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We study high-temperature magnetization transport in a many-body spin-1/2 chain with on-site quasiperiodic
potential governed by the Fibonacci rule. In the absence of interactions it is known that the system is critical with
the transport described by a continuously varying dynamical exponent (from ballistic to localized) as a function
of the on-site potential strength. Upon introducing weak interactions, we find that an anomalous noninteracting
dynamical exponent becomes diffusive for any potential strength. This is borne out by a boundary-driven
Lindblad dynamics as well as unitary dynamics, with agreeing diffusion constants. This must be contrasted to a
random potential where transport is subdiffusive at such small interactions. Mean-field treatment of the dynamics
for small U always slows down the noninteracting dynamics to subdiffusion, and is therefore unable to describe
diffusion in an interacting quasiperiodic system. Finally, briefly exploring larger interactions we find a regime of
interaction-induced subdiffusive dynamics, despite the on-site potential itself having no “rare regions.”
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I. INTRODUCTION

How are transport and localization properties altered when
correlations are introduced to local fields, both in free
fermionic and, particularly, in interacting systems? This is
the question we address in this paper, focusing on a class
of quasiperiodic systems. Indeed, in experimental cold atom
systems, quasiperiodic systems are more easily realized and
have been routinely investigated to address both these aspects
[1-5].

A textbook one-dimensional (1D) system that is able to
describe many gross features of real materials is the tight-
binding model [6], where particles (e.g., electrons) can hop
only between nearest-neighbor lattice sites. An on-site poten-
tial can drastically influence the nature of eigenstates, and as
a consequence the dynamics of the system: an uncorrelated
potential can turn extended states in the clean system to
localized states [7], whereas correlations in the potential can
either turn the states to critical (like in the Fibonacci model)
[8-11] or induce a field-strength induced transition between
extended and localized states (Aubry-Andre-Harper, or AAH,
model) [12,13]. An important question is what happens to
these states and phases, be it in a random or a quasiperiodic
potential, in the presence of interactions. In particular, can
localization survive [14], and, if so, under which conditions?
And if not, how do the erstwhile extended states now transport
conserved quantities?

The persistence of localization in the presence of
interactions—many-body localization (MBL)—is considered
well established in a range of systems [15-17]. There is also
mounting evidence that, in a paradigmatic XXZ model with
random fields [18], prior to the MBL transition slow subdiffu-
sive magnetization dynamics sets in and continuously slows
down to a complete stoppage of transport as the transition
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point is crossed [19-27]. Note that extracting asymptotics of
transport in the ergodic phase can be difficult [28-30], see also
our comments later on in the text. What is less established are
the critical properties of the transition itself, like its universal-
ity class [31]. For instance, presently employed renormaliza-
tion group schemes [32-34] of merging fully ergodic and fully
localized blocks might predict different critical properties of
the transition if the blocks are allowed to be subthermal;
the presence of such blocks can potentially change or slow
down the “avalanche” instabilities of localized regions against
nonlocalized bubbles [35-37]. This is because in a subthermal
block one has a scaling relation x ~ t# with B < % between
length and time, meaning that the thermalization time scales
at least as ~L!/# i.e., it is very long for small 8.

In particular, by considering quasiperiodic systems we
may test the heuristic explanation for subdiffusion as aris-
ing from “rare regions” [19,38,39]—regions of abnormally
high potential gradients—that in 1D systems can function
as bottlenecks to transport, resulting in subdiffusion even in
the thermal phase. In the absence of rare regions (like in
quasiperiodic systems), however, one therefore expects only
diffusive transport all the way to the MBL transition. Indeed
for the interacting AAH model [40-53], this was to a certain
extent observed [48,50], see however, e.g., Refs. [5,53]. In
particular, the analysis of transport for small interactions U
reveals [50] that the transition at U = 0 is discontinuous,
and that there is no localized phase around a noninteracting
transition at . = 2 (as opposed to previous continuity-based
suggested phase diagrams at small U [3,54]).

Such qualitatively different nature of the ergodic phase
might also affect the universality class of the MBL transition
in quasiperiodic systems; indeed the presence of multiple
MBL universality classes has been suggested from numerical
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FIG. 1. Phase diagram of the Fibonacci model for small U: for
h = 0 one has ballistic transport (vertical red bar along the y axis), in
the noninteracting limit U = 0 one goes continuously from ballistic
for & = 0 to localized at 4 — oo (horizontal rainbow bar along the
x axis). For nonzero (small) U one has diffusion (green), except
possibly at larger U (we have one subdiffusive data point at U = 0.5
and h = 2). Crosses mark parameter values for which we gathered
data, see Table I.

evidence [45,55]. There is also evidence that the structure
of 1-bits deep in the MBL phase are fundamentally changed
due to certain types of quasiperiodicity [56]; this implies that
procedures to extract them [57-59] will likely also need to be
modified to reliably extract the new structure of 1-bits.

Motivated by the above considerations we address the
question of transport in the Fibonacci quasiperiodic model.
There are several reasons rendering this an interesting under-
taking. First, there is a general question of how correlations,
e.g., random vs quasiperiodic potential, influence transport
and MBL. However, also within quasiperiodic systems the
Fibonacci model offers several important advantages going
beyond the much more commonly studied AAH model.
The noninteracting model is critical, showing eigensystem
(multi)fractality [8-11,60], for any potential amplitude and
therefore serves as one of the simplest deterministic systems
with anomalous transport [61] in a closed and open setting
[62]. We note that (multi)fractality is typical at Anderson
transitions [63]. The natural question that arises is: how
much do these anomalous transport properties that arise from
eigenspectrum fractality (and not a priori rare regions) persist
upon introducing weak interactions to the system? At low
temperatures the interacting model has been studied using
bosonization, finding [64,65] an anomalous transport with the
scaling exponent depending on the interaction strength and
the position of Fermi level. On the other hand, at high temper-
atures, studied in the present paper, and at strong interaction,
Ref. [56] interestingly found signs of nondiffusive transport
and an MBL transition despite the noninteracting problem
having no localized phase.

In the present paper we study transport in the interacting Fi-
bonacci model for small interactions at high temperature and

half-filling (zero magnetization). The phase diagram obtained
is shown in Fig. 1. For small interactions U and available po-
tential strengths 7 < 3 we always find diffusion. Anomalous
transport discontinuously breaks down to diffusion for any
nonzero U. This is similar as in the AAH model [50], with
some differences though. One is for instance that at larger
potential A transport is qualitatively faster in the Fibonacci
model than in the AAH model. At larger U = 0.5 and h = 2
we, perhaps surprisingly, also observe subdiffusion. This is
at variance with a rare-region explanation of subdiffusion
but roughly in line with Ref. [56] where certain similarity is
observed between the AAH and Fibonacci models at large
U. Considering a common discrepancy between different
transport studies, special care is taken using large systems
L < 1000 and times 7 < 1000 to show convergence of two
different methods to the same transport. We also show that a
mean-field treatment, which would argue for a dephasinglike
explanation of diffusion, is in fact subdiffusive and therefore
fails to correctly describe dynamics in the Fibonacci model at
small U.

II. NONINTERACTING FIBONACCI MODEL

The noninteracting Fibonacci model is described by the
Hamiltonian

~
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with a Fibonacci sequence potential iy = 2hV (kg) — h, where
g= («/g — 1)/2 and periodic V (x) := [x + g] — [x] with [x]
being an integer part of x. Beginning of the sequence is h; =
h(+1, =1, 4+1,+1, =1, +1, =1, 41, ...).

To study transport we initialize the system with a delta
function at the central site and compute the mean-squared
displacement

AP =Y [x— L+ D2PIRlyO), @

where

[V (1)) = exp(—itH)[y(0)) 3

is the unitarily evolved initial state with the Fibonacci Hamil-
tonian. We employ a dynamical fit Ax?> ~ ¢*# in order to
discern the rate of transport: 8 = 1 implies ballistic transport,
B = 0 signifies no transport, and 8 = 1/2 denotes diffusive
transport. This is in line with the approach of earlier works
[61,62,66] but is undertaken here more systematically (larger
system sizes, as well as inclusion of comparison of finite-
size effects). Second, we also consider a new set of initial
conditions such that the system is far from linear response.
In particular, the system is initialized with a fully polarized
domain wall (DW) pure state

[¥(0)) = IDW) =1 --- 1] - {), “

where up/down arrows indicates spins initialized in up or
down direction in z direction. Here the dynamical rate is
quantified by measuring the change in total spin on either half
of the chain:

AZ ~ P, (3)
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We will find that Spw = B, therefore we will use only one
symbol from hereon. Note that differently from Ref. [61]
we do not consider an inversion symmetric potential as a
special, and only, sample: we have checked that for dynamics
on this sample the exponent only slightly increases by about
5% compared to the values we have presented. Indeed the
inversion symmetric potential for the AAH model too is
special [62] except that there it instead gives a slightly smaller
dynamical exponent than for the case of averaged data or a
generic sample.

Let us first summarize the known physics of the model.
In the Fibonacci model the potential is binary, with only two
values +h, with a quasiperiodic spatial structure following
a Fibonacci sequence hy = h[2V (kg) — 1], where g = («/_ —
1)/2 and periodic V (x) := [x + g] — [x] with [x] being an in-
teger part of x. Compared to the AAH model the potential has
a broad momentum spectrum [67] (instead of a single Fourier
component) and is therefore at the other extreme end [56]
of the Fourier spectrum broadness (it has as slowly decaying
spectrum as possible, compared to as sharply localized one
as possible for the AAH model). One of the consequences
is that the noninteracting version is critical [8—11] for any 4.
The noninteracting Fibonacci model displays a full spectrum
of transport scaling exponents [61,62], going from ballistic
B = 1forh = 0tolocalized 8 — 0forh — oo. By taking the
interacting version we can therefore study, besides the above
mentioned effects that a quasiperiodic potential has, also
the question of stability against interactions of an arbitrary
anomalous transport.

Let us now explain the technicalities of the model. The
Fibonacci sequence required for the Fibonacci model may
also be constructed from two symbols F, S by the substi-

tution rule (g) — (i (1))(1;). The transformation matrix has

the eigenvalues g, 1/g. Repeated application of the above rule
gives the series of Fibonacci sequences:

{F,FS,FSF,FSFFS, FSFFSFSF, ...}. 6)

Note that the length of each sequence is a Fibonacci num-
ber: 1,2,3,5,8..., and that, by construction, any sequence
always starts with the sequence of any smaller one. A given
cut of length L of any (sufficiently long) Fibonacci sequence
determines one sample or configuration of the quasiperiodic
chain of length L, where the quasidisorder potential /; on site
k takes the value £/ depending on whether the symbol on that
site is F or §, respectively; note that the full long sequence is
of Fibonacci length but that need not be true for L, the system
size under study. Moreover, unlike disordered systems where
infinite samples exist even for finite systems, here only finite
number of samples exist: for instance, on a three-site chain,
the only allowed configurations are FSF, FFS,SFF,SFS,
i.e., L 4+ 1 configurations in general. However, note that the
second and third configurations are reflections of each other,
reducing the effective number of independent configurations
to half of that.

In Fig. 2 we display the spread of an initial wave packet
that is localized at the chain center and the transfer of
magnetization across the center of the chain when it is initial-
ized to a domain-wall state (left half of chain has magnetiza-
tion —1/2, right half has magnetization +1/2 at time t = 0).
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FIG. 2. Top: Dynamics of spreading of localized wave packet
(dashed lines) and half-chain domain wall (blue squares) on L =
8001, 8000 chain, respectively, for various field strengths /4, increas-
ing from top to bottom for a single sample; the crosses indicate data
for L = 2001 system averaged over 50 samples. As / increases, the
dynamics gets slower and is anomalous for any nonzero 4. Moreover
the log-periodic oscillations also increases as /4 is increased. Only
for infinite £ is the chain localized. Note that the domain-wall data
have been scaled by arbitrary constants O(1) in order to highlight the
equality of dynamical exponents more clearly. Bottom: Dynamical
exponent extracted from all such data in top panel, both for localized
wave packet (WP) and half-chain domain-wall (DW) initial condi-
tions; open symbols are from L = 8000, 8001 single-sample data,
whereas closed symbols are from L = 2000, 2001 averaged data.
it shows a smooth analytic variation with 4, interpolating between
ballistic 8 = 1 and localization 8 = 0.

We find that the dynamics is identical (top panel), implying
equality of dynamical exponents (bottom panel) for these two
initial states. As has been found previously for localized wave
packet spreading [61,62,66] there is a continuous decay of the
exponent 8 with the field strength. Additionally, we find here
that the transport rate is robust and remains the same even
for bulk excitations such as a domain-wall inhomogeneity in
the system. For 4 = 0.6, 1.0, 2.0, and 3.0, which we study in
the remainder of the paper, we find 8 = 0.75, 0.61, 0.46, and
0.39, respectively. Diffusive g = 1/2 is in particular achieved
at hgie ~ 1.6.
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In the Appendix A we in addition show convergence with
system size, self-similar structure of a noninteracting v (¢),
and the effects of averaging over different potential instances.

III. INTERACTING FIBONACCI MODEL

The interacting version of the Fibonacci model is given by
including nearest-neighbor spin-spin interaction terms:

~
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with the same Fibonacci sequence for h;. We will use two
different settings to study transport, one will use an explicit
boundary driving that will cause the system to converge to
a time-independent nonequilibrium steady state (NESS), the
other will be looking at a unitary evolution of a particular
initial state. Both give consistent results with the same value of
diffusion constant. We shall first briefly describe both settings
and then focus on the results (Sec. II1 C).

A. Nonequilibrium steady state

The simplest way to describe a nonequilibrium setting
with an explicit driving that obeys all the rules of quantum
mechanics (preserving positive semidefiniteness of p) is via
the Lindblad [68,69] master equation,

dp/dt = ilp, H] + L% (p). ®)

There are two parts in the right-hand side generator: one is
the standard commutator that would, standing alone, gen-
erate unitary evolution, and the other is a so-called dis-
sipator £4% that effectively describes a bath. The dissipa-
tor is written in terms Lindblad operators L; as £%(p) =
i > ([Lkp, Lz] + [Lg, pL,I]). Lindblad operators that we use

are Ly = /T+ o, Ly = /T— o, at the left end and
Ly=JT— o, Ly =/T+ o, at the right end, o* =
(o* £107Y)/2. They represent magnetization reservoirs at in-
finite temperature and induce magnetization (spin) transport.
Namely, the driving parameter u essentially determines mag-
netization at the edges such that in long nonballistic systems
the boundary magnetization converges to (of) = w at the left
edge and to (o/) = —u at the right edge. We use a small
@ = 0.1 so that all our results are in a linear response regime.
Note that for u = 0 the steady state would be p o 1, i.e.,
an infinite temperature equilibrium state, and so small p will
results in a steady state that is at infinite temperature. Such a
driving induces only magnetization flow (energy flow is zero).
While justifying strong coupling that we use (||Lg|| ~ 1) on
microscopic grounds is hard [70] in the thermodynamic limit
(TDL) details of a boundary driving should not matter for
bulk physics. This can indeed be rigorously shown [71] for
diffusive systems.

After a long time a time-dependent solution p(t) of Eq. (8)
converges to a nonequilibrium steady state (NESS) p(¢) —
Poos Which is in our case unique. We find NESS p., by
evolving p(¢) using a time-dependent renormalization group
method (tDMRG) [72]. The method proceeds by writing
expansion coefficients of p(f) in a Pauli basis as a product of
matrices, a so-called matrix product operator (MPO) ansatz,

and then evolving it in time by Trotterization into small time
steps of length dt = 0.2 (we use a fourth order Trotter-Suzuki
decomposition). Our adaptation for nonunitary evolution is
described in Ref. [73]. Two parameters that determine the
required computational effort are the relaxation time needed
to converge to po, and the matrix product operator (MPO)
bond dimension yx. The relaxation time will increase with
system size L, and similarly increase when transport gets slow.
This makes the method work best for nonlocalized phases.
How the required x depends on physical properties is harder
to say in advance; we typically find that one needs larger
bonds for larger & and/or when one approaches a possible
subdiffusive transition. If one can afford to have bond sizes
of several hundred [74], and relaxation times ~103, this in
some cases allows to study system sizes up to L ~ 1000 sites
(see, e.g., Ref. [23]), making the method in that regime by far
the best one.

Once the NESS is obtained one can calculate the expecta-
tion values in the steady state. For the question of transport
the most important ones are the expectation value of local

magnetization s} = %okz and the associated spin current j,

1= (55l — st ©
which is, due to continuity equation, independent of the site
index k. Expectation value of s7 in the NESS goes (in the
TDL) from +u/2 to —u/2 across the chain so that for the
case of diffusion one has the Fick’s law

. I
=D —. 10
J NESS (10)

One can get diffusion constant D from the asymptotic slope of
j/m =< Dngss/L. If one has anomalous transport the current
would instead scale as

< —, (11)

with a scaling exponent y # 1. y > 1 signifies subdiffusion
while y < 1 would describe superdiffusion (y = 0 indicating
ballistic transport).

The whole machinery is illustrated in the top of Fig. 3.
We always calculate p, for several y, thereby checking the
convergence as well as getting an estimate for the error due
to finite x. In all plots we show data for the largest x,
or, if the estimated errors are larger than about ~1%, the
extrapolated data. For details on the convergence with x see
Appendix B. In Fig. 3(a) we can see that for small # and U and
small system sizes L profiles are not yet linear as one would
expect for a diffusive system. However for larger systems,
e.g., L = 377, the asymptotic regime is reached with a linear
magnetization profile. This is also reflected in the scaling of
current j with system size, Fig. 3(b). For too small systems
Jj(L) does not yet “feel” the full interacting dynamics and j(L)
falls with L in a slower superdiffusive fashion, being though
just a remnant of the superdiffusive noninteracting physics (at
h = 0.6). However, at larger L the true asymptotic transport is
reached with diffusive j ~ 1/L scaling.

B. Unitary evolution

Another way to probe transport is by looking at the spread-
ing on inhomogeneous initial states. For instance, starting
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FIG. 3. Top frames (a) and (b) demonstrate NESS physics for
U =0.2; (a) shows magnetization profiles while (b) shows the
current scaling, with the dashed line being the asymptotic diffu-
sive j/p = Dngss/L with Dygss = 1.85. Bottom frames (c¢) and
(d) are for the unitary evolution of a weakly polarized domain wall;
(c) shows profiles at two times (dashed red curves are for U = 0),
while (d) is the transferred magnetization from the left to the right
half of the chain (dashed black line fitting data for U = 0.2 is
diffusive /4Dyt /7 with Dy = 1.8). All figures use h = 0.6.

with an initial wave packet that has a nonstationary Gaussian
profile of magnetization one could look at how the width Ax
of the packet grows with time,

Ax ~ 1P, 12)

introducing a transport scaling exponent 8. If one has a single
scaling exponent then simple dimensional analysis gives a
relation between § of the unitary evolution and y of the NESS,
namely

1

B ST (13)
To assess the asymptotic transport one needs to simulate
evolution up to as long times as possible. For that one again
uses the tDMRG method on a matrix product ansatz. A
decisive quantity is how fast the “entanglement” grows with
time, or equivalently, how far in time one can go with a given
maximal x. While one could evolve a pure state, it turns out
that doing unitary evolution on an ensemble of states, that
is on a density operator p, can be (structurally) more stable,
allowing us to simulate longer times. A good choice of an
initial state for studying magnetization transport is a weakly

polarized domain wall [75],

L2 L
pO o [[(1+mof)® [] (1—mop). (14)
k=1 k=L/2+1

Transport type can then be assessed by, e.g., looking at how
magnetization transported about the midpoint of the chain
grows with time. That is,

I3 L/2
AZ:=m> — ZT‘@;(;)), AZ = tP. (15)

TABLEI. Values of the diffusion constant (and last-digit’s uncer-
tainty, e.g., 3.6, = 3.6 & 0.2) obtained from NESS simulations and
from unitary evolution of a weakly polarized domain wall (numbers
in square brackets). In the table we report the values of 4 - D, which
would be the diffusion constant if we would use Pauli operators, like
ogop, . instead of spin-1/2 ones, like s;s7, ;.

4Dxgss [4Dunit]

U h=0.6 h=1.0 h=2.0 h=3.0
0.05 3.615 0.234, 0.065.;
0.1 144, 2.75.5 [2.68.45] 0274, 0.070.5
02 744 [720] 2.03.4 [2.010] 0.244, [0.244,] 0.047.4
0.5 4.1y [4.0.0] 13145 subdiffusion

In case of diffusion (8 = %) magnetization profile will con-
verge to a shape given by the error function

k—L/2>

16
4Dunitt ( )

(okz(t)) = —m erf(

while the transferred magnetization will grow as

AZ 4D ypict
o= It 17)
m T

In all our simulations we use small m = 10~ meaning that
we are again in a linear response regime. An example of such
a simulation is shown in the bottom of Fig. 3. One obvious
observation from Fig. 3(d) is that the interacting case starts to
differ from a noninteracting one only after times larger than
~1/U. After that a further transient time is required to reach
the asymptotic transport. A similar conclusion can be reached
observing magnetization profiles in Fig. 3(c). At short t = 32
both interacting and noninteracting profiles look similar and
very “noisy” due to (noninteracting) multifractality. However,
at longer time r = 128 one can see that the interacting dynam-
ics slows down and the profile becomes much smoother—both
being manifestations of the asymptotic diffusive dynamics.

We again stress, see also, e.g., Ref. [23], that if the integra-
bility breaking perturbation is small, be it a small / or a small
U, large times (large systems in the NESS setting) are needed
in order to see the true transport type [76]. Ignoring that can
lead to incorrect results, an example being Ref. [77] where too
short times are used rendering most of their claims false [78].

C. Diffusion for small U

At small U and for a range of potential strengths & < 3
that we are able to reliably simulate we always find diffusive
magnetization transport (at high temperature and half-filling
that we study). The diffusion constant agrees between the
NESS and unitary evolutions, see Table I. Different meth-
ods aiming at the same physical quantity should of course
agree, but we note that empirically that is far from being an
established fact. For instance, for random potential different
publications often report even different transport types (see,
e.g., comparison in Fig. 1 of Ref. [79]). The agreement that
we find is therefore nontrivial and gives further weight to our
results. For the boundary driven Lindblad equation that we
use one can in fact derive a NESS version of Kubo formula
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FIG. 4. Unitary evolution of a weakly polarized domain wall for
the Fibonacci potential (black full curve, average over five potential
instances) and random binary potential (red dashed curve, average
over 20 random instances) for the same parameters h =1, U =
0.1, and L = 144. Transport in the quasiperiodic Fibonacci case is
diffusive (D, = 0.67), while it is subdiffusive for the random case.

and show rigorously [71] that if the dynamics is diffusive the
two settings give exactly the same diffusion constant D, with
a finite-size correction being of order ~1/L.

Obtaining diffusion for an arbitrarily small U is surprising.
Recall that in the free model (U = 0) the transport type
continuously varies with & and therefore an arbitrary nonin-
teracting B immediately breaks down to a diffusive g = 1/2
for nonzero U. We have to stress that this is very different
than for a random potential. There the breakdown happens
continuously, going from Anderson localization for U = 0
through a subdiffusive regime for small nonzero U. That is,
if instead of a Fibonacci sequence of potential values, for
which one has diffusion, one takes a random choice h; = £h
at each site, one instead gets subdiffusion, see Fig. 4. Long-
range correlations of the Fibonacci potential are crucial for
the observed diffusive transport. Such a discontinuous change
seems in fact to be a common property of quasiperiodic
potentials, it is for instance also observed [50] for a cosine
potential in the AAH model, where it could not be explained
by simple perturbation theory.

A simplistic picture could use Fermi’s golden rule on
perturbative interaction to argue for the diffusion. This would
predict the scattering rate due to small interaction to scale as
U2, which should be in turn reflected in the scaling of D for
small U. Simply using the scaling x ~ t# between space and
time would give the scattering length diverging as ~1/U?%
(note that we are neglecting any fractality of matrix elements,
which changes as a function of %). Using the scaling ansatz
[23] j ~ U~V f(LU?) for the NESS current, where the
scaling function must have the asymptotics f(x > 1) ~ 1/x
due to diffusion for large L, and f(x < 1) ~ 1/x¥ due to
an anomalous noninteracting scaling j ~ 1/LY for U — 0,
gives that the diffusion constant diverges as D ~ 1/U" with
v =28(1 —y). Using Eq. (13) one gets v =4(8 — %). In
Fig. 5(b) we can see that for small U diffusion constant
indeed diverges as D ~ 1/U" with the scaling exponent v
increasing for decreasing h, and being roughly consistent
with the relation v = 4(8 — %). To really confirm this relation
however more data would be required. For larger 4, e.g.,
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FIG. 5. Dependence of the diffusion constant on 4 (top) and U
(bottom). (a) At fixed U, the diffusion constant has a power-law
dependence on potential amplitude for the Fibonacci model (red
and green points), while it has an exponential dependence for the
Aubry-Andre-Harper (AAH) model that has a cosine potential (black
squares, data from Ref. [50]). Everything is plotted as a function
of potential variance, being o (h;) = h for the Fibonacci model and
o(hj) = h/\[2 for the AAH model. (b) For the Fibonacci model
diffusion constant scales as D ~ 1/U" for small U and fixed 4.

h > 2, we would presumably need still smaller U to see a clear
power-law dependence with U (with a negative v). Namely,
for potential amplitudes where the noninteracting case is
subdiffusive we observe a nonmonotonic dependence of D on
U, with a maximum being reached at a fairly small U ~ 0.1
(see Table I as well as Fig. 15). We would thus necessitate
very small U to reveal small-U behavior, in turn requiring
very large systems. As a function of & at fixed U [Fig. 5(a)]
one has a power-law dependence in the available range of 4,
D ~ 1/h%, with the power £ ~ 3.3 for U = 0.1 (and slightly
increasing for smaller U). This must be contrasted with the
AAH models where the dependence on # is exponential.

Comparing the cases of random, cosine-quasiperiodic, and
Fibonacci quasiperiodic potential one can say that transport is
the fastest in the Fibonacci model, then in the AAH, while it is
the slowest for random potential. All quasiperiodic potentials
are faster than random because of long-range correlations in
the potential (in a sense, a quasiperiodic potential is “almost”
periodic, in which case one would have ballistic transport).
That the Fibonacci is faster than the AAH can on the other
hand be ascribed to a broad momentum spectrum of the
potential [67].
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FIG. 6. Subdiffusive transport for U = 0.5 and & = 2. (a) NESS
setting and the Fibonacci model (blue squares, one sample, error
bars show the estimated error due to finite bond size x =~ 300), and
for comparison the case of random disorder with h; = &h (black
circles). Gray shaded region is a rough estimate of the variance
over realizations (obtained from only 2-3 samples). (b) Unitary
dynamics of a weakly polarized domain wall for the Fibonacci
model, again showing subdiffusion with 8 =~ 0.47 and a = 0.055,
being roughly consistent with y = 1.14 from (a). Average over four
Fibonacci sequences with L = 144 (there are no boundary effects for
the shown times), gray shading is the standard deviation, indicating
self-averaging for large ¢. The inset shows convergence of g with
x € [50, 500] for different fitting windows.

D. Large interaction

So far we have found only diffusive transport. An impor-
tant question is can one perhaps get a subdiffusive transport
at larger U? After all, one of the reasons why quasiperiodic
potential is interesting is to clarify the influence of rare regions
that are argued to be responsible for subdiffusion in random
potential [19,38,39], and, of course, also from a fundamental
desire to understand under which circumstances can one get
an anomalous transport.

Let us say right away that the question of larger U is very
important and demands a careful separate study—in this work
we predominantly focus on small interactions. Namely, at
larger U where one approaches a possible phase transition into
subdiffusion, numerics typically gets harder (first, relaxation
gets longer because the transport gets slower, and second, one
also typically needs fairly large ). Here we therefore report
only on a situation for two sets of parameters.

Data for U = 0.5 and & = 2 is shown in Fig. 6. Numerics
is quite demanding, for instance, despite using x = 300 in
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FIG. 7. Diffusive transport for U = 0.5and h = 1.

NESS simulations we could achieve only about 5% accuracy
in j for the largest L = 144. Data in Fig. 6(a) is best fitted by
j ~ 1/L"'* Even taking into account the mentioned ~ 5%
error we can with statistical significance say that the exponent
y is larger than 1 and one therefore has subdiffusion. Observe
also that for the same parameters, using random binary poten-
tial (i.e., just reordering locations of +#4 and —A potential from
the Fibonacci to a random one), results in much stronger sub-
diffusion. We remind that as far as localization is concerned,
a binary disorder potential behaves similarly [80,81] as the
more frequently studied one with a box distribution. Further
confidence that we are indeed seeing subdiffusion is provided
by unitary evolution of a weakly polarized domain wall shown
in Fig. 6(b). Here one again needs large x and one in particular
needs to increase x for larger times, similarly as in NESS
simulations where one has to use larger x for larger L if one
wants to keep the accuracy constant. Having too small x will
tend to push dynamics towards a (fake) diffusion, see, e.g.,
data for x = 50-100 in Fig. 6(b). Too large truncation due to
small x has a similar effects as classical noise, e.g., dephasing,
which will in the TDL always cause diffusion regardless of
whether one has interaction [73,82] or not [83]. The best fitted
exponent 8 ~ 0.47 is consistent via Eq. (13) with the NESS
1/(1 +y) =~ 0.467. We also observe that for times smaller
than about # &~ 300 the dynamics is not yet the asymptotic
one—the exponent has clearly not yet converged—while at
larger times we converge to the same 8 < 0.5 regardless of
time (we of course cannot exclude that at still larger times ¢ >
10° and L >> 144 one would eventually end up with diffusion,
however for L < 144 and ¢t < 800 we find no indications of
that).

Observing subdiffusion in a quasiperiodic potential clearly
shows that rare regions cannot serve as a universal “expla-
nation” of subdiffusion. That this is so should be clear also
from the observed subdiffusion in a noninteracting model for
h > hgig ~ 1.6!

If, on the other hand, one takes smaller # = 1 and the
same interaction U = 0.5, Fig. 7, one instead of subdiffusion
still sees diffusion. Because it is hard to distinguish marginal
subdiffusion with y being close to 1 from true diffusion y =
1, we fit to the NESS current data two curves each having two
free parameters: one is j ~ a/L + b/L?* (theory for diffusion
predicts [71] finite-size 1 /L?* correction), while the other is
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FIG. 8. Comparison between unitary evolution of a mixed state
weakly polarized domain wall (dw, red and blue dotted curves) and a
pure state fully polarized domain wall (DW, red and blue full curves).
Also shown is a noninteracting case for 7 = 0.6 where g = 0.75 (full
black curve).

j ~a/L’. One can see (Fig. 7) that the first one fits better
and therefore we deem to still have diffusion (phase transition
could though be close to the point U = 0.5,h = 1). Forh =1
and U = 1 the data we gathered for L < 233 (not shown) also
indicated the asymptotic diffusion with 4Dngss =~ 0.96. At
smaller L < 50 a weak subdiffusion y &~ 1.1-1.2 is observed
so one needs large systems to observe the asymptotics (entan-
glement growth with weakly ‘subdiffusive” scaling exponent
1/z &~ 0.82 was observed for U = 1, h = 1 and times ¢t < 20
in Ref. [56]).

IV. MEAN-FIELD FAILURE

A. Fully polarized domain wall

All unitary data on previous pages was for a weakly po-
larized mixed state domain wall with polarization m = 1073.
While for a system without potential a fully polarized domain
wall (DW) pure state

IDW) =[1--- 1t -4, (18)

is a special state and cannot be used to infer (generic) trans-
port, this is not so for a model with nonzero h; like our
Fibonacci chain. We therefore check if the dynamics of the
DW leads to the same transport as that of a weakly polarized
mixed state domain wall (14), or of a driven NESS. Using pure
state tDMRG we evolve the state and calculate the transferred
magnetization AZ (17). In Fig. 8 we compare the results with
those for a weakly polarized domain wall. While we cannot
reach times longer than about r &~ 40 for pure-state evolution
(despite having x ~ 700) it seems that the growth of AZ(t) is
similarly diffusive as for a weakly polarized domain wall.

B. Mean-field dynamics

Let us now try to describe the dynamics of a fully polarized
domain wall using a mean-field treatment of the interaction.
Standard mean-field treatment of a product of two oper-
ators AB neglects the term quadratic in fluctuations (A —
(A))(B — (B)), leading to a mean-field replacement AB —

A(B) + (A)B. Doing that on the interaction Uojo/ | gives
U(oi{of,) + (of)oi, ), rendering the model noninteracting
with a modified on-site potential hy — hy + U (zxk—1 + Zk+1)»
where we denote z; := (¥ (¢)|o7|¥x(t)). A possible explana-
tion of the observed diffusive dynamics that suggests itself
is the following. We have an XX chain with a Fibonacci
potential and fluctuating magnetic fields. Provided the fluc-
tuating magnetic field is Gaussian and uncorrelated in time
it is equivalent to a so-called dephasing Lindblad equation.
That in turn, no matter how small is the dephasing, in the
thermodynamic limit always leads to diffusion [83]. However,
as we show, such a “plausible” explanation of the observed
diffusion, is, in fact, wrong.

We shall show that by studying the mean-field equations
of motion. Although they fail to correctly describe dynamics
in a quasiperiodic potential, an interesting open question is
whether they can describe dynamics in some other situations,
for instance, in a random potential. Let us first write down
equations of motion for expectation values of observables in a
noninteracting model. Expanding density operator in terms of
products of Pauli operators,

o o1+ szakz + Z(xy — VX )k
k k

x (ofol,, —olol )+, (19)

where, e.g., zx and (xy — yx); are abbreviations for cor-
responding expansion coefficients. Von Neumann equation
of motion for p(¢) gives equations for the expansion coef-
ficients. Using Jordan-Wigner transformation all two-point
expectations of fermionic operators form a closed set of
equations. In spin language all those expectation values can
be compactly encoded in a Hermitian correlation matrix
Cir, with the off-diagonal matrix elements being C;; :=
(xz---zx+yz---zy)i+i(xz- -2y —yz---zx);, Le., coeffi-
cients in front of (o*c 7, | -0 08 + 0] 0% -+ 0f_,0))and
(o0l -0l 0] —oj0l, - of_ o) in p (19), while the
diagonal is C;; := —z;. For instance, C; ;1 give coefficients
in front of magnetization currents and the kinetic term (hop-
ping), the expectation value of the current being tr[(s}s; b1
s,{s}(‘ el = %Im(Ck,kH)). Equations of motion can now be
compactly written as a matrix equation

e _ 1 C,H H J 20
d t - 2[ ’ ]a - 77 ’ ( )
where 1 comes from potential and is a diagonal matrix
with elements nx = hi, while J represents hopping and
has nonzero elements only along the two next-diagonals,
Tk kx1 = Jkx1.x = 1. Note that similar equations, only with a
non-Hermitian #, govern also Lindblad dynamics [62]. For
a fully polarized domain wall (18) the initial condition is
C0) = —diag(1,...,1,—1,...,=1).

One can obtain different mean-field descriptions depending
on fluctuations of which operators are neglected. For our
concrete interaction one can for instance work directly with
o¢, or, one can alternatively express o/ in terms of raising and
lowering operators, like o, 0, = (1 —0¢)/2 and o 0, =
(14 0¢)/2, and neglect fluctuations of those. Denoting for
later reference the two mean-field variants by (a) and (b),
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FIG. 9. Comparing two mean-field variants, listed under (a) and
(b) in the text, for a fully polarized domain wall in the Fibonacci
chain. For comparison, we also show exact diffusive dynamics of a
weakly polarized domain wall (labeled by dw) for U = 0.5, h = 0.6.
Mean-field asymptotically always incorrectly leads to subdiffusion.
All data is for L = 233 such that there are no finite-size effects.

we have

(@) ofof,, —> (of)of, +of{of,,), amounting to
e = i + U (ze—1 + 2i41)- 2

P 27 (T —~t + - -
(b) Writing oyoi . =(0 0y —0, 0} )(o',hLlakJrl—akJrl
aktrl), and doing mean field on products of raising and
lowering operators, results in

1 -+ ot
ofof = 3(@oihy +ofzn) = 2000 (0 o)
+o— et
=20, 01,{0, 0p1), (22)

plus a global constant. Noting that (ak_ak‘:l) = Crr+1/2 we
get a mean-field replacement rule for the potential and the

hopping,

U
he — e + E(Zkfl + Zkt1), (23)

U U
Tijr1 = 1 — Eck’kﬂ’ Tip1h = 1= 3Ck+1’k'

In version (a) the mean-field equations (20) therefore get
an additional term —i %[C, C,], with the diagonal [Cylix :=
Ci—1.4—1 + Ciy1k+1, on the right-hand-side. In case (b) one
has a similar terms plus an additional i %[C, C,], where C, is
equal to two first off-diagonals of C.

In both cases equations become nonlinear and their behav-
ior has to be analyzed numerically. We did that by integrating
them, starting with a DW initial condition, and averaging over
all L + 1 different Fibonacci sequences. Results are shown in
Fig. 9. We can see that while the mean-field description might
look promising at short times (e.g., dashed mean-field curves
might seem to follow exact diffusive dynamics up to ¢ ~ 20),
at longer times mean field is subdiffusive rather than diffusive.
We therefore must conclude that the mean-field treatment can-
not explain the observed diffusive transport in the Fibonacci
model at small U. Interactions at the mean-field level in fact
always slow down transport irrespective of i value. This is
manifestly untrue for the exact interacting dynamics where
we have seen that interactions either “enhance” noninteracting

=0
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10t o il NN
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/’/
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t

FIG. 10. Mean-field protocol (a) for L = 233 and & = 0.6 for a
binary-disordered chain. Upon introducing interactions, the erstwhile
localized system starts transporting spin fluctuations; for the present
case U = 0.5 the transport is subdiffusive as indicated by the straight
line fit.

subdiffusive transport to diffusion or “degrade” noninteracting
superdiffusive transport to diffusion. However in the case
of binary disorder, there is no magnetization transfer in the
absence of interactions due to Anderson localization; adding
interactions at the mean-field level results in subdiffusive
transport for the parameters chosen in Fig. 10. Moreover,
we notice that the dynamical exponent in the presence of
mean-field interactions is about the same for both types of
disorder at a given U, h combination (Figs. 9 and 10). From
this we conclude that a mean-field treatment is insufficient to
discriminate the two types of disorder.

We note that in Ref. [84] the method used (called a self-
consistent Hartree-Fock method) is essentially the same as
the mean-field version (b), Eq. (23). At stronger quasiperiodic
potential and strong U they find, differently than us at small
U, that the above mean-field description leads to faster than
subdiffusive relaxation. The applicability of the mean-field
equations (20), (21), and (23) needs to be studied in more
detail.

V. CONCLUSIONS

Localization can be attributed to the physics of detuning
between the strengths of off-diagonal to diagonal matrix ele-
ments in a local basis, whether in a random or quasiperiodic
system [45]. Strong spatial correlations of the potential in
the Fibonacci model prevent any detuning-caused localization
in the noninteracting system at finite potential strength 4.
Upon introducing weak interactions we find no many-body
localized phase and the transport of spin fluctuations be-
comes diffusive, B = %, bearing no remnant of the spectral-
fractality induced anomalous transport in the noninteracting
limit. This latter aspect might be surprising as it suggests
that already a small coherent interaction is sufficient to wash
out multifractality-induced anomalous diffusion in the nonin-
teracting limit (noting that mean-field analysis suggests that
multifractality should still persist in the Fibonacci model with
weak interactions [85]). Diffusive transport in the Fibonacci
system must be contrasted with the binary disorder case,
where there are no spatial correlations, and which shows
instead a subdiffusive dynamics at the same field strengths.
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FIG. 11. Top panel: Finite size effects in dynamics for L =
8001, 4001, 1001 in the noninteracting Fibonacci system initialized
with a delta function at the chain’s center. Bottom panel: Ensemble
averaging effects, shown here for fixed L = 1000 and & = 3 for do-

main wall initial conditions with each curve averaged over different
number of samples as indicated.

In this regard there are two key differences here from
the widely studied interacting-AAH model that make the
interacting Fibonacci model interesting and worth pursuing
further: First, the resulting diffusion constant decays only
algebraically with field strength as opposed to the Aubry-
Andre-Harper model [50] where there is an exponential de-
cay. Qualitatively, this is in line with the understanding that
the cosine quasiperiodic potential is less correlated than the
Fibonacci one, as reflected for instance in the existence of
a noninteracting localization transition, and therefore shows
slower transport, albeit being diffusive in both cases. How-
ever the precise reasons for this difference needs to be
understood more quantitatively and is an interesting, open
question. Second, whereas the Fermi’s golden rule estimate
v=4(p — %) for the diffusion constant scaling D ~ U~" for
weak interactions U gives a reasonable quantitative agreement
with numerics, this estimate fails in the AAH model [50].
On a similar note, mean-field analysis also suggests stronger
discontinuity of spectral multifractality in the AAH model
upon introducing weak interactions [85]. These points suggest
that the Fibonacci model is likely amenable to a more refined
perturbative treatment for understanding its transport and (if
any) localization properties.

Special care is dedicated to demonstrate a quantitative
agreement between transport extracted from unitary dynamics
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0 1 il 1 0 L ll 1
1750 2000 2250 1750 2000 2250
X X
1 T T .
t=0,2,13,
82,428
05 1
Z(X) 0F _
05t 1
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FIG. 12. Top panel: The wave function amplitudes across the
middle half of the chain at the indicated fixed times for L = 4001
chain at 1 = 4. As time increases, we see that the wave function peak
splits into two, developing a hierarchy; this self-similar hierarchy
(entailing back and forth motion) is reflected in the above oscilla-
tions. Bottom panel: Magnetization profiles of domain wall in the
noninteracting L = 1000 system at fixed times with 7 = 0.6 and a
single sample. Here too we see a self-similar hierarchy developing in
the profiles.

of polarized domain walls or from boundary-driven Lindblad
equation steady states, lending credence to our finding. We
also show that mean-field analysis is unable to account for
diffusion in the quasiperiodic model.

Finally, at larger interaction strength U = 0.5 and & = 2,
we found a regime in parameter space where on available
times ¢ ~ 800 and system sizes L ~ 144 weak subdiffusive
dynamics occurs. This finding, grossly agreeing with recent
work [56], is surprising: first, because the system is far away
from the noninteracting limit such that multifractal effects of
eigenfunctions and spectrum (which resulted in anomalous
transport in the noninteracting limit [66]) should not play a
role here, and second because there are no rare regions which
typically are invoked to account for subdiffusive transport
[19]. The full explanation of this effect requires further eluci-
dation, starting with uncovering a possible similar effect in the
interacting Aubry-Andre-Harper model by exploring a larger
portion of its parameter space.
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FIG. 13. Scaling of the NESS magnetization current with system
size L. Dashed lines are diffusive Dygss/L (see Table I), squares,
down triangles, triangles, and circles are for 7 = 0.6, 1, 2, 3, re-
spectively. Green color is for U = 0.05, blue for U = 0.1, red for
U = 0.2, and brown for U = 0.5. In all cases one has asymptotic
diffusion, except for A =2 and U = 0.5 (brown triangles). All data
is for one Fibonacci realization.
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APPENDIX A: FINITE SIZE EFFECTS AND
LOG-PERIODIC OSCILLATIONS IN THE FREE SYSTEM

In the main text we showed data from L = 8001 for a single
sample. Here we show that there are no finite size effects by
going to smaller system sizes or ensemble averaging, i.e., the
average asymptotic growth may be reliably computed from
a single sample in a large L system. In Fig. 11 we display
the dynamics for a wave packet spreading from a central
site for L = 8001, 4001, 1001. We see that they nicely follow
each other (before finite-L saturation sets in), and that the
dynamical exponent may be unambiguously determined.

However around the average algebraic growth (whether for
wave packet spreading or transferred magnetization, as we see
in Figs. 11 and 2), there are oscillations around this anomalous
dynamics especially at larger & values. These oscillations re-
sult from the self-similar hierarchy developing in the profiles
(see Fig. 12) which in turn arise from the spectral fractality
and the subsequent oscillatory transferring of wave function
weight between different peaks for the wave packet spreading
[86-90].

For the domain wall spreading, we find a similar story;
see bottom panel of Fig. 12. There we see a hierarchical
development of mini domain walls along the chain, causing
recurring magnetization fluctuations along these new domain
walls, resulting in oscillations in the dynamics. However due
to the bulk nature of the initial excitations (requiring that
excess magnetization be transferred across half-chain lengths
in order for a true reversal or oscillation in the dynamics),
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FIG. 14. Convergence of NESS current j with MPO bond dimen-
sion x. We show one (typical) case of nice convergence for U = 0.2,
h =3, and L = 55 (blue color, right axis), and one case of less nice
convergence obtained for U = 0.2, h = 2, and L = 144 (red color,
left axis). Dashed lines show the used extrapolation to y — oo.

these oscillations are significantly weaker here than in the
wave packet spreading.

APPENDIX B: FURTHER NESS DATA AND THE
CONVERGENCE WITH THE MPO BOND DIMENSION

In Fig. 13 we show data for the NESS current, from which
by fitting 1/L dependence we extract the NESS diffusion
constant Dygss (Table I).

As mentioned, we always check convergence with the
MPO bond dimension yx. Typically the NESS current j de-
creases as one increases x, with a finite-y correction scaling
in most cases as 1/x. In cases where the required x in order
to get precision of order (few) percent would be prohibitively
large we therefore use extrapolation in 1/ in order to get
closer to a true j. This is shown in Fig. 14. One can see that a
finite x introduces an additional “truncation noise” that makes
transport faster, i.e., increases j.

In Fig. 15 we show the dependence of j on interaction
for a fixed L and h > 2 where the noninteracting system is
subdiffusive. We can see that the current initially, expectedly,

0.07 r / ] 0.02
006 / A
0.05 | / — {0015
004 | | oo
0.03 |/
002 ¢ 1 0.005
0.01 | hep —
h=3 -
0 ‘ ‘ ‘ ‘ 0
0 0.1 02 03 04 05

FIG. 15. Scaled NESS current for L = 55 and h = 2 (red, left
axis), and h = 3 (blue, right axis). For both values of & one has
subdiffusion at U = 0. As a function of interaction U one has a
nonmonotonic dependence.
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FIG. 16. Convergence with x for unitary evolution of a weakly
polarized domain wall. The inset shows the convergence of D
(obtained by fitting (4Dt /7)"/? to each curve for ¢ € [400, 1200]).
Allis forU = 0.2, h = 2, and L = 144 (one Fibonacci sequence).

increases with U, reaching a maximum around U = 0.1. Such
small value of the maximum prevents us to explore more in
detail a conjectured power-law dependence at small U, that is
to extract the scaling exponent v for & > 2.

APPENDIX C: ADDITIONAL UNITARY DATA

In Fig. 16 we show data for different x and unitary evolu-
tion of a weakly polarized domain wall (14). We can see that
the convergence of Dy is similarly ~1/x as for the NESS
setting.

In Fig. 17 we show data for different L and therefore
different Fibonacci sequence realizations. While at short times
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FIG. 17. Unitary evolution of a weakly polarized domain wall
for different Fibonacci sequences (i.e., different L). One can see
that asymptotically Dy, =~ 0.50 is independent of L and potential
realization. All is for U = 0.2, h = 1 (one Fibonacci sequence).

there is understandably a difference between realizations (red
and green data in Fig. 17), at longer times diffusion becomes
“self-averaging” with very little difference between different
Fibonacci sequence realizations. This is also a reason that we
typically do not have to do any averaging. Comparing & = 1
(Fig. 17) and h =2 (Fig. 16), the absolute size of finite-x
correction is about the same (about ~ 0.03 at y = 200),
however, the relative error is for 2 = 1 almost 10 times smaller
than for 7 = 2 simply because of larger D,y;;. This means that
smaller x suffices at 7 = 1 for the same relative precision of
Dynie. This is the reason we could afford to go to r = 2000
and L = 987 for smaller 4 = 1, and why on the other hand
simulations for larger / are more time consuming.
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