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We derive exact sum rules that relate the tunneling density-of-states of spinful electrons in the fractional
quantum Hall regime to the spin-dependent many-body ground-state correlation energy. Because the tunneling
process is spin-conserving, the two-dimensional (2D) to 2D tunneling current I at a given bias voltage V in a
spin-polarized system is a sum of majority and minority spin contributions. The sum rules can be used to define
spin-dependent gaps that we associate with peaks in 2D to 2D tunneling I-V curves. We comment in the light
of our sum rules on what recent tunneling experiments say about the spin-dependence of correlation energy
contributions and propose new measurements that could provide more specific experimental estimates.
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I. INTRODUCTION

For many years following the discovery of the integer [1]
(IQHE) and fractional [2] (FQHE) quantum Hall effects, the
study of two-dimensional (2D) electron systems (2DES) in
a strong perpendicular magnetic field has regularly provided
examples of distinctly new many-electron physics. Corre-
lations are strong in the FQH regime because of kinetic
energy quantization, and distinct because of restrictions on
correlations imposed by Hilbert space truncation to individual
Landau levels. In the limit of strong Landau quantization
and weak disorder, electron-electron interactions provide the
only relevant energy scale. The set of exotic many-electron
states discovered in the FQH regime includes incompressible
ground states at a variety of fractional Landau-level filling
factors ν = N/Nφ that are dramatically signaled by dissipation
free edge transport and quantized Hall conductivities. (Here
N is the number of electrons in the system, Nφ = �/�0 is the
degeneracy of a Landau level, � is the flux through the 2D
sample, and �0 is the electron magnetic flux quantum.) The
elementary charged excitations of incompressible states have
fractional charge and can have non-Abelian statistics [3] with
potential applications in topological quantum computing [4].
In this paper we focus on spin-physics in the FQH regime and
on its relationship to bilayer 2D to 2D tunneling.

Although the macroscopic set of degenerate single-particle
states within a Landau level can be viewed as an analog of an
open atomic shell, the peculiarities of correlations at fractional
filling factors often [5,6] lead to violations of Hund’s rules,
i.e., to incompressible ground states that do not maximize
the total spin quantum number. For example, the ground state
at ν = 1 is maximally spin-polarized, whereas the ν = 1/2
ground state is thought to be unpolarized in the absence of
Zeeman coupling to an external magnetic field [7,8]. At ν =
2/3, 3/5, 4/7, 2/5, 3/7, 4/9, among other filling factors
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[7,9,10], Zeeman coupling drives first-order phase transitions
from unpolarized to partial or fully polarized states, whereas
spin-polarization appears [7,8,11] to increase continuously
with Zeeman coupling at the filling factors (ν = 1/2, 3/2)
which are mapped to zero-magnetic field by the compos-
ite fermion constructions [12,13]. Although there has been
considerable progress in understanding the ground-state spin-
polarization in the FQH regime [14–16], the role played by
spin and Landau level mixing in the experimentally observed
double-peaked tunneling at ν = 3/2 versus the single-peaked
tunneling at ν = 1/2 is unclear [17].

2D to 2D tunneling experiments in the FQH regime have
been an important probe of the correlation physics of underly-
ing FQH states [18–20], for example, by directly measuring
Haldane pseudopotentials [21,22]. These experiments yield
nonlinear I-V curves with strong current suppression at low
bias voltages [18–20]. Early 2D to 2D tunneling experiments
were performed mainly in systems with strong enough Zee-
man coupling to achieve full spin polarization. Recent 2D
to 2D tunneling experiments have shifted the focus to ν =
1/2, 3/2 [11,17,23] and ν = 5/2, 7/2 [24] bilayer systems,
which have more complicated ground-state spin configura-
tions. One example of a spin-related surprise is the presence of
double peak structures in tunneling from ν = 3/2 to ν = 3/2
which are absent at the same Zeeman coupling strength for
ν = 1/2 to ν = 1/2, suggesting partial spin polarization in the
ν = 3/2 case [11,17]. Recent experiments have also shown
interesting tunneling characteristics between two FQH layers
maintained at different filling by independent gate control
[24,25]. Additionally, an intriguing ideal spin diode device has
been realized using tunneling between FQH layers maintained
at ν = 5/2 and ν = 7/2, that have different ground-state spin
polarizations [24].

The goal of this paper is to establish some rigorous
sum rules that can assist with the interpretation of tunnel-
ing I(V) measurements between many-electron states in the
fractional quantum Hall regime that are in general partially
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spin-polarized. Importantly, the two fractional quantum Hall
states are allowed to have different Landau-level filling fac-
tors. To this end we extend the tunneling density-of-states
(TDOS) sum rules derived by Haussmann et al. [26] to the
spinful case, and compare the results to features in tunneling
I-V curves. We also extend the previous analysis to the
case of tunneling between states with different Landau-level
filling factors, emphasizing in the process that the differences
between the chemical potentials of the two states must be
accounted for carefully. Using the sum rules we show that
important experimental features depend separately on corre-
lations among electrons that have the same spin and among
electrons that have opposite spins. We employ our sum rules to
comment on the implications of the tunneling measurements
by Eisenstein et al. [17] for spin-dependent correlation ener-
gies in fractional quantum Hall states. We also suggest some
similar related measurements using the uncorrelated quantum
Hall states at ν = 1 and ν = 2 as probe layers, that could
provide even more specific information.

The article is organized as follows. In Sec. II we summarize
the sum-rule derivation and define important quantities that
are related to experimental I (V ) curves. In Sec. III we use
our sum rules to estimate spin-polarizations and correlation
energies of many-body states on the basis of previously
published experimental data. In Sec. IV we propose some
similar tunneling experiments that use quantum states that
are uncorrelated (in a sense that we will define precisely) as
probe layers to extract information about correlations in the
quantum states of its tunneling partner. We conclude in Sec. V.
Some details of the derivations are relegated to Appendices A
and B.

II. SUM RULES FOR THE TUNNELING
DENSITY OF STATES

We consider a 2DES in strong perpendicular magnetic
field in the FQH regime where all electrons are in the lowest
orbital Landau level (LLL). The single particle states in the
symmetric gauge are then labeled by m = (n, s), where n is
angular momentum and s = ±1 labels spin. When projected
to the LLL, the single layer Hamiltonian has only interaction
(HI ) and Zeeman (HZ ) terms:

H = HI + HZ

= 1

2

∑
ni,si

U n1,n2
n3,n4

c†
n1s1

c†
n2s2

cn3s1 cn4s2 − λz

∑
n,s

c†
nscnss. (1)

Here c†
ns (cns) creates (annihilates) an electron with

angular momentum n and spin s, U is the electron-
electron interaction such that the interaction matrix element
U m1,m2

m3,m4
= U n1,n2

n3,n4
δs1,s3δs2,s4 , λz = gμBB/2 is the Zeeman cou-

pling strength, g is the electron g-factor, μB is the Bohr
magneton, and B is the magnetic field. Because the interaction
Hamiltonian is spin-independent, the component of spin along
the magnetic field direction and the number of electrons with
a given spin label Ns are both good quantum numbers.

We allow for independent control over filling factors of
the two layers and assume that the individual layers of the
bilayer are sufficiently far apart that we can neglect interlayer
interactions. When interlayer interactions are weak, they yield

a small excitonic correction to the results we obtain below
that is discussed briefly in Secs. IV and V. The individual
layers are then coupled only by the single-particle interlayer
tunneling term. For a translationally invariant tunnel barrier
and temperature T = 0, the spin-s interlayer current I at the
lowest order in the tunneling amplitude t0 is [26,27]

Is(V ) = I0

∫ eV

0
dε Ã+

s (ε) Ã−
s (ε − eV ) dε. (2)

Here the constant I0 = et2
0 S0/(h̄�2), S0 is the area of 2D

system, � is the magnetic length, V > 0 is the applied bias be-
tween the two layers, and Ã+

s (ε) and Ã−
s (ε) are, respectively,

spin-s electron and hole spectral functions of the two indi-
vidual layers measured from their chemical potentials μ. The
simple form for the I (V ) curve reflects the property that the
spectral function is the same for every state within a Landau
level, a property that follows from translational invariance.
The spectral function is, however, spin-s dependent unless the
ground-state total spin quantum number is S = 0. We choose
the spectral function normalization convention in which the
integral over energy of Ãs(ε) ≡ Ã+

s (ε) + Ã−
s (ε) is equal to

one. Ã+
s (ε) is nonzero only for ε > 0 and only if spin s is

not completely full, whereas Ã−
s (ε) is nonzero only for ε < 0

and only if spin s is partially full. With this understanding the
limits on the interval of integration in Eq. (2) are superfluous,
and we can view the integral as a convolution.

The exact microscopic expression for the spectral function
is

As(ε) = A+
s (ε) + A−

s (ε), (3a)

A+
s (ε) =

∑
α

|〈
α (N + 1)| c†
ns |
0(N )〉|2

× δ{ε − [Eα (N + 1) − E0(N )]}, (3b)

A−
s (ε) =

∑
α

|〈
α (N − 1)| cns |
0(N )〉|2

× δ{ε − [E0(N ) − Eα (N − 1)]}. (3c)

Here Eα (N ) and |
α (N )〉 are N-electron eigenenergies and
eigenvectors, and α = 0 denotes the ground state. Note that
in these expressions energy is measured from some physical
reference value, in our case from the energy of the degenerate
Landau level, rather than from the chemical potential. To
make this distinction clear we consistently use a .̃ accent for
the spectral functions with its energy argument measured from
the chemical potential and drop the accent when energies are
measured relative to a fixed energy. The chemical potential
μ = ∂E/∂N for these strongly correlated electrons depends
nontrivially on filling and correlation and at T = 0 is not
pinned by bulk physics when the filling factor is exactly equal
to an incompressible value. A+

s (ε) is only nonzero for ε � μ,
and A−

s (ε) is only nonzero for ε � μ. Below we refer to As(ε)
as the tunneling density-of-states (TDOS). For the general
case of tunneling between FQH layers maintained at different
filling factors, the distinction between spectral functions with
energy measured from the Landau-level energy and energy
measured from the chemical potential plays an important role.

The TDOSs defined above encode information about
ground-state correlation energies and for a general strongly
correlated system are not known exactly, which makes it
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difficult to relate experimental I-V curves to microscopic
energies of the system. The sum rules are simple expressions
for energy moments of both the particle-removal portion of
the TDOS, which lies below the chemical potential μ, and the
particle-addition portion of the TDOS which lies above the
chemical potential. In what follows, we will show that these
sum rules of moments of TDOS, which have an exact ex-
pressions as function of filling and ground-state correlation
energies as evaluated below, can be related to moments of
I-V curves, which is obtained from experimental data. This
way it helps extract the important ground-state properties
of strongly correlated FQH states from tunneling data. We
denote the moments of TDOS by Mγ ,i

s , where γ is the order
of the moment, i = ± refers to electron addition or removal,
respectively, and s refers to spin. For the zeroth moment a
standard calculation yields

M0,+
s =

∫ ∞

μ

dε A+
s (ε)

= 〈
0(N )| cns

(∑
α

|
α (N + 1)〉〈
α (N + 1)|
)

× c†
ns |
0(N )〉 = ν̄s, (4a)

M0,−
s =

∫ μ

−∞
dε A−

s (ε)

= 〈
0(N )| c†
ns

(∑
α

|
α (N − 1)〉〈
α (N − 1)|
)

× cns |
0(N )〉 = νs. (4b)

Here ν̄s = 1 − νs. This result is similar to the spinless case
except that the Landau-level filling factor ν is replaced by the
spin-dependent partial filling factor νs = Ns/Nφ .

To derive additional sum rules, we consider the equation of
motion (EOM) of the time-ordered Greens function,

Gs(t ) = i 〈〈 T [c(n,s)(t ) c†
(n,s)] 〉〉. (5)

In Eq. (5), T [cns(t )c†
ns] ≡ θ (t ) cns(t ) c†

ns − θ (−t ) c†
ns cns(t )

and the double angle brackets imply quantum thermal aver-
ages. It follows that

iĠs(t ) = iθ (t ) 〈〈 [H, cns(t )] c†
ns 〉〉

− iθ (−t ) 〈〈 c†
ns [H, cns(t )] 〉〉 + δ(t ). (6)

We evaluate the right-hand side of Eq. (6) at time t = 0±:

〈〈 [HI , cns(t = 0+)] c†
ns〉〉

= 1
2

〈〈∑
ni,si

U n1,n2
n3,n4

(
c†

n1s1
c†

n2s2
cn3s1 cn4s2 cns

− cnsc
†
n1s1

c†
n2s2

cn3s1 cn4s2

)
c†

ns

〉〉

= 1

2

〈〈 ∑
n1 ,n3 ,n4
s1 ,s3 ,s4

(
U n1,n

n3,n4
− U n,n1

n3,n4

)(
c†

n1s1
c†

nscn3s1 cn4s2

+ c†
n1s1

cn3s1δnn4δss2 − c†
n1s1

cn4s2δnn3δss1

)〉〉
. (7)

Since translational invariance guarantees that both sides of
Eq. (7) are independent of n, we can average over this variable
to obtain

〈〈 [HI , cns(0
+)] c†

ns〉〉 = 2 (εs,s + εs,−s − νsε0). (8)

Here ε0 = E0(N = Nφ )/Nφ = −√
πe2/(

√
8κ�) is the en-

ergy of a filled Landau level (κ is the dielectric constant)
and εs,s and εs,−s are, respectively, the contributions to the
interaction energy per flux quantum due to interactions among
electrons with spin s, and due to interactions between elec-
trons with spin s and those with the opposite spin −s (for
explicit expressions, see Eqs. (A1) and (A2) in Appendix A).
Both εs,s and εs,−s depend in a complex way on minority and
majority spin filling factors. A similar calculation leads to

〈〈 c†
ns [HI , cns(0

−)] 〉〉 = 2 (εs,s + εs,−s). (9)

The contributions to these commutators from the Zeeman
term in the Hamiltonian is straightforward to evaluate:

〈〈 [HZ , cns(0
+)] c†

ns] 〉〉 = sν̄sλz, (10a)

〈〈 c†
ns[HZ , cns(0

−)]] 〉〉 = −sνsλz. (10b)

Inserting Eqs. (8), (9), and (10) into Eq. (6), we find that

iĠs(0
+) = 2i

[
εs,s + εs,−s − νsε0 + s

2
ν̄sλz

]
, (11a)

iĠs(0
−) = 2i

[
εs,s + εs,−s − s

2
νsλz

]
. (11b)

The left-hand side of Eq. (11) can be related to the TDOSs
using the spectral representation of the Green’s function:

Gs(ε) =
∫ ∞

−∞
dt Gs(t ) eiεt

=
∫ ∞

μ

dε′ A+
s (ε′)

ε − ε′ + iη
+

∫ μ

−∞
dε′ A−

s (ε′)
ε − ε′ − iη

.

(12)

Since

iĠs(t ) =
∫ ∞

−∞

dε

2π
ε Gs(ε) e−iεt , (13)

first moment sum rules follow from Eqs. (11), (12), and (13):

M1,+
s =

∫ ∞

μ

εA+
s (ε) dε

= −2εs,s − 2εs,−s + 2νsε0 − sν̄sλz, (14a)

M1,−
s =

∫ μ

−∞
εA−

s (ε) dε

= 2εs,s + 2εs,−s − sνsλz. (14b)

In contrast to the spinless case, the first-order moment sum
rules for the spinful case depend on a partitioning of ground-
state energy contributions based on spin.

Because of the long range of the Coulomb interaction
between electrons, the electrostatic energy contribution to the
electron energies above are infinite. For an isolated uniform
density this contribution to the energy can be easily accounted
for by taking the zero of energy at −eϕes, where ϕes is the
electrostatic potential evaluated in the layer contributed by
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both electrons and neutralizing positive charges, which are in
practice normally located on gates. The energies are then un-
derstood to exclude the mean-field electrostatic contribution.
To interpret tunneling experiments between different layers,
we have to be careful to keep track of how we choose their
zeros of energy. To relate to tunneling experiments, the most
convenient choice is to choose the zero of energy at the local
chemical potential of each layer. We therefore defined an
alternate set of moment sum rules for the spectral functions
defined in this way:

M̃0,+
s =

∫ ∞

0
dε Ã+

s (ε) = ν̄s, (15a)

M̃0,−
s =

∫ 0

−∞
dε Ã−

s (ε) = νs, (15b)

and

M̃1,+
s =

∫ ∞

0
εÃ+

s (ε) dε =
∫ ∞

μ

(ε − μ)A+
s (ε) dε

= M1,+
s − μν̄s, (16a)

M̃1,−
s =

∫ 0

−∞
εÃ−

s (ε) dε =
∫ μ

−∞
(ε − μ)A−

s (ε) dε

= M1,−
s − μνs. (16b)

We see that while the zeroth-order sum rules are unchanged
by a shift in the zero of energy, the first-order sum rules
for the spectral functions measured from chemical potential
have an additional correction, which has not been considered
in earlier work [26]. Since the tunneling I-V peaks are re-
lated to differences between moment ratios (see below) the
chemical potential terms play a role only when the chemical
potentials of the layers are different, either because the states
are at different filling factors or because they have different
electrostatic potentials. For tunneling between identical states
the results obtained by Haussmann et al. [26] remain valid.
As we emphasize below, however, the chemical potential
corrections are important for tunneling between states with
densities slightly on opposite sides of incompressible filling
factors, which should not be considered identical.

We now define an effective spin-dependent gap by calcu-
lating the difference between the average energy of electrons
added to the system and electrons removed from the system.
This gap is intended for comparison with the voltage bias at
peak current in the bilayer tunneling experiments:

�s = M̃1,+
s

M̃0,+
s

∣∣∣∣
t

− M̃1,−
s

M̃0,−
s

∣∣∣∣
b

= 2ε0
νt

s

ν̄t
s

− 2

νb
s

(
εb

s,s + εb
s,−s

) − 2

ν̄t
s

(
εt

s,s + εt
s,−s

)
+ (μb − μt ). (17)

The indices t, b above stand for top and bottom layer, and
layer b is assumed to have a higher chemical potential. This
assumption allows us to replace the ± indices by t and b
indices, keeping in mind that the electron addition spectral
function is always associated with top layer and electron re-
moval with the bottom layer. In our interpretation, I-V curves
with two peaks are strongly suggestive of spin-dependent en-
ergy gaps �s. A more informative expression for the gap can

be obtained by separating the total interaction energy of the
two-dimensional electron gas into exchange and correlation
contributions using

εs′,s = δs′,sν
2
s ε0 + εc

s′,s. (18)

The first term on the right-hand side of Eq. (18) is the
interaction average energy of all states in the single-Landau-
level Hilbert space and is obtained when single-particle states
in the lowest-Landau-level Hilbert space are occupied ran-
domly, which is negative in the presence of a neutralizing
background simply because of electron-avoidance due to
the Pauli exclusion principle. The correlation energy εc

s′,s is
particle-hole symmetric in the lowest-Landau-level Hilbert
space and represents the additional energy gained when par-
ticles avoid interactions to the maximum degree allowed
by the Hilbert space constraint. For the fully spin-polarized
Laughlin states at ν = 1/3, for example, the exchange energy
per flux is −0.07 e2/κ�, whereas the correlation energy per
flux is −0.067 e2/κ� [28]. The particle-hole counterpart of
this state in the n = 0 Hilbert space has ν = 5/3 and using
Eq. (18) along with the interpolation from Fano et al. [28],
the exchange energy per flux is −0.905 e2/κ�, but the same
correlation energy. When expressed in terms of correlation
energies the spin-dependent gap has the form

�s = 2ε0
(
νt

s − νb
s

) + (μb − μt )

− 2

νb
s

(
εcb

s,s + εcb
s,−s

) − 2

ν̄t
s

(
εct

s,s + εct
s,−s

)
. (19)

The first term on the right-hand side of Eq. (19) is the
difference of the exchange self-energies of the two layers.
Note that this term cancels the exchange contribution to the
chemical potential difference between layers, the second term
in Eq. (19). It follows that the gap vanishes when correlations
are neglected. This is consistent with the fact that when
interactions are treated at the Hartree-Fock level, the TDOSs
are δ-functions in energy that are pinned to the chemical
potential.

Having established separate sum rules for the electron ad-
dition and electron removal contributions to the spin-resolved
spectral functions, we now write down corresponding tunnel-
ing currents sum rules:

P0
s =

∫ ∞

0
Is(ε) dε = I0

∫ ∞

0
Ãt

s(ε) dε

∫ 0

−∞
Ãb

s (ε) dε

= I0ν̄
t
sν

b
s (20)

and

P1
s =

∫ ∞

0
ε Is(ε) dε

= P0
s �s. (21)

The second line of Eq. (21) is valid when interlayer in-
teractions are negligible. Below we assume that interlayer
interaction effects are weak and that any excitonic shifts they
yield in the weak interaction limit have been corrected for
before our sum rules are applied. Note that the ratio of first
and zeroth-order moment of the spin-resolved current is equal
to the spin-dependent gap defined in Eq. (17).
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III. SUM RULES AND CORRELATION ENERGIES

In this section we illustrate how our sum rules can shed
light on spin-dependent correlations by using them to in-
terpret I-V data obtained in tunneling studies of partially
spin-polarized FQH states and the role the correction due
to chemical potential difference. We separately discuss the
compressible case of ν = 1/2 and ν = 3/2 from I-V curves
obtained by Eisenstein et al. [17] in thin quantum well samples
and a general incompressible case. As we will discuss, the
extraction of spin information from current data depends on
curve-fitting that has some uncertainty. Nevertheless, the con-
clusions we reach are sensible and interesting. In the following
section we discuss additional measurements that could pro-
vide more reliable spin-dependent correlation energies partial
filling factors.

A. Tunneling at compressible filling factors

In the limit of negligible Landau-level mixing, the tunnel-
ing I-V ’s at ν = 1/2 and ν = 3/2 are required to be identical
by particle-hole symmetry within the spinful lowest orbital
LL Hilbert space. Experiment provides clear evidence of
particle-hole symmetry breaking that is evident, for example,
in the much larger [7,8,17] critical Zeeman energy at which
spin-polarization becomes complete in the ν = 3/2 case. The
importance of Landau-level mixing at a given carrier density
and filling factor is not universal, but depends on sample
thickness [8] among other details. Below we assume that
all LL mixing effects can be approximated by changes in
the effective interactions between electrons [29] so that our
sum rules apply. Our analysis also assumes weak interlayer
interactions as mentioned previously.

The double-peak structure of the ν = 3/2 I-V shown curve
shown in Fig. 1, suggests that the majority and minority spin

FIG. 1. Three-parameter fits (solid line) to the experimental I-V
data in Ref. [17] assuming that the contributions from each spin-
component can be approximated by a Gaussian specified by a
peak voltage, a strength and a width. The dashed curves show the
spin resolution of the fit. (I ∝ ∑

s exp(−(V − �s )2/2σ 2
s ) Voltages

are expressed in energy units. Gaussian currents correspond to
Gaussian electron removal and electron addition spectral function
contributions provided that the spectral weight at the Fermi level is
negligible. We find that for ν = 3/2 partial fillings are ν↑ = 0.818
and ν↓ = 0.682, while for ν = 1/2 partial fillings are ν↑ = 0.35 and
ν↓ = 0.15.

electrons both make substantial contributions to the tunneling
current and the difference between electron addition and re-
moval energies is spin-dependent. If the electron addition and
removal contributions to the spin-resolved spectral functions
can be approximated by Gaussians, the I-V curve is a con-
volution [Eq. (2)] of Gaussians, and therefore also Gaussian.
The experimental I-V curve is not strictly Gaussian of course,
since it must vanish at zero bias voltage and is known to
be strong suppressed at low bias due to the Coulomb gap
effect [11,18,20] and skewed at high bias, possibly due to
the influence of disorder. Although the Coulomb gap at low
bias has some very interesting [30,31] features also seen in
experiment [11], the sum-rule moments on which we focus
are dominated by the behavior of the I-V curve near its peak,
and are largely uninfluenced by low bias behavior. We attempt
to extract physics from the I-V curves by fitting them to the
equation

I (V ) = I0

∑
s

νsν̄s√
2πσs

exp
[ − (V − �s)2/2σ 2

s

]
. (22)

Here I0 is not normally known accurately. The factors to ν̄s and
νs in Eq. (22) are motivated by the zeroth-order sum rules, and
the peaks for the individual Gaussians are associated with the
spin-dependent gaps. For ν = 3/2 good fits can be obtained
by setting �s to the two peak biases and, and fixing the σs

values to describe the two peak widths. Last, the relative
peak height is adjusted to determine the spin-dependent partial
filling factors [see Eq. (B3) in Appendix B]. For ν = 1/2
fitting, a single Gaussian associated with majority spin is
first assigned with the bias at the peak current. Then σ↑ is
determined by peak width toward the lower bias side of the
peak current. Last, another relatively small Gaussian is added
at higher bias to match the skewness in the experimental data
(See the Appendix B for more detail on the fitting procedures).
Here and subsequently we use ↑ and ↓ to denote majority and
minority spins, respectively.

For ν = 3/2, we conclude that the partial filling factors are
ν↑ = 0.818 and ν↓ = 0.682, implying about 9% polarization,
compared to the 33% maximal spin polarization at this filling
factor. ν = 1/2 does not show a clear double peak structure,
although it is expected to be partially spin-polarized [11], and
the spin-decomposition is less certain. We associate the main
peak with the majority spin, and associate the skewness at
higher bias with a weak minority spin contribution. In our fit
ν↑ ∼ 0.35 and ν↓ ∼ 0.15 giving about 40% polarization.

From the spin-dependent gaps, spin-dependent correlation
energies can be estimated using Eq. (19). We conclude that

εc
↑↑ + εc

↑↓ ∼ −0.017e2/κ�

εc
↓↓ + εc

↑↓ ∼ −0.046e2/κ�

}
ν = 3/2, (23a)

εc
↑↑ + εc

↑↓ ∼ −0.037e2/κ�

εc
↓↓ + εc

↑↓ ∼ −0.033e2/κ�

}
ν = 1/2. (23b)

Here energies were converted into the standard e2/κ� units of
fractional quantum Hall systems using the dielectric constant
κ = 12.9 of GaAs and the magnetic field at which these
experiments were performed. The left hand sides of these
equations can be viewed as total correlation energies of elec-
trons of a given spin due to interactions with other electrons
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FIG. 2. Schematic of tunneling between two quantum wells that are close to incompressible FQH filling factors. The blue arrows represent
direction of electron flow. (a) When both layers are on the same side of the incompressible filling factor the spectral functions line up in
equilibrium. The tunneling I-V has a hard gap equal to the chemical potential gap Eg for both signs of bias. (b) When the equilibrium densities
in the two layers are on opposite sides of an incompressible value, the spectral functions are offset by Eg in equilibrium. The offsets shift the
hard transport gaps by ±Eg depending on the sign of the bias voltage to 0 and 2Eg. For one sign of bias, there is negligible gap, while for the
other sign of bias, the current is suppressed for biases up to 2Eg.

of the same spin and electrons of the opposite spin: εc
s ≡

εc
s,s + εc

s,−s. Note that there is no exchange energy contribution
to the gap in this case because the filling factors on opposite
sides of the tunnel barrier are equal. As expected the total
correlations energies are similar in the two cases because the
mobile electron carriers at ν = 1/2 have the same density as
the mobile hole carriers at ν = 3/2. For ν = 3/2 minority
spins dominate the correlation energy because they have a
higher hole density, whereas for the more weakly polarized
ν = 1/2 state the majority spins have a larger correlation
energy as expected. Although the sum rules do provide an
estimate for the difference between the correlation energy
contributed by interactions between majority and minority
spins, the determination remains somewhat uncertain due to
the vagaries of the fitting procedure. In the next section we
explain how new types of tunneling measurements could be
used to determine these quantities uniquely.

B. Tunneling at incompressible filling factors

The dependence of the tunneling I-V on density near in-
compressible filling factors can be used to extract estimates of
the chemical potential jumps. To illustrate this point, consider
tunneling between layers that are close to the same filling
factor,: ν = νi ± δν. Here νi denotes some incompressible
FQH filling factor. When the layers are both slightly below
or slightly above the incompressible filling νi, tunneling can
begin at bias voltage magnitudes roughly equal to the chem-
ical potential gap Eg for either bias voltage sign, as shown
in Fig. 2(a). Correlation effects can of course substantially
suppress tunneling current even above this bias voltage mag-
nitude if Eg is small compared to the spectral function gap
�. When the filling factors in the two layers are on opposite
sides of the incompressible filling factor the tunneling curve
is not an odd function of bias voltage, as shown in Fig. 2(b).

The chemical potential jump upon crossing the gap shifts the
tunneling I-V by Eg in opposite directions for opposite signs
of bias voltage. These shifts allow the chemical potential gaps
to be measured by performing a tunneling experiment, even
though contributions to the spectral function at energies of
the order of transport gap are very small and not directly
measurable in fractional quantum Hall systems because of
their strong electronic correlations.

IV. FILLED LANDAU LEVELS AS SPIN PROBES

As we have explained, 2D to 2D tunneling experiments
are sensitive probes of the ground-state correlation energies of
FQH states and reveal important details about the nature of the
state. In the nonlinear tunneling I-V curves, a strong suppres-
sion appears near small bias voltages V , which is a common
characteristic of strongly correlated electron states sometimes
referred to as the Coulomb gap. The energy required to add an
electron is on average larger than the energy gained by remov-
ing an electron by a finite value independent of whether or not
the system is incompressible, i.e., independent of whether or
not it has a strict gap for the lowest energy charged excitations.

In this section we explain how the Slater-determinant
many-body ground states of fully spin-polarized ν = 1 states
and unpolarized ν = 2 states can be used together as a very
specific tunnel-probe of the spin-dependent correlations in
a nontrivial many-body state. When the probe layer is in a
ν = 1 state, 2D to 2D tunneling at temperature T = 0 involves
opposite spins for opposite directions of current flow, whereas
when the probe layer is in a ν = 2 state 2D to 2D tunneling
involves both spins for current flow away from the probe
layer, and is completely suppressed for the opposite bias.
The shared property of these two states that is responsible for
their simplicity and for their effectiveness as tunneling probes
is that they are single Slater determinant states with no
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correlations. With ν = 1 and ν = 2 as probes, we can
directly use the sum rules obtained above to estimate
correlation energies by performing the series of measurements
enumerated below. This procedure is applicable for any target
FQH state. A similar bias controlled spin selective tunneling
technique was effectively employed some time ago to study
spin polarization in ferromagnets [32] by taking advantage
of spin-splitting of the BCS density-of-states peak in a
superconductor.

We remark that the use of filled Landau-level integer
quantum Hall states as tunnel probes has potential limitations
[21,33] because of the high in-plane resistivities at these
filling factors. Typically, the tunnel current enters the 2DES
flowing perpendicular to the plane through a tunnel barrier.
The measurement of a steady state current then requires it
to have a path to exit the 2DES. If the two contacts are not
perfectly aligned in the perpendicular direction, the current
needs to flow in-plane to drain out to a distant contact. If the
in-plane conductivity of the device is small, the current cannot
flow out through the plane of the 2DES. Time-domain capac-
itance spectroscopy [21,33] provides a potential way around
this limitation by abandoning steady-state measurement and
instead using isolated electrodes to capacitively apply the
tunnel voltage and detect the tunneled electrons.

The chemical potentials, and zero temperature spectral
functions are known exactly at the probe filling factors. For
ν = 1 − δν,

μ = 2ε0, (24a)

Ã+
↓ (ε, ν = 1 − δν) = δ(ε + 2ε0), (24b)

Ã−
↑ (ε, ν = 1 − δν) = δ(ε), (24c)

at filling ν = 1 + δν,

μ = 0, (25a)

Ã+
↓ (ε, ν = 1 + δν) = δ(ε), (25b)

Ã−
↑ (ε, ν = 1 + δν) = δ(ε − 2ε0), (25c)

and at ν = 2 − δν filling,

μ = 2ε0, (26a)

Ã−
↓ (ε, ν = 2 − δν) = δ(ε), (26b)

Ã−
↑ (ε, ν = 2 − δν) = δ(ε). (26c)

Other partial spectral functions vanish identically. Notice the
different chemical potentials associated with these spectral
functions. Since ε0, the energy of filled Landau level, is
negative one can verify that the electron removal and addition
spectral functions are nonzero at negative and positive ener-
gies, respectively. Because spin-polarization is not complete
at finite temperatures, the ν = 1 spectral functions become
more complex [34] developing separate peaks associated with
minority spin removal and majority spin addition. Even with
these additional complications at finite temperature, the ν = 1
spectral functions that we propose using as probes are simpler
and better understood than those of other FQH states.

Consider then the following series of measurements.
(1) 2D to 2D tunneling experiments with one layer at

νprobe = 1 and the other layer at the filling factor being

(d)

(a)

= 1

(b) = 1

> 0

< 0

(c)
= 2

FIG. 3. Schematic of proposed 2D to 2D tunneling experiments,
(a) For a FQH state of interest at filling ν in one layer and a probe
state at νprobe = 1 in the other layer positive bias drives electron flow
of minority spin from layer ν to νprobe = 1, (b) At negative bias drives
majority spin electron flow from νprobe to ν. (c) When the probe layer
has ν = 2, both spins flow out of the probe layer for one sign of
bias and tunneling is suppressed for the other sign of bias when the
probe layer has a lower chemical potential. (d) When both layers are
at filling ν and the state is partially spin-polarized both minority and
majority spin electrons can contribute to tunneling for both signs of
bias.

studied [see Figs. 3(a) and 3(b)]: Since the νprobe = 1 state
is fully spin-polarized this measurement allows only minority
spin tunneling to the νprobe = 1 layer, and only majority spin
tunneling in the opposite direction. When the probe layer
equilibrates at filling ν = 1 − δν and is kept at a higher bias
only the down spin electrons flow from the target FQH layer
to the probe layer. From the I-V data with this sign of bias
(which we refer to as positive bias for convenience), one can
directly obtain the electron removal portion of the spectral
function of the target FQH layer using Eqs. (2) and (24):

Ã−
↓ (ν, eV ) = I (−2ε0/e − V )

I0
. (27)

Similarly, Ã+
↑ (ε) can then be determined by bias in the oppo-

site direction (negative bias):

Ã+
↑ (ν, eV ) = I (ε0/e)

I0
. (28)

It then follows from Eq. (20) that the spin-dependent filling
factors of the layer being studied satisfy

ν↓
ν↑

=
∫ ∞

0 dV I (V )∫ 0
−∞ dV I (V )

. (29)

Since the total filling factor ν = ν↑ + ν↓ of the probe layer is
normally known, Eq. (29) allows the spin-dependent partial
filling factors to be determined by this measurement along
with the proportionality constant I0. In addition one can obtain
four independent relations for the correlation energies relating
to the experimental data. From positive bias measurements we
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obtain (
P1

P0

)
V >0

= −2ε0ν↓ + μ − 2

ν↓
(εc

↓↓ + εc
↑↓), (30)

and from negative bias measurements,(
P1

P0

)
V <0

= 2ε0ν↑ − μ − 2

ν̄↑
(εc

↑↑ + εc
↑↓). (31)

The subscripts V > 0,V < 0 above distinguish the moments
obtained from positive or negative bias sector of I-V data. All
the quantities on the left-hand side of the above expressions
can be measured. Note that when the probe layer equilibrates
at ν = 1 + δν filling, the chemical potential shift across the
incompressibility produces a corresponding shift in the mo-
ments.

(2) Probe layer at νprobe = 2 with other layer at target ν:
In an ideal system, the tunneling I-V is strongly suppressed,
when νprobe is at the higher bias, since no states of either
spin are available as tunneling final states. Nonzero tunneling
occurs only when νprobe is at a lower bias. The zeroth moment
of the tunneling I (V ) satisfies,∑

s

P0
s = I0

∑
s

ν̄s, (32)

which provides independent check of I0. From the first mo-
ment of the tunneling I (V ), we obtain∑

s

P1
s = I0

∑
s

[
2ε0νsν̄s − μν̄s − 2

(
εc

s,s + εc
s,−s

)]
. (33)

(3) Finally, experiments can be performed with both layers
at target filling ν [Fig. 3(c)]. For some filling factors these
experiments already exist in the literature and a specific case
[11,17] was discussed in Sec. III. Since, the individual spin
currents are not resolved in I-V plot, these experiment cannot
accurately provide spin-resolved moments Pi

s in Eqs. (20) and
(21). Instead can only accurately provide the total moment
Pi

↑ + Pi
↓. We obtain expression for correlation energies relat-

ing to the experimental data,∑
s

P1
s = −2I0

∑
s

[
εc

s,s + εc
s,−s

]
. (34)

Equations (30), (31), and (33) determine the two corre-
lation energies εc

↑↑ + εc
↑↓ and εc

↓↓ + εc
↑↓, and the chemical

potentials μ of the target FQH state. We reemphasize that
above equations are exact in the limit of no interlayer cor-
relations. In the experiments with the probe layer at ν = 1
or ν = 2, the interlayer correlations are in general absent
even if the layers are close. Equation (34) obtained from
tunneling between FQH layer at same filling provides an extra
relation. If the interlayer correlations are negligible for the
tunneling between the same filling, the correlation energies
obtained from the experiment with probe layer should satisfy
Eq. (34). This serves as a consistency check. However, any
inconsistency between correlation energies obtained from first
two experiment in the protocol [i.e., Eqs. (30), (31), and
(33)] and the third experiment [i.e., Eq. (34)] implies the role
of interlayer correlations. This way the above protocole can
also qualitatively gauge the role of interlayer correlations. We
mention that, as described here, the spin-dependent correla-
tion energies can be determined, however, the contribution to

spin-dependent correlation energy from same spin and oppo-
site spin correlations, i.e., εc

s,s and εs,−s cannot be separated.

V. DISCUSSION

We have calculated spin-dependent spectral moment sum
rules for the TDOS in the FQH regime and related them to
the measurements of tunneling currents between FQH layers
maintained, in the general case, at different filling factors.
In so doing, we highlight the importance of equilibrium
chemical potential differences between the two layers and
the associated corrections to the sum rules. We show that
for an arbitrary FQH state at filling factor ν, 2D to 2D
tunneling measurements with partner probe layers at ν = 1
and ν = 2 can accurately determine spin-dependent partial
filling factors, chemical potentials, and correlation energies.
These proposed tunneling experiments along with our spin-
dependent sum rules can potentially reveal more about the role
of spin in general FQH states, which is in many cases not well
understood. These experiments require tunneling between two
FQH layers at different filling factors and therefore require in-
dependent gate control of the two layers, as already employed
in previous measurements of tunneling between ν = 5/2 and
ν = 7/2 [24].

The experiments by Eisenstein et al. [11,17] are likely in
the regime in which interlayer correlations have a quantitative
influence on the measured I-V curves. Recently, the signif-
icant role of interlayer excitonic effects was highlighted by
Zhang et al. [35] to explain the dependence of the peak in
the I-V curve on in-plane magnetic field. Chowdhury et al.
[31] have argued that the puzzling behavior of small bias
as function of in-plane magnetic is in the regime where the
charge spreading dynamics reflects the compressibility of
composite Fermions. In the limit of small layer separations the
bilayer system often forms an exciton condensate [36] state
in which interlayer interactions drive broken symmetries. Our
sum rules are exact in the opposite limit and should be ap-
plied to interpret experiments with large interlayer separations
between layers and therefore weak interlayer correlations.
Detectable tunneling currents can be achieved at larger layer
separations by reducing the height of the tunneling barrier.

Measurements of our sum rules determine the actual cor-
relation energies in real experimental systems, not the the-
oretically calculated correlation energies of idealized model
FQH states. The effects of finite-layers thickness and Landau-
level mixing, when it can be described in terms of modified
effective interactions, are accounted for in correlation energies
measured from tunneling I (V )’s in the way we describe. If
there are small corrections related to interlayer tunneling, such
that they are only additive contribution as shown in single
mode approximation [37], then they simply renormalize the
correlation energies obtained through our sum rules.
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APPENDIX A: CORRELATION ENERGIES AND
CHEMICAL POTENTIAL

Here we write down explicit expression for spin-dependent
correlation energies appearing in Eq. (8). The same spin
correlation energy is

εss = Ess(νs, ν−s)

Nφ

= 1

4

〈〈 ∑
n1,n2,n3

(
U n1,n

n2,n3
− U n,n1

n2,n3

)
(c†

n1sc
†
nscn2scn3s)

〉〉
. (A1)

While, the opposite spin correlation energy is

εs,−s = Es,−s(νs, ν−s)

Nφ

= 1

4

〈〈 ∑
n1,n2,n3

(
U n1,n

n2,n3
− U n,n1

n2,n3

)
(c†

n1,sc
†
n,−scn2,scn3,−s)

〉〉
.

(A2)

And, the expression for filled Landau-level energy per flux
is

ε0 = 1

2

∑
n,n′

(
U n,n′

n,n′ − U n,n′
n′,n

)
. (A3)

Similarly, the chemical potentials,

μ = ∂E

∂N
=

∑
σ,σ ′

∂

∂ν
εσ,σ ′ (ν↑, ν↓)

= ∂

∂ν

∑
σ

ν2
σ ε0 + εc

σσ + εc
σ,−σ , (A4)

in general, depend on filling of both spin.
APPENDIX B: DETAILS ON FITTING

In this section we comment on our fitting procedure. We
assume spectral functions can be approximated by a Gaussian.
In total there are four Gaussians corresponding to electron
addition and removal for both spins, which gives four fitting
parameters. Tuning four fitting parameters can lead to over-
fitting and not give unique best fit. So we systematically
reduce number of free parameters here to get best fit. First,
since I-V plots are convolutions Eq. (2), it reduces to three
free parameters, i.e., σs,�s, νs for each spin,

Is(V ) = I0νsν̄s√
2π

exp

(
− (V − �s)2

2σ 2
s

)
. (B1)

Here �s = μs,+ − μs,− and σs =
√

σ 2
s,+ + σ 2

s,− are obtained
by convolution to two Gaussians associated with spectral
functions. μs,i and σs,i are peak position and standard devi-
ation of spectral functions related to electron addition and
removal. We mention, μs,+, μs,−, σs,+, σs,− cannot be de-
termined separately from experiment. For ν = 3/2, since the
two peaks are well separated in I-V plot (Fig. 1), we first
choose �s at the bias corresponding to the two peak currents,
i.e., �↑ ∼ 2.15 mV, �↓ ∼ 3.62 mV. Once peak values are
adjusted, σs are found using full width of half maxima of
each Gaussian on the side away from the other peak, which
gives, σ↑ ∼ 0.56 mV, σ↓ ∼ 0.64 mV. At last, the relative
peak height can be used to determine the factor in front of
spin-dependent I-V curve to give

I↑(V = 2.15 mV) + I↓(V = 2.15 mV)

I↑(V = 3.62 mV) + I↓(V = 3.62 mV)
= 0.238

0.275
. (B2)

Assuming ν↑ = 0.75 + k and ν↓ = 0.75 − k, the above equa-
tion reads as

1.786 (−k2 − 0.5k + 0.1875) + 0.11 (−k2 + 0.5k + 0.1875)

0.057 (−k2 − 0.5k + 0.1875) + 1.5625 (−k2 + 0.5k + 0.1875)
= 0.865. (B3)

Which, solving for k, gives k ∼ 0.061. Giving ν↑ ∼ 0.81 and
ν↓ ∼ 0.69. We can write down the spin-resolved fit equation
for tunneling current, and the fit equation,

I↑(V ) = 0.219 exp
( − [V −2.15]2

0.6262

)
,

I↓(V ) = 0.267 exp
( − [V −3.62]2

0.8192

)
.

}
ν = 3/2.

This procedure gives fairly good fit to the experimental I-V
curve. Notice that the above fitting equation is not exactly the
fit equation used in Fig. 1 but still is very close to it. Starting
from the above fit, we tune parameters slightly to make even
better fit of Fig. 1, which is given by

I↑(V ) = 0.22 exp
( − [V −2.05]2

0.57

)
,

I↓(V ) = 0.27 exp
( − [V −3.66]2

0.83

)
.

}
ν = 3/2.

The above fit gives k ∼ 0.068, with partial spin filling ν↑ =
0.818, ν↓ = 0.682. Thus, the fitting procedure is very accu-
rate for ν = 3/2 case.

For ν = 1/2, if the majority spin filling is significantly
large compared to the minority spin filling, the majority spin
part gives most contribution to I-V curve. This allows us to
approximate no contribution from minority spin electron to
the I-V plot at bias smaller than the peak current bias. Follow-
ing this argument, we first fix the majority spin contribution
by matching the peak associated with it with the full I-V peak
and its broadening to the broadening toward the low bias side
of I-V . This fixes the majority spin contribution to I-V as

I↑(V ) = 0.52 exp

[
− (V − 2.81)2

1.75

]
. (B4)

Now, we subtract the area under I↑-V curve from experimental
I-V curve, to find the total contribution (amplitude) due to
minority spin electrons. This leads to the position of the peak
maxima and the peak width for the minority spin current being
the only adjustable parameters, which can be tuned to find the
best overall fit.
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