Sn have attracted tremendous interest [5] due
to giant anomalous transport coefficients [3,15–19]. Mn3Sn
has been extensively studied in Hall [3] and Nernst measure-
ments [15,17], but it lacks magnetic order below T = 50 K
and develops a glassy ferromagnetic ground state [20,21],
where both ANE and AHE vanish [15]. This is in contrast
to Mn3Ge, where magnetic order and anomalous transport
persist down to lowest temperatures, and which is at the
focus of this paper. Mn3Ge is characterized by a hexagonal
crystal structure (space group P63/mmc), where Mn atoms
form a kagome lattice of mixed triangles and hexagons with
Ge atoms being situated at the center of the hexagons. In
the noncollinear antiferromagnetic ground state of Mn3Ge
(TN ≈ 365 to 400 K [22–25]) the Mn moments are oriented
at 120◦ with respect to their neighbors [26] [see Fig. 1(a)].
Only a very small net moment of ≈ 0.02 μB appears in-plane
due to a slight tilting of the Mn moments [23,27]. Multiple
Weyl points have been predicted to exist in the band structure
of Mn3Ge [26].

Here we report a comprehensive study of the ANE [28] in
the noncollinear antiferromagnet Mn3Ge. We observe at all
temperatures studied that the Nernst effect is dominated by
a field-saturated anomalous contribution if an in-plane mag-
netic field B > 0.02 T is applied. We derive the anomalous
transverse Peltier coefficient from the ANE data and show
that its temperature dependence can be analyzed to extract key
properties of the Weyl semimetal, i.e., the Weyl point energy,
the momentum space separation of two Weyl points, and the
effective strength of the Berry curvature at the Fermi level.

In Sec. II we describe the experimental details. In Sec. III
we show corresponding experimental results and demonstrate
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(a)

(b)

FIG. 1. (a) Mn atoms and magnetic structure of Mn3Ge. Ge
atoms are in the center of each Mn hexagon (not sketched here). By
mirroring (xz-mirror plane) and translating by c/2 along the z axis
the different layers are transformed into each other. (b) Schematic
Nernst setup for measuring Si j . On the upper side a resistive chip
heater creates the thermal gradient. The bottom of the sample is
coupled to a thermal bath of controlled temperature, therefore the
temperature gradient arises along the j direction. The magnetic field
is applied in the k direction, and the Nernst signal is measured along
the i direction.

that the Nernst effect in Mn3Ge is purely anomalous. Our
theoretical model to analyze the temperature dependence of
the anomalous Peltier and Hall coefficients is presented in
Sec. IV A and furthermore applied to Mn3Ge where important
Weyl point properties are extracted from experimental data.
Finally, we discuss and summarize our results in Sec. V and
Sec. VI.

II. EXPERIMENTAL

The Mn3Ge single crystals were grown using the
Bridgman-Stockbarger technique. First, the high-purity met-
als were premelted in an alumina crucible using induction
melting. Then the crushed powder was filled in a custom-
designed sharp-edged alumina tube and sealed inside a tan-
talum tube. The crystal growth temperature was controlled
using a thermometer at the bottom of the ampule. The sam-
ple was heated to 1000 ◦C, held there for 12 h to ensure
homogeneous mixing of the melt, and then slowly cooled to

750 ◦C. Finally, the sample was quenched to room tempera-
ture to retain its high-temperature hexagonal phase. The single
crystallinity was checked by white-beam backscattering Laue
x-ray diffraction at room temperature. The crystal structures
were analyzed with a Bruker D8 VENTURE x-ray diffrac-
tometer using Mo-K radiation.

Thermoelectric measurements were done in a home-built
probe in a helium cryostat with a magnetic field of up to 15 T.
The thermal gradient is generated with a chip resistor on one
end of the sample, the other end is glued to a cold bath with
an Al2O3 plate in between to establish electrical current free
conditions. The gradient along the sample is measured with
a magnetic-field-calibrated AuFe/Chromel-P thermocouple.
The Nernst voltage is measured perpendicular to the thermal
gradient and the applied field. The different measurement con-
figurations are labeled as Si j , with the Nernst signal measured
along the i direction with an applied temperature gradient ∇Tj

and a magnetic field Bk [compare Fig. 1(b)].
Due to its general dependence on the temperature as well

as the magnetic field, the Nernst signal is usually measured
in two different modes. A temperature-dependent Nernst sig-
nal measurement contains two separate temperature sweeps.
During the first sweep the magnetic field is fixed to a certain
field, and the second sweep is measured at the corresponding
inverted magnetic field (in this work B = 14 T and B =
−14 T). Afterwards the data are antisymmetrized to get rid of
any contribution of the Seebeck effect caused by slightly mis-
aligned contacts. A magnetic-field-dependent measurement is
conducted at a fixed temperature while sweeping the magnetic
field from negative to positive values or vice versa. This was
not possible for the magnetic-field-dependent measurements
in Mn3Ge, due to the peculiar hysteretic behavior at small
fields, which leads to different Si j (B) curves depending on
the field history. Therefore, the Nernst signal was measured
in full field cycles, from B = −15 T to +15 T and back to
−15 T. By subtraction of the symmetric contribution (which
shows no field dependence), the curves were centered around
Si j (B) = 0 to allow a comparison of different temperatures.

III. NERNST EFFECT RESULTS

We start with a clear demonstration that the anomalous
transport (which is driven by Berry curvature) dominates
the Nernst effect in Mn3Ge. Figure 2(a) shows the Nernst
coefficient Sxz which exhibits a totally anomalous behavior
(no magnetic field dependence) without any visible normal
(linear B dependence) contribution as a function of field for
all the investigated temperatures, exhibiting a steplike feature
at very low fields and reaching a saturation in a flat plateau
for B > 0.02 T (the distinct steplike behavior at B < 0.02 T as
well as the relation between Nernst data and magnetization are
discussed in detail in Appendix C). Syz reveals a very similar
field dependence as presented in Fig. 2(b). Both configura-
tions show the peculiar saturating behavior up to room tem-
perature with a large Nernst signal of around 0.4−1.5 μV/K,
depending on the temperature. On the other hand, a different
phenomenology characterizes Sxy, as reported in Fig. 2(c). In
this configuration the Nernst coefficient is much smaller, with
the steplike behavior just slightly visible, and shows a much
weaker temperature dependence.
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FIG. 2. (a)–(c) Nernst signal of the Mn3Ge single crystals with
respect to the applied magnetic field B in different configurations.
Si j is obtained by measuring the voltage along the i direction while
applying a thermal gradient ∇T and a magnetic field B along the j
and k directions, respectively.

The experimental observation in Fig. 2(a) allows us to draw
an important conclusion about the Berry curvature in Mn3Ge.
The Nernst signal Sxz of the transverse transport is generally
determined by the thermoelectric tensor α and the charge
conductivity tensor σ as

Sxz = αxzσxx − αxxσxz

σ 2
xx + σ 2

xz

, (1)

where each transverse transport coefficient (Sxz, αxz, σxz) is the
sum of a normal and an anomalous contribution. The observed
saturation in the Nernst signal without any field dependence at
B > 0.02 T is incompatible with normal transport [12,17] and
thus implies that all normal contributions are negligible in Sxz.
Hence, in what follows we solely consider only anomalous
transport coefficients αxz and σxz for analyzing our data.
It is well established that the anomalous Peltier and Hall
coefficients αxz and σxz are related to the y component of the

momentum-integrated Berry curvature � = (�x,�y,�x ) via
the expressions

σxz = e2

h̄

∫
d3k

(2π )3
�y(k) fk, (2)

αxz = kBe

h̄

∫
d3k

(2π )3
�y(k)sk, (3)

where fk is the Fermi distribution function and sk is the
entropy density [29]. Thus, if a large anomalous Nernst signal
Sxz is observed, the y component of the integrated Berry
curvature must be large too. The almost identical observa-
tion for Syz [see Fig. 2(b)] implies the same statement for
�x. Since Sxy exhibits only a suppressed value without any
clear anomalous contribution, these considerations allow us
to conclude that the integrations of the x and y components
of the Berry curvature are large compared to its integrated
z component, caused by an either vanishing or odd �z with
respect to kz = 0 [�z(kx, ky, kz ) = −�z(kx, ky,−kz )]. These
findings are consistent with symmetry considerations of the
band structure [24,26], according to which �z is an odd
function in kz, whereas �x is even in kx if the magnetic field
is applied along x and likewise for �y.

The saturation values of Sxz, Syz, and Sxy at B = 14 T are
plotted in Fig. 3(a) as a function of temperature T . A broad
maximum of about 1.5 μV/K is visible for Sxz and Syz at
around 100 K, whereas Sxy is negligibly small. This remark-
able temperature dependence is leading us to a second qual-
itative fundamental conclusion. As is explained in Ref. [12],
the peak position in the temperature dependence of the ANE
represents a coarse correspondence with the lowest Weyl point
energy μ with respect to the Fermi level. This is because
for kBT � |μ| essentially states with energy |ε| < |μ| probe
the Berry curvature and contribute to the ANE, giving rise
to an increase of it upon the thermal energy approaching |μ|
from below. On the other hand, if kBT becomes comparable
with |μ| or even exceeds it, the then additionally contributing
higher energy states at |ε| > |μ| provide an opposite contribu-
tion to the ANE. Thus, we estimate |μ| ∼ 10 meV. It has been
suggested that in Mn3Ge the presence of spin-orbit coupling
removes the degeneracy at the Weyl point and leads to an
opening of a gap [31]. In this case the energy |μ| remains
meaningful and describes the distance between the center of
the gap and the Fermi level.

After having established a qualitative understanding of the
ANE, we now move on to extract material-specific parameters
of the Weyl system. In order to provide a quantitative evalua-
tion we derived the transverse Peltier coefficient

αxz = ρzzSxz − ρxzSzz

ρxxρzz + ρ2
xz

(4)

using experimental values for the required transport coeffi-
cients (see Appendix A). The temperature dependence of αxz

in zero field is shown in Fig. 3(b). It resembles the behavior
of Sxz but exhibits a narrower maximum which is shifted to
lower temperatures (≈ 75 K). It is worth noting that indeed the
anomalous Nernst signal dominates αxz. This can be inferred
from Fig. 3(c) where the two contributions ρzzSxz/(ρxxρzz +
ρ2

xz ) and −ρxzSzz/(ρxxρzz + ρ2
xz ) are directly compared. Thus

αxz is truly anomalous as well and is given by Eq. (3). We
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FIG. 3. Temperature dependence of (a) Si j at B = 14 T, (b) αxz

obtained by using the relation αxz = (ρzzSxz − ρxzSzz )/(ρxxρzz + ρ2
xz )

[30] (blue dots) and the fit provided by our theoretical model (red
line); (c) the two terms contributing to αxz.

use this as a starting point to develop a model to analyze the
temperature dependence of αxz in more detail and to extract
important Weyl point properties from our experimental result
of Fig. 3(b).

IV. THEORETICAL MODELING AND DATA
ANALYSIS

A. Model

Extending the theory proposed in Ref. [12] we start from a
generalized expression of Eq. (3) for a multiband system,

αxz = e2

h̄

∑
n

∫
d3k

(2π )3
�y

n(k)sn,k, (5)

where sn,k = − fn,k ln fn,k − [(1 − fn,k ) ln(1 − fn,k )] is the
entropy density [ fn,k = f (Enk ): Fermi distribution function]
for the dispersion En,k of the conduction electron band n.
We assume that this anomalous contribution is predominantly
determined by one particular pair of Weyl nodes which are

Δk

Es
μ ky

En,k − μ
n = 0

n = 1

FIG. 4. Schematic picture of the band dispersion in a Weyl
semimetal. The Weyl points of opposite chirality are placed along
the ky direction. Saddle point energy, energy of the Weyl points with
respect to the Fermi level, and their distance from ky = 0 are labeled
as ES , μ, and �k, respectively.

placed extremely close to the Fermi level [26]. The vector
�n(k) is the Berry curvature with respect to the band n.
We consider two bands which are separated in energy and
which touch each other in the pair of Weyl nodes (compare
Fig. 4). They are indexed by n = 0 (high-energy band with
E0,k > 0) and n = 1 (low-energy band with E1,k < 0). For
the dispersion we apply the following minimal model [32] of
linearized Weyl fermions,

En,k = ±vF

√
k2

x + (ky ± �k)2 + k2
z . (6)

It describes a pair of Weyl points which are placed at energy
E = 0 and are separated in momentum space by 2�k.

We replace at first the momentum integral in Eq. (5) with
an energy integral,

αxz = e2

h̄

∫ 0

−∞
dE ρ1(E )�y

1(E )s(E )

+ e2

h̄

∫ ∞

0
dE ρ0(E )�y

0(E )s(E ), (7)

where ρn(E ) is the density of states with respect to the band
“n.” For the linearized band structure (6) the density of states
is given by

ρ0(E ) =

⎧⎪⎨
⎪⎩

0 : E < 0
ρ0E2 : 0 � E � Es

ρ0

2
E (Es + E ) : E > Es

, (8)

ρ1(E ) =

⎧⎪⎨
⎪⎩

0 : E > 0
ρ0E2 : −Es � E � 0

ρ0

2
E (−Es + E ) : E < −Es

, (9)

where ρ0 is a constant in energy and Es = vF �k is the energy
difference between the Weyl point and the saddle point at k =
0 (compare Fig. 4). Note that the total density of states ρ =
ρ0 + ρ1 is symmetrical around the Weyl point, i.e., ρ(−E ) =
ρ(E ), and it vanishes at the Weyl points E = 0. The explicit
formula for the energy dependence of the entropy density s(E )
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in Eq. (7) reads

s(E ) = ln(1 + eβ(E−μ) )

1 + eβ(E−μ)
+ ln(1 + e−β(E−μ) )

1 + e−β(E−μ)
, (10)

where μ is the chemical potential and β = 1/(kBT ) the in-
verse temperature. Note that the chemical potential might also
be temperature-dependent.

The vector of the Berry curvature in Eqs. (5) and (7) can be
obtained by a standard linear response theory as introduced
by Kubo [33]. The general formula for the vector of the Berry
curvature in a multiband system reads

�n(k) = ih̄2
∑
m �=n

〈ψn,k|v̂|ψm,k〉 × 〈ψm,k|v̂|ψn,k〉
(En,k − Em,k )2

, (11)

where |ψn,k〉 are the Bloch states and v̂ is the velocity op-
erator. Within our linearized model we neglect the energy
dependence of the velocity matrix elements and assume that
the Berry curvature is equal for the two bands. Thus, the
energy dependence of one component of �n is determined by
the quadratic energy denominator in the Kubo formula (11).
Hence, we set for the y component

�
y
0(E ) = �

y
1(E ) = h̄2�̃

4E2
, (12)

with an open parameter �̃ representing the off-diagonal ve-
locity matrix elements in Eq. (11) in a field which breaks the
time-reversal symmetry of the system. Note that the Berry
curvature diverges at the Weyl point energy E = 0.

Inserting the expressions (8), (9), and (12) in the formula
(7) for αxz we obtain

αxz = e2h̄�̃ρ0

4

[∫ Es

−Es

s(E ) dE + 1

2

∫ −Es

−∞

−Es + E

E
s(E ) dE

+ 1

2

∫ ∞

Es

Es + E

E
s(E ) dE

]
, (13)

where for s(E ) the expression (10) (considering μ and β as
constant in energy) has to be used. To simplify the solution
of the integrals with the aim of obtaining a fitting formula for
the temperature dependence we substitute at first the variable
E with the Fermi distribution function F (E ) = 1/(1 + eβE ).
Exploiting the property that F (E ) can take values only be-
tween 0 and 1 we then perform a Taylor expansion in terms
of F around the value 1/2 up to the first order in (F − 1/2).
Due to the exponential functions in s(E ) the power series
of F converges quickly if the temperature is not too large.
After this expansion we integrate over F and obtain the
following result:

αxz = CαkBT

{
1 − Es

μ
− EskBT

μ2

+ F (−Es − μ)

(
1 + Es

μ
− 2

EskBT

μ2

)

+ F (Es − μ)

(
−1 + Es

μ
− 2

EskBT

μ2

)

+ 2
EskBT

μ2
[F 2(Es − μ) − F 2(−Es − μ)]

}
, (14)

with F (E ) = 1/(1 + eβE ) and Cα = (e2h̄�̃ρ0 ln 2)/2. Note
that the chemical potential μ, which is derived below, is in
general temperature-dependent, i.e., μ = μ(T ). After insert-
ing this function μ(T ) into Eq. (14) we obtain the desired
fitting formula for the temperature dependence of the Peltier
coefficient αxz.

As can be seen in Eq. (14), the parameter Cα plays a spe-
cific role which is used in our analysis. Cα = (e2h̄�̃ρ0 ln 2)/2,
where �̃ is according to Eqs. (11) and (12) a parameter
which characterizes the off-diagonal velocity matrix elements
of the Berry curvature. ρ0 is defined in Eqs. (8) and (9) and
represents the amplitude of the density of states which is
mainly determined by the band dispersion.

Let us finally derive an approximate expression for μ(T ).
Generally, this function can be found from the relation be-
tween the total particle number and the chemical potential
which is given by an integral over the Fermi distribution as

N =
∫ ∞

−∞
F (E − μ)ρ(E ) dE , (15)

where ρ(E ) = ρ0(E ) + ρ1(E ) is the total density of states
with the two parts ρ0 and ρ1 as given by Eqs. (8) and (9).
Evaluating the energy integral in Eq. (15) and then solving
the resulting expression for μ gives rise to the function μ =
μ(N, T ). Unfortunately, the exact solution can only be found
numerically. To find an approximate analytical formula for
μ(T ) we simplify the integration in Eq. (15) by replacing
the exponential behavior of the Fermi distribution function
F (E − μ) around E = μ with a linear function in E . More
specifically, we model the function F (E − μ) to linearly drop
to zero in the energy range kBT around E = μ. For E values
below and above this range we set F equal to 1 and 0,
respectively. Such an approximation is valid if the temperature
is not too large (kBT < 2Es). We obtain from Eq. (15)

N ≈
∫ −Es

−∞

ρ0

2
E (−Es + E ) dE

+
∫ μ− kBT

2

−Es

ρ0E2dE + ρ0μ
2 kBT

2
. (16)

Forming the derivative with respect to (kBT ) on both sides
of Eq. (16) leads to the following approximate differential
equation for the chemical potential:

0 ≈ μ2μ′ + μ
kBT

2
+

(
kBT

2

)2(
μ′ − 1

2

)
. (17)

At zero temperature T = 0 we immediately find μ′ = 0.
In the high-temperature limit μ � kBT , Eq. (17) suggests
a linear behavior of μ with temperature, i.e., μ ∝ kBT .
Therefore, we assume the following approximate temperature
behavior:

μ(T ) ≈
√

μ2
0 + (AkBT )2, (18)

where μ0 is the chemical potential at zero-temperature, i.e.,
μ0 = μ(T = 0). This ansatz fulfills the above properties
as one can easily verify by considering the corresponding
limiting cases. According to Fig. 4, μ0 defines the energy of
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the Weyl point relative to the Fermi level. The dimensionless
constant A can be obtained by inserting the ansatz (18) into
the differential Eq. (17) in the limit kBT � μ. We find the
following equation for A,

A3 + 3

4
A − 1

8
≈ 0, (19)

which has the solution A ≈ 0.162. Note that this constant
determines the change of the chemical potential with tem-
perature in the high-energy regime. Therefore, in the real
multiband material where several Weyl points are present we
expect for A a value larger than 0.162. Qualitatively, A is a
measure for degrees of freedom of the electronic system at the
Fermi level. In the case of trivial bands being absent it roughly
corresponds to the number of high-energy Weyl points in the
material times the number 0.162. Therefore we can slightly
modify Eq. (18), using the quantity of NW instead of A,

μ(T ) ≈
√

μ2
0 + (0.162NW kBT )2. (20)

In summary, the expression (14) together with Eq. (18)
provides a fitting formula for the temperature dependence of
the Peltier coefficient αxz. The fitting parameters are A, Cα ,
μ0, and ES . The saddle point energy ES = vF �k is related
to the separation of the Weyl points of opposite chirality in
momentum space, and μ0 describes the energy difference
between the Weyl point and the Fermi level at T = 0. Note
that μ0 is usually considered in band structure calculations as
the Weyl point energy and is therefore of particular interest.
Within our model the values Es and μ0 are assigned to
the particular low-energy Weyl point which arises from the
crossing of our two linearized bands. These energy values are
related to the Weyl point with the lowest possible energy.

The remaining parameter Cα = (e2h̄�̃ρ0 ln 2)/2 is a con-
stant which represents the order of magnitude of αxz, directly
proportional to the amplitude of the density of states ρ0 and
the experimentally relevant strength of the Berry curvature of
the considered Weyl system near the Fermi level, �̃.

B. Analysis of Mn3Ge data

In order to extract the important geometric properties of
the underlying system of Weyl fermions close to the Fermi
level, we fit the experimental data [red line in Fig. 3(b)] using
the formula (14). As can be seen clearly, the fit works well in
a wide temperature range. The deviation at high temperature
above 250 K can be explained within the approximation
made to derive Eq. (14). The obtained parameter μ0 = 6.6 ±
0.7 meV is remarkably close to 8 meV, the energy of the
particular Weyl point W4 provided by band structure calcu-
lations [26] of Mn3Ge. From the saddle point energy Es =
90 ± 25 meV and vF ≈ 1 eV/π [26] we calculate a momen-
tum space separation �k ≈ 0.09 π using Es = vF �k. Both
this result and estimated total number of Weyl points NW =
17.8 ± 2.2 also agree well with band structure calculations
[26]. Furthermore, while the above parameters determine the
momentum space properties, the parameter Cα = 0.030 ±
0.002 V(K � m)−1 contains the materials specific information
on the Berry curvature at the Fermi level.

We mention that the anomalous Hall coefficient can be
analyzed using a similar approach. However, since an ad-
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FIG. 5. αxz in Mn3.06Sn0.94 (black squares) and Mn3.09Sn0.91 (blue
triangles) from Ref. [17]. The corresponding fits of the data are
represented by red lines. We extracted values of μ0 = 45 meV,
Cα = 0.004 V(K � m)−1 for Mn3.06Sn0.94 and μ0 = 108 meV, Cα =
0.010 V(K � m)−1 for Mn3.09Sn0.91.

ditional approximation is needed for deriving an analytical
expression for the AHE, the accuracy of such an analysis of
σxz is comparably lower (see Appendix B for details).

V. DISCUSSION

Our findings show clearly that the anomalous Nernst effect,
beyond the mere statement that the integrated Berry curvature
near the Fermi level is finite for a given material, can also
be used as a sensitive probe for the experimentally relevant
strength of the Berry curvature. In this regard it is interesting
to compare the obtained quantities with other Weyl materials
exhibiting a similar density of states ρ0. For this purpose, we
performed an analogous analysis of existing transport data
[17] of the isostructural Weyl compound Mn3Sn; see Fig. 5.
At T = 300 K, Sxz and Syz exhibit exactly the same steplike
behavior as our data. Interestingly, αxz in Mn3Sn is one
order of magnitude smaller than in Mn3Ge. Thus, the Berry
curvature in Mn3Sn at the Fermi level is significantly smaller
than in Mn3Ge, since both materials possess a similar density
of states ρ0 [26]. This difference is consistent with theoretical
results in Ref. [34]. Furthermore, the peak of αxz, compared to
Mn3Ge, is shifted to much higher temperatures. This implies,
according to our considerations above, a significantly higher
Weyl point energy in Mn3Sn.

The results of our analysis are shown in Fig. 5, where we
have applied Eq. (14) to fit the temperature dependence of αxz

in Mn3Sn. The parameter Cα = 0.004 . . . 0.010 V(K � m)−1,
which is nearly an order of magnitude lower than the cor-
responding value in Mn3Ge. Furthermore we obtain an en-
ergy of the lowest-lying Weyl points in the range of μ0 ≈
40 . . . 100 meV, which corresponds well to the value of μ =
86 meV for Mn3Sn given by band structure calculations
in Ref. [26]. These findings correspond to our qualitative
comparison of the magnitude and position of the maximum
of αxz(T ).
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The above comparison between Mn3Ge and Mn3Sn
demonstrates the universal applicability of our analysis to
topological materials, and thus allow us to use the ANE for
quantitative determination of Weyl point properties.

VI. SUMMARY

In summary, we measured the anomalous Nernst effect in
Mn3Ge and developed a theoretical model to obtain quanti-
tative information on the Weyl nodes in this material. Our
analysis reveals an access to fundamental properties of Weyl
systems through anomalous transverse transport. On the one
hand, the anomalous Nernst effect can be used to determine
the Weyl point energy as well as the momentum separation
of the lowest-lying Weyl points of the system. On the other
hand, and most importantly, our analysis yields a measure
of the Berry curvature strength at the Fermi level, which is,
to the best of our knowledge, not accessible through other
experimental probes. In this way, our study promotes the
anomalous Nernst effect as an exceptional bulk probe to detect
and study Weyl physics in solid-state materials.
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APPENDIX A: PELTIER COEFFICIENT
AND ITS COMPONENTS

Since the Hall effect as well as the Nernst effect show an
anomalous behavior, αxz can be calculated using zero field
values of all involved transport coefficients. The Peltier tensor
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FIG. 6. Temperature-dependent resistivity along the x and z
directions.
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FIG. 7. Plot of the Hall conductivity σxz vs temperature. Blue
dots represent experimental data. The data were fitted (red line)
by using our theoretical approach as well as the fixed parameters
(μ0 = 8.3 meV, Es = 143 meV, and NW = 22.3) extracted from the
fit of αxz.

ᾱ can be written as

ᾱ = σ̄ S̄ (A1)

with the conductivity tensor σ̄ and the thermoelectric tensor
S̄, the former describing longitudinal and Hall conductivities
and the latter Seebeck and Nernst coefficients. Focusing on
the xz plane, the conductivity tensor can be expressed as the
inverse of the resistivity tensor

σ̄ = ρ̄−1 = 1

det ρ̄

(
ρzz −ρxz

−ρzx ρxx

)
, (A2)

leading to the following form of ᾱ:

ᾱ =
(

αxx αxz

αzx αzz

)
= 1

ρxxρzz − ρxzρzx

×
(

ρzzSxx − ρxzSzx ρzzSxz − ρxzSzz

ρxxSzx − ρzxSxx ρxxSzz − ρzxSxz

)
. (A3)

With this, one can easily express αxz as

αxz = ρzzSxz − ρxzSzz

ρxxρzz − ρxzρzx
, (A4)

or, using the relation ρxz = −ρzx, as

αxz = ρzzSxz − ρxzSzz

ρxxρzz + ρ2
xz

. (A5)

Electrical transport measurements were done in different
configurations to calculate the Peltier coefficient αxz. The
temperature-dependent resistivity for in-plane and out-of-
plane configurations is shown in Fig. 6. Figure 7 shows the
xz component of the Hall conductivity. Both quantities are in
good agreement with previous measurements [16].

The Seebeck effect was measured using the Nernst setup
with one additional electrical contact. The Seebeck coefficient
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FIG. 8. Temperature-dependent Seebeck coefficient measure-
ment along the y and z directions.

Sii along the y and z axes has been studied. The data are shown
in Fig. 8.

APPENDIX B: FITTING OF HALL EFFECT DATA

Using the same arguments as described in Sec. IV A we
have derived a similar fitting formula for the anomalous Hall
coefficient σxz, based on the usual expression

σxz = e2

h̄

∫
d3k

(2π )3
�y(k)F (εk ) (B1)

as obtained from the Boltzmann transport theory. The eval-
uation of the momentum integration results in the following
formula:

σxz = Cσ kBT [2 ln(1 + e(Es/2−μ)/kBT )

− ln(1 + e(−Es/2−μ)/kBT )], (B2)

where Cσ is a specific fitting parameter of σxz. This formula
can be used, together with the parameters obtained by fitting

the temperature dependence of αxz (μ0 = 6.6 ± 0.7 meV,
ES = 90 ± 25 meV, and NW = 17.8 ± 2.2), to fit the Hall
conductivity σxz. The parameters μ0, ES , and NW were allowed
to vary inside the corresponding error bar. The result is
displayed in Fig. 7, the remaining parameter Cσ = −3.6 ±
0.3 (� cm meV)−1. As one can see, the fit works less well
than for the Peltier coefficient in Fig. 3(b) for the following
reason. Due to the presence of the Fermi function the mo-
mentum integration in Eq. (B2) is not restricted to states close
to the Fermi level. Therefore, an additional approximation is
needed to be included to perform the momentum integration
analytically. More specifically, due to the entropy density in
the momentum integral of the anomalous Peltier coefficient (at
low temperature) it is solely determined by states close to the
Fermi level. This is, however, not the case for the anomalous
Hall conductivity where states deep in the occupied region of
the Fermi sea also contribute. We emphasize at this point that
such an additional approximation rather affects the temper-
ature dependence than the overall magnitude. Therefore we
believe that the coefficients Cα and Cσ , which are the respon-
sible parameters of the overall magnitude, should be rather
unaffected by the discussed approximation. Hence, since these
parameters are the only ones which explicitly contain the
Berry curvature, we argue that our main conclusion regarding
the strength of the Berry curvature is still valid despite the fact
that the temperature fit of the Hall coefficient is not as good as
that for the Peltier coefficient.

APPENDIX C: LOW-FIELD NERNST SIGNAL
AND MAGNETIZATION BEHAVIOR

In addition to the discussed findings of the main text we
would like to mention the low-field region of the Nernst data.
As highlighted in Fig. 9, both the Sxz versus B and the Syz

versus B curves (the latter are not shown) exhibit a hysteresis
cycle which remains almost unaltered from 5 K up to room
temperature. This cycle is rectangular-shaped and closes at
around 20 mT, in agreement with the previous report on
Mn3Sn [17]. Remarkably, the cycle exhibits a total extension
of around �Sxz = 2 μV/K at 100 K (even overcoming the
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FIG. 9. (a) Zoom-in of Sxz(B) with a clearly visible hysteresis of the Nernst signal at different selected temperatures. (b) Comparison of
the hysteresis curves of Sxz(B) and the magnetization M in the y direction at T = 100 K. B denotes the external magnetic field. (c) Sxz vs M.
There is no obvious scaling of the anomalous Nernst signal on the magnetization of the sample.
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FIG. 10. Magnetic moment of Mn3Ge in the (a) x direction and
(b) y direction. The magnetization has been corrected for geometry
effects. However, demagnetization corrections are small and have not
been applied. B denotes the external magnetic field.

peak value of �Sxz = 0.7 μV/K observed in Mn3Sn [17])
with negligible net magnetization. This exceptionally large
value underpins that noncollinear antiferromagnets such as
Mn3Ge and Mn3Sn may constitute a new material paradigm
in the field of spintronic [3,5,35–37] and thermoelectric tech-
nologies [17,38].

It is interesting to compare this low-field behavior of the
ANE with the DC magnetization. The latter was measured as
a function of the temperature and magnetic field by means of
a quantum interference device magnetometer (SQUID-VSM)
by Quantum Design. For the purpose of a direct compari-
son with the Nernst effect measurements, the magnetization
curves were obtained by applying an external magnetic field
in the direction(s) [2-1-10] (and [01-10]). In order to probe the
field-dependent magnetization, M(B) (Fig. 9) was measured
upon sweeping the magnetic field between −7 T and 7 T at
constant temperatures 1.8, 50, 100, 150, 200, 250, and 300 K.
Given the large magnitude of the measured magnetic signal,
the small background correction due to the diamagnetic con-
tribution of the glue GE-Varnish used to fix the sample has
been neglected.

It is well known that a magnetization (even for a relatively
small value) may enhance the ANE as is the case in
ferromagnets where the anomalous Hall conductivity is
usually assumed to be proportional to the magnetization of
the magnetic material. Interestingly, such a proportionality be-
tween the ANE and the magnetization M is absent in Mn3Ge
[see Fig. 10(b)]. Even if M somehow reproduces the overall
hysteresis shape in the low field region it closes the cycle at
much higher fields with respect to Sxz. Furthermore, while Sxz

is anomalous and as such stays constant with increasing B, M
undergoes an almost linear drift. We also verified the absence
of a scaling of the two quantities by plotting Sxz versus M in
Fig. 10(c).
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