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The largest allowed symmetry in a spin-1 quantum system is an SU(3) symmetry rather than the SO(3)
spin rotation. In this work, we reveal some SU(2) symmetries as subgroups of SU(3) that, to the best of our
knowledge, have not previously been recognized. Then, we construct SU(2) symmetric Hamiltonians and explore
the ground-state phase diagram in accordance with the SU(3) D SU(2) x U(1) symmetry hierarchy. It is natural
to treat the eight generators of the SU(3) symmetry on an equal footing; this approach is called the eightfold
way. We find that the spin spectral functions and spin quadrupole spectral functions share the same structure,
provided that the elementary excitations are flavor waves at low energies, which serves as a clue to the eightfold
way. An emergent S = 1/2 quantum spin liquid is proposed to coexist with gapful spin nematic order in one of
the ground states. In analogy to quantum chromodynamics, we find the gap relation for hydrodynamic modes in
quantum spin-orbital liquid states, which is nothing but the Gell-Mann-Okubo formula.
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I. INTRODUCTION

The symmetry principle plays a fundamental role with
respect to the laws of nature. It provides an infrastructure and
coherence for summarizing physical laws that are independent
of any specific dynamics. Noether’s theorem says that every
continuous symmetry of the action of a physical system is
associated with a corresponding conservation law. The stan-
dard paradigm for describing phase transitions and critical
phenomena is Landau’s theory of symmetry breaking. The
states of matter are classified on the basis of symmetries. A
higher-temperature phase is of a high symmetry characterized
by a group G, while a lower-temperature phase is of a low
symmetry characterized by a subgroup H C G. A low-energy
effective theory can be constructed in terms of order parame-
ters and is described by all terms that are allowed according
to the relevant symmetries. A hierarchy of symmetries is also
widely used in particle physics to understand the dynamics of
elementary particles.

Meanwhile, spin-1 quantum magnets are of great interest
in physics. One famous example is the Haldane phase in one-
dimensional (1D) spin-1 chains [1], in which fractional spin-
1/2 end states are protected by the spin rotational symmetry in
a phenomenon called symmetry-protected topological order
[2-5]. Spin-1 systems are also able to host spin nematic orders
in dimensions of D > 1; such orders are characterized by
long-range spin quadrupolar correlations, and the possibility
for fractional spinon excitations to coexist with spin nematic
orders has also been proposed [6]. Such quantum magnets are
widely encountered in various materials, especially transition
metal compounds, in which a local § = 1 magnetic moment
can be formed in a cation via Hund’s coupling; examples

2469-9950/2019/100(8)/085101(17)

085101-1

include 3d® Ni*t and 3d°® Fe*. In this work, we shall
reveal several hidden SU(2) symmetries in spin-1 quantum
magnets in addition to spin rotational symmetry, and we will
study spin-1 quantum systems with the help of the symmetry
hierarchy.

For a spin-1 quantum magnet, there are three local states,
namely, |S° = +£1) and |S* = 0), and eight independent local
Hermitian operators: three spin vector operators, $¥, $¥, and
S%, and five spin quadrupolar operators:

0" = (8 — (&),
> 1
Q3z —r2 -
3
oY = §*S” + §'S*,
0% = §5° + 58,
sz = S8* + §*S%. (1)

[2(5)% — (§)2 — ($")*],

To illustrate the symmetry hierarchy, we consider a generic
two-body interacting Hamiltonian as follows:

H= D JupStSh + > 100000 + > Ly S20 |
ap

(i) \ p v
2

where (i, j) is a pair of nearest neighboring sites; o and
B denote x, y, and z; and u and v denote xz— yz, 372 —
r2, xy, yz, and zx. The SO(3) spin rotational symmetry
is achieved when I, =0, Jug = d4pJ1, and J,, = 8,,/>.
Furthermore, H will be SU(3) symmetric when J; = J,, and
the SU(3) group is generated by eight operators {S, @} [7-9].
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The SO(3) model is well studied: a phase diagram consisting
of a ferromagnetic phase, a dimerized phase, Haldane phases
and a critical phase has been constructed in one dimension
[10-13], and the SO(3) model can host spin nematic ground
states in dimensions of D > 1 [6,14-21].

The model defined in Eq. (2) has typically been studied in
accordance with the SU(3) D SO(3) - - - symmetry hierarchy.
Nevertheless, there are other SU(2) subgroups belonging to
the SU(3) group, and this fact implies the existence of a
slice of SU(2) symmetries in addition to the SO(3) spin
rotation in spin-1 quantum magnets of which, to the best of
our knowledge, the research community is not aware. This
situation inspires us to search for Hamiltonians that respect
these hidden symmetries; for this purpose, a new symmetry hi-
erarchy, SU(3) D SU(2) x U(1) - - -, will be adopted to reveal
novel states with various low-energy excitations. To describe
these states, it is natural to treat all operators {S, @} on an
equal footing, which is reminiscent of the “eightfold way” in
quantum chromodynamics (QCD).

The paper is organized as follows. We reveal hidden SU(2)
symmetries and construct corresponding SU(2) symmetric
Hamiltonians in Sec. II. In the spirit of eightfold way, we
apply flavor-wave mean-field theory to study the SU(2) x
U(1) model and demonstrate that the similar structure in
spin spectral functions and spin quadrupole spectral functions
serves a clue to the eightfold way in Sec. III. In Sec. IV,
we go beyond the mean-field theory and find an emergent
S = 1/2 gapless quantum spin liquid state coexisting with
spin nematic order. We also find Gell-Mann-Okubo formula
like gap relations for the hydrodynamic modes in quantum
spin-orbital liquid states. Section V is devoted to summary.

II. HIDDEN SU(2) SYMMETRIES AND HAMILTONIANS

A. Hidden SU(2) symmetries

It turns out that there are three hidden SU(2) symmetries
in addition to well known spin rotational SO(3) symmetry
in a spin-1 system, which are generated as follows (see
Appendix B):

SU(2)a : {QZX’ S}” lQXz_yz + £Q322—r2 } ,
2 2
SU(Z)ﬂ : {Qyz’ Sx7 lQ"'Z*yz _ £Q3zzr2}’
2 2
SUQ@), : (7. 5. 077}, 3)

Each set of these generators consists of one component of the
spin vector S and two components of the spin quadrupole Q.
Note that these three sets of generators are related to each
other by the following cycle: $* — §¥ — §% — §*. In the re-
maining part of this work, we shall focus on SU(2),,; SU(2),
and SU(2)g can then be obtained in accordance with this
cycle.

For the SU(2),, symmetry, S° generates spin rotations
along the z axis, and the other two generators, Q™ and
sz_yz’ correspond to two-magnon processes, as can be

seen from
> 1
o = 5[<S+)Z+(S*>2], (4a)

ov

1
5[(5*)2 —($7)%, (4b)
l

where S* = $* £ iS”. Let us define

Ji = %Sz’ (5a)
ol big) =4 o)
Sl e s R s

It is easy to verify that {J%, J¥} satisfy the SU(2) Lie algebra.
Therefore the spontaneous breaking of the SU(2), symmetry
along the S* direction will give rise to two-magnon low-energy
excitations, while spontaneous symmetry breaking along the
0¥ and Q"Z‘y2 directions will give rise to an admixture of
one- and two-magnon excitations, which will tend to restore
the SU(2), symmetry.

The underlying SU(3) structure and the hidden SU(2) sym-
metries will be more transparent in the Cartesian representa-
tion of the spin states: |x) = i(|]1) — |—1))/v/2, |y) = (1) +
|—1))/+/2, and |z) = —i|0). Then, a spin state can be written
as |d) = d*|x) +d’|y) + d*|z), where d = (d*,d”,d?) is a
complex vector and the normalization condition is given by
|d|> = 1. The expectation values for {S, @} can be expressed
in terms of d as follows:

(8%) = —i€up,d"d”,
Q) lanp = —(@"d” +d"d"),
Q") = 1d") — 1T,
(0¥ ") = %(MF — || = |d**), (6)

where d“ is the complex conjugate of d* and €*/” is a three-
rank antisymmetric tensor. Thus, a spin-1 quantum system can
be described by the following path integral:

sz DId.d 13(1d|* — e~ B dnd = (7

where the Hamiltonian H is given by Eq. (2) with {S, O}
replaced with their expectation values. Now, it is clear that
all of the special unitary transformations of d give rise to the
SU(3) group and that the special unitary transformations of
any two components of d lead to either SU(2),, SU(2)g, or
SU2),.

B. SU(2)-symmetric Hamiltonians

Now, we are in a position to construct Hamiltonians in
accordance with the SU(2), symmetry. A generic spin-1
Hamiltonian can be written in terms of {S, @} in a bilinear
form as shown in Eq. (2). Using group theory, one is able
to obtain all SU(2),-symmetric two-body interactions (see
Appendix C). These SU(2),-symmetric Hamiltonians are
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TABLE I. Typical SU(2),-symmetric Hamiltonians in Eq. (8),
which are classified with respect to time reversal (7), spatial inver-
sion (Z), and additional global/local symmetries.

Hamiltonian T z Global Local
H, Yes Yes SUQ) x U(1) U)
Ho Yes Yes SUR)x U(1)

Hs Yes Yes SUR) x U(1) UQR)
Hy Yes No SU?2)

Hs No No SUQR) x U(1)

He No No SU(2)

linear combinations of the following six terms:

Xy 22 y2 2
Hi=) SiSi+070)+07 o). (8w

(i.J)

Ho =) SIST+ Q707 +8)S,+0F0F,  (8b)
(i)

o= 0F 0¥, (8¢)

(i,J)

Ha= Y Dy[SiSi+QFQF — (i ], (8d)
(i,J)

MHs =Y Dy[SIQF + QFS) — (i & j)). (8e)
(i, J)

Ho = ) Dy[QF'S} + OS] — (i = )], (8)

()

where the D;; = —Dj; = £1 define a direction along each
bond (i, j) and are translationally invariant. The Hamiltoni-
ans H_¢ can be classified with respect to the time-reversal
symmetry 7, the spatial inversion symmetry Z, and additional
symmetries as summarized in Table I.

Further discussions are presented as follows: (1) H; con-
sists of the SU(2), generators {S?, O, sz_yz} and can
be viewed as a spin-1/2 Heisenberg model in the sub-
space spanned by the local basis {|x);, |y);}. (2) Let us de-
fine Ag =), Q?ZZ_’z; then, we have [Ag, Hi] = [Ag, Ho] =
[Ag, H3] = [Ag, Hs] = 0. Thus, H;—3 and Hs have an
SU(2), x U(1) symmetry, where the additional global U (1)
symmetry is generated by Ag. (3) H; has an additional local
U (1) symmetry generated by Q?ZZ”Z. (4) H;3 has an additional
local U(2) symmetry that is generated by {S7, Q;”, thyz}
and Q?ZZ”Z.

1. EIGHTFOLD WAY AND FLAVOR-WAVE MEAN-FIELD
THEORY: SU2) x U(1) x T x Z MODEL

Regarding the SU(3) D SU(2) x U(1) symmetry hierar-
chy, we would like to treat all of the SU(3) generators
{S, Q} on an equal footing. In this spirit, we study ground
states and low-energy excitations with the help of flavor-wave
mean-field theory [22-25], and then discuss how the spectral
functions can be exploited to detect the eightfold way.

First, we minimize the energy functional H(d ,d) with
respect to the complex fields d; to determine the ground
state. Second, we assign three flavors of Schwinger bosons,
ane(j), to each site j on the nth sublattice, where o = x, y, z
refers to the local spin states. For example, n =1 for a
uniform state, while n = 1,2 for a bipartite-lattice ordered
state. The operators {S, Q} can be written bilinearly in terms
of the Schwinger bosons, and the physical Hilbert space can
be restored by imposing a single-occupancy condition (see
Appendix D). Third, without loss of generality, we let the
Schwinger bosons condense at a,; to obtain ordered states,
where a,; and the other two orthogonal components, a,;
and a,s, are related to (ay, Gny, an;) by an SU(3) rotation
Q) as follows: (g, Gng, Anz)" = Q2u(@ny, Any, an;)" . Such an
2, is determined by the mean-field vector d and enables us
to attribute the condensate to a,; alone, while treating a,;
and a,; as small fractions. Then, the low-energy Hamiltonian
can be bilinearized by the Holstein-Primakoff transformation:
ar () = an(j) = VM — @l (j)ans(j) — ab.())an(j), where
we will ultimately take M =1 for the single-occupancy
case. Expansion in 1/M and Bogoliubov transformation
will give rise to a diagonalized Hamiltonian in k space
(see Appendix D): H =Y, ; wn(k)b} (k)b (k) + C, where
wy, (k) is the energy dispersiofl of the mth flavor-wave branch,
bn(k) is a bosonic Bogoliubov quasiparticle, and C is a
constant. For a uniform state, m = 1, 2, while for a bipartite-
lattice ordered state, m = 1, 2, 3, 4. As long as the vector
d is given by the mean-field theory, we will be able to obtain
(k) and by, (k) simultaneously.

In particular, we are interested in Hamiltonians with the
time-reversal symmetry 7 and the spatial inversion symmetry
7, which can be parameterized in terms of three real numbers
K, K>, and K3 as follows:

H=KH +KHr + K3Hs. 9

Note that the model given in Eq. (9) respects the SU(2), x
U(1) symmetry rather than the SU(2),, symmetry. For sim-
plicity, we shall consider bipartite lattices only, including a
1D chain, a square lattice and a cubic lattice.

A. Ground states

To explore the ground-state phase diagram, we set K7 +
K22 + K32 = 1, such that the parameter space is a sphere. Top
and bottom views (along the K3 axis) of this sphere are
displayed in Fig. 1, where the mean-field phase diagram is
presented. There are six ordered phases, FQ1, FQ2, FQ3,
AFQ1, AFQ2, and AFQ3. Here, FQ refers to a ferroquadrupo-
lar state, and AFQ refers to an antiferro-quadrupolar state (or,
to be precise, a state with a staggered quadrupolar order).
When K|, 3) is negative and predominates, the ground states
are FQ states, while when Kj 3) is positive and predominates,
the ground states are AFQ states. The solid lines in the phase
diagram represent first-order transitions, while the dashed
lines represent continuous transitions. The SU(3) symmetry
will be achieved at two points where K; = K> = K3. Both
SU(3) points are tricritical points. The one with K; 3 < 0
corresponds to three phases, FQ1, FQ2, and FQ3, while the
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FIG. 1. Mean-field phase diagrams for SUQ2) x U(1) x T x Z-
symmetric models as defined in Eq. (9) on bipartite lattices. Two
SU(3) points are located at K; = K, = K3. (a) Top view of the
parameter space (K3 > 0). (b) Bottom view of the parameter space
(K3 < 0). Solid lines indicate first-order phase transitions, while
dashed lines indicate continuous transitions.

other one, with K 3 > 0, corresponds to AFQ1, AFQ2, and
AFQ3.

We use local spin density to illustrate the wave functions
for various FQ and AFQ states. If d vector is real, the
state is time-reversal invariant, and the local spin density
[(S(A)|d)|* is invariant under an SO(2) rotation along the
axis of (|dxl, |dy|, |d;|), which is so-called SO(2) symmetric
pattern. Otherwise, |d) breaks the time-reversal symmetry,
|(S(7)|d)|? will be distorted from an SO(2) symmetric pattern
to an SO(2) nonsymmetric pattern. Two examples for time-
reversal invariant state and time-reversal breaking state are
given in Fig. 2

All the six quadrupolar ordered states are illustrated on
square lattice in Fig. 3, where we choose time-reversal invari-
ant ground states to eliminate spin dipolar orders and manifest
quadrupolar orders. Notably, dipolar and quadrupolar orders
may coexist in a ground state in the FQ1, FQ2, AFQI1, and
AFQ2 phases, while only a quadrupolar order exists in the
FQ3 and AFQ3 phases.

B. Low-energy excitations

The low-energy excitations can be understood in the frame-
work of the symmetry hierarchy as follows. (1) The sponta-
neous symmetry breaking is distinct in the different phases:

(a) (b)

FIG. 2. Local spin density for (a) time-reversal invariant and
(b) time-reversal breaking states. Red bars indicate the directions of
(Idy|, 1dy|, |d.|). Blue surfaces represent the spin density of a local
wave function W, which is defined as |(S(72)|W)|2. Here, |S(7)) is
the spin coherent state pointing along direction 7 and is defined
by (7 -8)8(7)) = |S(#)). The local states |W¥) are chosen for (a)
W) = (Ix) + 19))/~/2; (b) |¥) = (™/1x) + |)/V/2.

(a) FQ1

(b) AFQ1

FIG. 3. Six types of spin quadrupolar orders on square lattice. All
the states are time-reversal invariant with real d vectors, and red bars
indicate the directions of these real d vectors. Blue surfaces represent
the spin density of a local wave function W, which is defined as
[(S(2)|W)|2. Here, |S(h)) is the spin coherent state pointing along
direction 71 and is defined by (7 - $HIS()) = |S(h)). The local states
|W) are chosen for FQ and AFQ phases as follows. (a) FQ1: |V) =
(Ix) + 1y))/+/2: (b) AFQL: |W)) = (Ix) + |y))/v/2 and [¥y) =
(Ix) = 1¥))/~/2; (©) FQ2: [W) = (Ix) + |2))/+/2; (d) AFQ2: |Wy) =
(1) + 12))/+/2 and [W3) = (|x) — |2))//2; (¢) FQ3: |¥) = |z); and
(f) AFQ3: |U,) = (|Ix) + [y))/+/2 and |¥,) = |z). Here the sub-
scripts in W, , refer to sublattices 1 and 2.

(a) SU(2) is broken in FQ1 (AFQ1), but U(1) is not [i.e.,
SUR) x U(1) = U(1)]; (b) both SU(2) and U(1) are broken
in FQ2 (AFQ2) [i.e., SU(2) x U(1) — 1]; and (c) neither
SU(2) nor U(1) is broken in FQ3 (AFQ3). (2) For FQ1, the
a)le mode is gapless, while the other mode, wg s gapful.
Since SU(2) is broken, the gapless Goldstone mode a)ll;Ql
tends to recover the symmetry. However, U(1) is unbroken,
SO w§Q1 is not required to be gapless as well. The gapless
wal mode corresponds to two-magnon excitations, while
the gapful ngl mode corresponds to one-magnon excita-
tions (see Appendix D). (3) For FQ2, there are two gapless
Goldstone modes, w, 2 and a)ng, because both SU(2) and
U(1) are broken. The wll:Qz mode is an admixture of one-
and two-magnon excitations, while the ngz mode consists
of one-magnon excitations only. (4) For FQ3, there are two
gapful modes, a)fQ3 = w§Q3, which are related to each other
through the SU(2) symmetry. Both of them correspond to
one-magnon excitations. (5) The AFQ1, AFQ2, and AFQ3
phases can be analyzed similarly.

The mean-field ground states and low-energy flavor-wave
excitations for these six phases are summarized in Table II.
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TABLE II. Summary of the SU(2), x U(1) x T x Z-symmetric model defined in Eq. (9). The parameters ¢ and ¥ are given by sin? ¥ =

21K |[+K1+K3 23 . 2K+K | +K3

TRtk 3k, and sin® ¥ = B
2|K>|—K;+K3—2K K3 /|K:

and y (k) are defined as follows: Ay = AR\R 1K 2K K5 /1B By =

4K>|+K+3K3

respectively. R(x, 0, ¢, ¢) = diag(e/ 27" '3 €147, ¢i#) is an SU(2) x U (1) rotation. Ag, Bg, Cx, Dk,
K +3K3+2K3 (K1 +K3)/1K; |

ik ok Ck = B+ Ki1/K3)/2, D =2K,/K3, and y (k) =

Z7'y", e®¥, where Z = 2D is the coordination number and § is a nearest-neighbor displacement. “1” refers to one-magnon excitations, “2”
refers to two-magnon excitations, and “14-2” refers to an admixture of one- and two-magnon excitations.

d vector(s) Flavor-wave dispersion Gap Magnon
o1 Ry 6.0 0010 O ot (k) = 2Z|K,|[1 — y (k)] gapless 2
Q = Rlx.9.4.0)1.0.0) w52 (k) = Z(|Ki| — K3) + 2ZKy (k) gapful 1
FQ2
. = (k) = 2Z|K|Ag (1 — y (k) 1+2
FQ2 d =TR(x,6,¢,9)(cos?,0,sin?)" ! apless
W5 (k) = 221K T — y GO + By (O] sap 1
FQ3 d =R(0,0,0,¢)(0,0,1)" o, P (k) = w5 ¥ (k) = 2Z[|K3| + K>y (k)] gapful 1
AFOL d, = R(x,0,,0)1,0,0)" ot (k) = 0™ (k) = 22K, /1 — y2(k) gapless 2
dy =R(x,6,9,0)0, 1,07 0" (k) = 0, (k) = Z(K, — K3) gapful 1
ot = 2ZK,Ak[1 — y (k)] 142
AFO2 dy =R(x.,0,¢,¢)(cos D, 0, sind)" oy ¥ = 2ZKAx[1 + y (k)] abless 1+2
dy = R(x, 0, b, 9)(cos 7, 0, — sin &) W™ = 27K, /T + yOIL — Bry ()] gap 1
wy ¥ =2ZKy\/11 — y (O + Bgy (k)] 1
P (k) = Z(K; — K)) gapful 2
AFQ2 d, =7R(0,0,0,¢)(0,0,1)" 3" k) =0+ OK) gapless 2
dy = R(x:, 6:, ¢, 0)(1, 0, 0)" oy P(k) = Z[Ks/C} — Dy y (k) + ©52] gapful 1
" (k) = Z[K3y/CE — Dyy2(k) + 55 ] gapful 1

C. Spectral functions: a clue to the eightfold way

Inelastic neutron scattering measures the spin spectral
function in (¢, w) space, which is defined as

5 (q, 0) = Im{i / dt &' ([S*(q, 1), S (—q, 0)])},
0

where we have set wgp = 1 for simplicity. At zero temper-
ature, So‘ﬁ(q, ) depends on the choice of the ground state.
However, the spectral function

S(q, w) = $7(q, ®) + 57 (g, w) + 57(q, w)

does not change qualitatively within a single phase. On
the other hand, resonant inelastic x-ray scattering (RIXS)
measures two-magnon processes, which is described by spin
quadrupole spectral functions

0" (q w) = Im{i/o dr e ([Q"(g, 1), 0"(—q, 0)])},

and u and v denote xy, yz, zx, x> — y%, and 3z> — r?. Similar
to S(g, w), the spin quadrupole spectral function,

0(q.0) =Y _ 0" (q. w).
n

does not change qualitatively within a single phase as well.
Therefore the spin spectral function S(q, ®) and the spin
quadrupole spectral function Q(q, w) can be used to detect
flavor waves and distinguish the various FQ and AFQ phases.

In the flavor-wave mean-field theory, all the degenerate
ground states can be obtained from one of them by an
SU(2) x U(1) rotation of the d vector. We parametrize a
general SU(2) rotational matrix as

3
R=ryo’ +i E r,o”,

n=1

(10)

0 1

where ¥ are identity as well as o', o2, and o are three
Pauli matrices. Here, 7 = {rg, r1, 2, r3} is a four-dimensional
real vector with Zi:o r> = 1. Thus, apart from a global phase
factor, two d vectors of two degenerate ground states, d and
d', are related by a 3 x 3 matrix as follows:

/ e R 02,1
d = ( oo )d,
where 05 2(02,1) is a 1 x 2(2 x 1) zero matrix. In the SU(3)
Schwinger boson representation, the expression for the spin
operators S depends on the parameters ry_3.

Thus these spectral functions can be evaluated for each FQ
or AFQ state; these functions are distinct in different phases
but do not qualitatively change within a single phase. More-
over, S(q, w) and Q(q, w) share the same structure as long as
the elementary excitations are flavor waves, as demonstrated
in Fig. 4. Namely, Q(q, ») has the same dispersion as S(q, w),
and difference between them is in the spectral weight. This
similarity provides evidence for the underlying SU(3) structure
and serves as a clue to the eightfold way. The details of these
spectral functions for all FQ and AFQ phases can be found in
see Appendix E.

an
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S(q,w)

- 0
q

Q(q,w)

AFQ3

0 10 20 30 40 50 60 70 80

—T 0 ™

q

FIG. 4. The spin spectral functions S(g, @) and the spin quadrupole spectral functions Q(q, w) for the FQ and AFQ phases. Here, we set
K, = K3 = 0.1K; for FQ1 and AFQ1, K; = K3 = 0.1K, for FQ2 and AFQ2, and K; = K, = 0.1Kj; for FQ3 and AFQ3.

IV. BEYOND THE MEAN-FIELD THEORY

A. Effective Hamiltonian in the AFQ3 phase: a possible
emergent S = 1/2 gapless spin liquid

In the mean-field solution, the AFQ3 ground states are
locally degenerate inside a bulk energy gap. This huge de-
generacy arises from the unperturbative Hamiltonian K373,
of which ground state subspace is spanned by the local basis
{|x):, |¥);} on sublattice-2 and {|z);} on sublattice-1, as shown
in Fig. 5(a). And the degeneracy is expected to be lifted by a
small but finite K} and K;. To address this case and go beyond
the mean-field theory, we consider perturbations of up to the
third order in the limit K3 >> |Kj(2)|, where the unperturbative
energy gap is about ZK3. What we need is to include all the
possible perturbations of #; and H; and project the states into
the subspace of unperturbative ground states by a projector P.

We begin with two-site Hamitonians h;, i=1,2,3,
which is the simplest case of the Hamiltonians #; defined
in Eq. (8), and consider their matrix elements. Firstly,

hy = Q¥ 7 Q¥ =", which is diagonal in the basis {|o102)},
where o1, =x,y,z.  Secondly, h; =SS5+ 0705 +

2.2 2 2
Q; 7 0, 7, and we have

loy02), o1=02#2,
hilo1o2) = | 2lo201), o1 = x(¥), 02 = y(x), (12)
0, otherwise.

Thirdly, iy = S1S3 + $18) + Q0% + 0¥ 0%, we have

2|lo01), o1 =x,y(z) and 07 = z(x, y),

h =
2|0102) { 0, otherwise.

(13)
Taking into account all the nonzero matrix elements, the
leading perturbation is of the third order and the effective
Hamiltonian reads
KK}
Herr = ;{22 PHyH HoP. (14)
3
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Regarding the projector P, H.g can be written as a H; type
Hamiltonian defined on one of the sublattices.

As an example, consider a square lattice; the spins have a
quadrupolar order on one of the two sublattices, and we have
the following effective Hamiltonian on the other sublattice:

Har =11 Y P(STS] +Q7 Q7+ 0) )P

(ij)h

+h Y P(SiSi+070Y +0f o TP,

(ij)2

where (ij)i2) denotes a pair of (next) nearest neighboring
sites on the sublattice, J; = 2K,K7/K; and J, = K, K5 /K3.
Note that the relation J>/J; = 1/2 is guaranteed by the fact
that there are two paths contribute to J; while only one path
contributes to J,, as illustrated in Fig. 5

Thus there emerges an effective spin-1/2 J;-J; Heisenberg
model constructed by the SU(2), generators. When K; <
0, J~1(2) < 0, and the ground state is of ferromagnetic order.
When K| > 0, J; =2J, > 0, a gapless quantum spin liquid
(QSL) ground state [26] may be favored, as suggested by
variational Monte Carlo [27-29] and density matrix renor-
malization group (DMRG) [30]. It is worth noting that the
ground states of spin-1/2 J;-J, Heisenberg model still remains
a controversial issue, and various numerical approaches lead
to several contradictory results. Other possible ground states
include Néel order [31,32] (by PEPS), gapful spin liquid [33]
(by DMRGQG), and plaquette valence-bond solid [34-37] (by
exact diagonalization, tensor network, and DMRG). Despite
of the controversy, we would like to propose that a QSL state
with effective spin S = 1/2 (or other ordered states) may
coexist with gapful quadrupolar order in a quantum spin-1
system.

FIG. 5. Solid circles form sublattice-1 where all the spins are in
the |z) state and open circles form sublattice 2 where all the spins are
in |x) or |y) state. (a) Emergent J; — J, super square lattice with black
solid lines for J; bonds and blue curve lines for J, bonds. (b) One
path to achieve J, bond. (c) Two paths to achieve J; bonds. (b) and
(c) indicate that J,/J; = 0.5.

B. Hydrodynamics modes in a quantum spin-orbital
liquid: in analogy to QCD

Now we consider a quantum spin-orbital liquid ground
state in the SU(2) x U(1) symmetric model, where neither
SU(2) nor U(1) symmetry is broken and all the correlation
functions of the operators {S, @} are short ranged. If there
does exist such a spin-orbital liquid state, the low-energy
excitations can be described by the fields of {S, Q} and
can be classified according to the SU(2) x U(1) symmetry.
Because of the short-range correlation, these excitations are
gapful. In analogy to QCD, we will demonstrate below that
these excitation gaps must satisfy some relations due to the
symmetry hierarchy SU(3) D SU(2) x U(1).

An interesting observation is that the three local spin states
|x), |y), |z) can be naturally in analogy with the u, d, s quarks
in particle physics in the fundamental representation of SU(3)
symmetry as follows:

[x) <«— u
y) <«— d, (15)
«~— s

|z)

The quark model is a successful theory of the strong inter-
action, which is known as QCD. According to Gell-Mann’s
argument: (1) there exists an additive quantum number called
strangeness is conserved in addition to isospin SU(2) sym-
metry; (2) in very strong interactions region, the symmetry
is SU(3) rather then the SU(2) x U(1); and (3) in medium
strong interactions region, the SU(3) breaks into SU(2) x
U(1), i.e., isospin SU(2) and hypercharge U (1). This sym-
metry hierarchy is exactly as the same as what we discuss in
our spin-1 systems. Moreover, the SU(3) octet {S, O} can be
mapped to high-energy particles, e.g., the light spin-0 mesons,
in addition to the SU(3) triplet mapping in Eq. (15) as follows:

)

3 =07 «— K (d9),

3-8 =07 — KT (),

3@ST+Q7) <= K0 (sd),

=i+ Q%) «— K= (si),

Lo ) _ (16)
;@ =0 «— " (ud),

(=i =0Y) «— 7 (d),

or s 70 (uir,dd),

Q3zz_,z «~—> 7 (uit, dd, s5).

For the shorthand, let us define the following operators:
K° = (8" - 0")/2,
K* = (=is" — 0%),
K’ = (=iS* = 0")/2,
K™ =38 - 0%)/2,
xt = (ST - QY)/2,
7 = (—iS* = 0%)/2,
7 =0,
n=0%". 17)
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Thus, in the hydrodynamic limit, § - 0 and @ — 0, the
collective modes in a quantum spin-orbital liquid can be
described by the fields of K°, K°, K*, #° 7%, and . And
we expect that each hydrodynamic mode has an excitation
gap M. The excitaiton gap is nothing but the mass of the
corresponding particle. By the SU(2) x U (1) symmetry, we
deduce that these gaps must satisfy the relations,

Myo = Mg+, (18a)
Mgo = Mg-, (18b)
My: = My =M, (18¢c)
as well as the famous Gell-Mann-Okubo formula [38]
2(Mg+ +Mg-) =3M, + M. (18d)

V. SUMMARY

In summary, we have revealed hidden SU(2) symmetries in
spin-1 quantum magnets, studied them in accordance with the
SUB) D SU®2) x U(1) symmetry hierarchy, demonstrated
novel emergent phenomena, and found some clues to the
emergent eightfold way. These SU(2) symmetries may be
realized in cold atoms as well as d® and/or d° electrons with
the proper specific choices of the spin-orbital couplings.
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APPENDIX A: FUNDAMENTALS OF SU(3) LIE ALGEBRA

The eight Gell-Mann matrices are defined as

01 0 0 —i 0
m=11 0 o]l m=[i o ol

0 0 0 0 0 0

1 0 0 00 1
m=(0o =1 o], m=[0o o o], @

0 0 0 1 0 0

0 0 —i 00 0
ws=(0 0o o] =0 0o 1].

i 0 0 01 0

00 0 L1 0 o0
=0 o =i]. w=—l0o 1 o

0 i 0 V3lo 0o -2

The generators of SU(3) Lie group are given by T; =
AiJ2,i=1,...,8.

In SU(3) representations, a state in an irreducible rep-
resentation (IR) is labeled by (p, g), corresponding to the
weight vector u = pu' + gpu?, where u' = (1/2, +/3/6) and

T>

A5 — Mg

FIG. 6. Roots of SU(3) Lie algebra. There are two simple roots,
a=( Lyandf =L, —L).y =a+ B =(1,0)is the other pos-
AT Ti—iTy

7

itive root. { =52, Tz} are three generators of the subalgebra

SU(2),,, and so on and so forth.

w? = (1/2, —/3/6). The weights are defined by the eigen-
values of the Cartan generators H; and H,, H;|pn) = w|p),
where i = 1 and 2. So that T5|(p, q)) = (p + q)/2|(p, q)) and
Ts|(p, ¢)) = V3(p — ¢)/6](p, ¢)). An IR is characterized by
the highest weight (n, m). Thus a state in a SU(3) IR can
be written as |(n, m), (p, q)r). Note that there may exist more
than one (p, g) state in IR (n, m), these different (p, g) states
are distinguished by the subscript £, which will be neglected
when there is only one (p, q) state.

APPENDIX B: SU(3) STRUCTURE AND
HIDDEN SU(2) SYMMETRIES

Firstly, it is straightforward to examine the SU(3) Lie
algebra relation among {S, @} through the commutators
[S*, SP1, [S*, O], and [Q*, Q"] directly. As mentioned, be-
sides the SO(3) subalgebra of {S*, S”, S¢}, there are other
SU(2) subalgebras belonging to the SU(3) Lie algebra.

In order to find out the other SU(2) subalgebras, we
consider the Cartan subalgebra H, the largest commutative
subalgebra, of the SU(3) Lie algebra, which can be chosen
to be made of linear combinations of two commutative op-
erators H; = T3 and H, = Ty, where T; = A;/2 and satisfy
Tr(H;H;) = %6,,; An SU(2) subalgebra can be constructed
as follows. Let us select an operator in the Cartan subal-
gebra H, which serves as J* in the SU(2) algebra. Writing
H = {H,, H,}, we have J* = |a| % - H, where « is a two-
dimensional vector. Then the raising and lowering operators
J* can be obtained through J* = |a|™'E+,, with a a root
vector. It is easy to verify that [J*, J¥] = £/ and [J*,J ] =
2J,. So that a nonzero root o of SU(3) will give rise to an
SU(2) subgroup.

The roots of SU(3) algebra are nothing but the weights
of its adjoint representation (1,1), which are plotted in
Fig. 6. It is clear that there are three pairs of nonzero roots,
{£a, £8, £y}, where a = (%, ‘/75) and B = (%, —‘/75) are
two simple roots, and y = (1, 0) is the other positive root with
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y=a-+p. So that «, B,y give rise to three SU(2)
subalgebras, whose generators are given as follows: SU(2),, :
{T4, T5, o - H}, SU(2)/3 . {T6, T7, ﬂ . H} and SU(Z)V :
{T), T,y -H}. In terms of § and Q, the generators of
the three SU(2) subgroups read

. X —y? \/§ 3--_r2
SU(Z)a-{Q N EQX +5-0 }
1 3
SUQ2)p : {Q”,Sx EQX - {QS’ - }

SUQ), : {0”, 55, 0. (B1)

The underlying SU(3) structure and the hidden SU(2) sym-
metries will be more transparent in the Cartesian coordinate
representation of spin states,

|x)=iw |y)=M
V2o V2

It is easy to verify that |o) is time-reversal invariant and sat-
isfy the relations («|B8) = 8,4 and S%|B) = i€“P7|y), where
o, B,y =x,y,z and €?P7 is the three-rank antisymmetric
tensor. Thus a spin state can be expressed as follows:

. |2} = —il0).  (B2)

ld) = d*|x) + d’ly) + d°|z), (B3)
where d = (d*,d”,d*) is a complex vector, and normal-
ization condition is given by |d|> =1. So that a time-
reversal invariant state is given by a real vector d up
to a global phase factor and characterized by (d|S|d) =
0. The expectation values for {S, Q} can be expressed in
terms of the d vector, (§%) = —ieaﬁyﬂﬂdl’, (Q"‘ﬁ)|a¢ﬁ =
—(@d” +dfd*), (%) = |’ — |d** and (Q* ") =
%(2|a’z|2 — |d”|> — |d*|?), where d“ is the conjugate com-
plex number of d*. Then the path integral for a spin § = 1
system can be written as in Eq. (7), where the Hamiltonian
is given by Eq. (2), while the operators S and Q are replaced
by their expectation values as follows:

s +d " d
s —d " )sd
s; ] +dixzd
-y —
QQ;szfr2 = _Z1i;z . (B4)
oY —d")d
or —d " red
o~ —d"ad

Now it is clear that the unitary transformation of the three
dimensional complex d vector (apart from a global phase
factor) gives rise to the underlying SU(3) structure. Thus the
SU(3) algebra of {S, @} can be visualized from Eq. (B4).
Since the complex d vector transfer as a 1-rank tensor under
the SU(3) rotations, one can find how § and Q and other
physical quantities will transfer under SU(3) as well, which
can be written in bilinear or biquadratic terms of d and d in
the path integral.

APPENDIX C: SU(2), SYMMETRIC
STATES/HAMILTONIANS

In the language of group theory, the three components
of d belong to the three-dimensional (3D) fundamental rep-
resentation 3 = (1, 0) of SU(3) group, and those of d be-
long to its complex conjugate representation 3 = (0, 1). So
that each (d,d) bilinear term belongs to the representa-
tions 3®3 =18, where 1 = (0,0) and 8 = (1, 1). Ex-
plicitly, |d|* belongs to the 1D IR (0,0), and (S, Q) belong
to the 8D IR (3,3). Furthermore, each (S, Q) bilinear term
in Eq. (2) belongs to the representations (1,1)® (1, 1) =
0,00, 1) (1,1)®d (3,00 (0,3)® (2,2). Therefore
we are able to classify the terms in Eq. (2) according to
group theory and find possible spin Hamiltonians respecting
the hidden SU(2) symmetries.

Begin with d vector and its complex conjugate d, the
Cartesian coordinate representation of the three spin-1 states
is isomorphic to SU(3) IR (1,0),

[(1,0), (1,0)) <« |x) <« d¥,
[(1,0), (—1,1)) <«— |z2) <«— d%,
1(1,0),(0,=1)) <«— |y) <«— 4 (C)
and its complex conjugate representation (0,1),
[(0, 1), (0, 1)) > y| <«— czy,
|(071)5(1’_1)> <> _<Z| — _4Z7
(0, 1), (—1,0)) <«— (x| <«— d*, (C2)

where |(m, n), (p, q)) was defined in previous section. Then
(S, Q) can be obtained through (0,1)® (1,0) = (0,0) &
(1, 1), which belong to the 8D IR (1,1),

[(1, 1), (1, 1)) - s,
[(1, 1), (—1,2)) «— iSX;QYZ’

I(1,1), (2, -1)) <« ot
.00 e YTyt

(T, 1), (0,0)2) —ﬁQ32*’2+IQv -

I, 1), (1,=2)) <« ,s»;@ ’

I(1, 1), (=2, 1)) - _isor,

(1, 1), (=1, =1)) <«— % ©3)

In what follows, we shall construct SU(2),, symmetric
two-body interactions in terms of bilinear forms of (S, Q). As
mentioned, such bilinear forms belong to the representations
(LhHedH=00ae,DHed, DHeGB,0®0,3)®
(2,2). Firstly we shall find out all the SU(2), symmetric
states in the IR decomposition of (1,1)® (1, 1), which
would be annihilated by both the raising operator E, and
the lowering operator E_,,. According to the block diagram
shown in Fig. 7, there exist six linear independent states
in the IR decomposition. We list six linear independent
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k) [13.3] © [w3
(a)
21) N 1,2) 1,2) .
% Q G
lav] | [a2] [en] [|an| [av] [en] an| [,
73 2 L V5 VZ VZ
V3 NG == -5
[00.]  [00] [eo]  [oo] [o o] [wa]  [oo] (0,013
V3 V5 vZ
L 5 ENN 7 L7z
lap| * [a»] |en] [ab] [aDn] [eD] 4, D; 4,0,
o3 1 4.0
@ (1.2) (1.2) " len] *
0,3) [3.3]

FIG. 7. The block diagrams are graphical notation of representations (1,1), (3,0), (0,3), and (2,2). The black solid lines between two block
denotes the raising operator E,, (upward) or lowering operator E_, (downward). The states marked in red can be utilized to construct SU(2),,

symmetric states which will be annihilated by E, and E_,,.

self-conjugate SU(2),, symmetric states as follows:

Lo = 1(0,0),(0,0)),

Ty = (1, 1),(0,00)s +~/3I(1, 1), (0, 0)1)s,
Ty = |(1,1),(0,0))a 4+ 3I(1, 1), (0,0))a,
I3 = 13,0),(=3,3)) +100,3), 3, -3)),

Iy = i3,0),(=3,3)) —il0,3), 3, =3)),
Is = /3]2,2),(0,0)) - 1(2,2), (0,0))

—/51(2,2), (0,0),). (C4)

Note that we have already made the bilinear forms
symmetrized or antisymmetrized, where |(1, 1), (0,0),)s

1
Iy = —=(I[0, 011):[[0, 011); + 1[0, 012):1[0, 0]2) ;)

L2Dill1, =21); 4+ 4l[1, 11)i[-1,

j —24/3][0, 01, )]

)i+ 1L 1Dil[=1, —

is a symmetrized state and |(1,1),(0,0),)4 is an an-
tisymmetric state. All the possible SU(2), symmetric
states can be written as a linear combination of I',,,n =
.,5 in Eq. (C4). Expanding I', in terms of (1,1)®
(la 1) states, |(1’ 1)a (Pl’ ‘h)) ® |(17 1)7 (p2s CI2)), through
SU(3) Clebsch-Gordan coefficients, and replacing ab-
stract states |(1, 1), (p,q)) by physical operators (S, Q),
eventually we obtain all the SU(2), symmetric spin
Hamiltonians.
With the help of SU(3) Clebsch-Gordan coefficients, the
SU(2), symmetric states in Eq. (C4) can be re-expressed in
terms of states in IR (1,1) as follows:

=1, 2L)illl, =21); — 12, =112)il[=2, 1]2); + (i <> ),

=11} + G < J)

[0, 012); — 2+/3][0, 012):1[0, O11) ),

—2); = (i < ),
2Dill2, =11); = @ < j)),

1)j + G < )

NG
+%(|[1, ill=1, =1D); — Il

I = \/%(ZI[Z, 1Dill=2, 11); + 2[[—
+ \/LZ—O(—ZI[O, 011):1(0, 011); + 2[[0, 012):1[0, O12)

Ty = (12, =1)l[=2, 1); — (=1, 211,

F3=% =122, 11); + I[1, —

Iy = ﬁ(l[—l, 2D)ill=2, 11); — [[L, =2Dl(2, —11); — (0 < j)),

I's = \/%—0(3“27 —11):([=2, 11); + 3I[-1, 2]);[[1, —2]

1
+ ——=(7][0, 011):10, 011); + 31[0, 012):[[0. 012) ; + 2+/3][0, 01);1[0, 01); + 2+/3|[0. 0])

/a0

1[0, 011) ), (C5)
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where we use |[p, g]); to denote state |(1, 1), (p, g)) at site i for simplicity. Putting Eq. (C3) into Eq. (C5), we obtain Eq. (8) in

the main text.

APPENDIX D: FLAVOR-WAVE THEORY

In this Appendix, we provide details for the flavor-wave
theory [22-25]. In order to study low energy excitations, we
assign three flavors of Shwinger bosons a,,(j) at each site j
on the nth sublattice, where o = x, y, z corresponds to x, y, z
spin states defined in Eq. (B2). Here, n = 1 for the uniform
states, while n = 1, 2 for the bipartite-lattice ordered states.
Thus the operators (S, Q) can be written bilinearly in terms of
Schwinger bosons,

S = 1> €apyals (e (7). (Dla)
By
O (Plppr = —1al, (N () + @l (Nana ()], (D1b)
05 (j) = —laf,(Naw(j) — aly(Da(D).  (Dle)
0" () = —%[MLU)%(J') —1], (D1d)
where the single occupancy constraint
(D2)

Y al (Dan () =1

is imposed.

To obtain various spin ordered states, we shall condense
these Schwinger bosons at some components. Without loss of
generality, the condensate components are constructed by an
SU(3) rotation €2, in the nth sublattice, which is defined as
follows:

Anx Apx
s | = Q| an (D3)
Az Anz

Such an SU(3) rotation €2, is site-independent and deter-
mined by corresponding mean-field d vectors and enable us
to attribute the condensate to a,; component only. And a,;
and a,; components are thought as small fractions. Then the
low-energy Hamiltonian can be bilinearized by the Holstein-
Primakoff transformation. Approximately, alx( j) and a,z(j)
can be written as

0l () = () = \[M — @l (ans () — @l idane ),
(D)

where M = 1 in present case considering the single occu-
pancy constraint.

Then we carry out the 1/M expansion in the
Holstein-Primakoff bosons a,; and a, up to quadratic
order, and perform the Fourier transformation a,s(k) =
> e*7ia,5(j)/¥/N to obtain the Hamiltonian 7 in the
k space, where 7; is the position of the lattice site j and
N is the number of magnetic unit cells. Thus the k-space
Hamiltonian can be diagonalized by the bosonic Bogoliubov
transformation,

H =" o)), ()b k) +C,
m,k

(D5)

(

where w,,(k) is the energy dispersion of mth branch flavor
wave, by, (k) and b} (k) are bosonic Bogoliubov quasiparticle
annihilation and creation operators, and the constant C does
not depend on boson fields. For uniform states, say, FQ states,
m =1, 2; while for AFQ states, m = 1, 2, 3, 4. As long as
the ground states of H determined by K, K and Kj are given,
we are able to obtain the dispersions w,, (k) simultaneously.
FQ1I phase. For FQI phase, the d vector of ground state

1
reads d™2' = (0), and the global rotational matrix Q' is
0

a 3 x 3 unit matrix. We introduce the SU(3) Schwinger
bosons as

az \/n_x
a)j = ay . (D6)
az az
where
J =1~ dlay — ala, O7)

Expanding spin dipolar and quadrupolar operators S and Q up
to quadratic order of a, and a, gives rise to
S* = —i(a;aZ — a:ay),
8 = —i(a] — a),
§¢ = i(a;, —ay),
0V = —(af +ay),
o = —(a'yraZ +dlay),
0% = —(a} +a,),

2 2
O =—(1- Za;ay — ajaz),

) 1
0% " = —@Bala. — 1).

V3

Put them into the Hamiltonian and keep all the terms up to
quadratic order of a, and a,, we obtain

(D8)

2
HI =35 Wbl k)b, (k)b (k).

k m=l

D9)

where

by(k) = ay(k), ba(k) = a.(k), (D10)

Here, a)lF 31 (k) are given in Table II in the main text. Note that

all the spins condense at the |x) state. So that bI = aI creates

a |y) state and must annihilates an |x) state simultaneously

to satisfy the sin%le occupancy constraint in Eq. (D2). It
1

means that the a)f (k) mode corresponds to a two-magnon

excitation. Similarly, a)ng(k) causes an |x) — |z) transition
and is a one-magnon mode.
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FQ2 phase. Considering the d vector of a FQ2 state being

cos ¥

the form of d¥& = ( Sig ) and the global rotational matrix

cost 0 —sin®d
QfF2 =1 o 1 0 , (D11)
sind 0  cos?v
we introduce rotated Schwinger bosons as follows:
az cos ¥ /n, — sin ¥a;
ay | = ay , (D12)
as sin ¥ /ny + cos ¥a;

where sin ¥ is determined by the mean-field theory and given
in the caption in Table II in the main text. Similarly, the
operators (S, Q) can be expanded to quadratic order of a, and
a, as follows:

S§¥ = —isin z?(a;f —ay) —icos 19(61;11Z — a:a},),

§ = —i(al — a,),

S* =icos 0(a; —a,) —isin ﬁ(a;faz - aiay),
0" = —cos z?(a; + a,) + sin z?(a;az + ajay),
Q" = —sin 19(a; + ay) + sin 15‘(a;az + a;ay),
0% = (sin* ¥ — cos? 9)(a, + aj)
—2sinv cos ¥ (1 — a;ay — 2a§az),

0" = —cos® ¥ + cos ¥ sin ¥ (a, + al)

+ (1 + cos? 19)a;ay + (2cos’® — l)aZaZ,
Q3227V2 —

3 cos? ﬂ(a;az — tan? ﬁ(a;ay + aZaz))

1
+ —3(3 sin ¥ cos ¥(a; +a}) + 3sin* ¥ — 1).

=
(D13)

Finally we obtain the diagonalized Hamiltonian

2
H'P =" wr@(b], (k)b k),

k m=l

(D14)

where a)fgz(k) are given in Table II and the Bogoliubov
transformation reads

ay(k) = by (k),

a,(k) = cosh (p; &)bs (k) + sinh (0, ¥)by(~k), (D15)
with
11—y
FQ2y _
exp (o )_\/1+BKy(k)’ (b1

where Bk and y(k) are given in Table II. In this case,
condensate components are of |x) and |z) spins. Such that
a)ng(k) mode corresponds to |x) <> |z) transition, and is a
one-magnon mode, while waz (k) mode corresponds to |x) +
tan ¢|z) <> |y) transition, and is an admixture of one-magnon
and two-magnon modes.

0
FQ3 phase. Now the d vector is d*®* = (0), and the global
1

rotational matrix reads

0 0 -1
QB =10 1 0 (D17)
1 0 O
Then the rotated Schwinger bosons becomes
axz —da;
al=\| % (D18)
az N
And the operators S and Q read
§* = —i(al — ay),
8 = —i(al —ay),
§¢ = i(alay, — H.c.),
oY = ajay +H.c.,
0% = —(a] +ay),
QZX = a; +a,
szfy = —(aZaZ — a;a_\,),
1
3 ‘2_r2
3= —ﬁ@a;ay +3ala, - 2). (D19)
Putting them into the Hamiltonian, we obtain
2
HE ="y B (b},(k)buk),  (D20)

k m=1

where wll:g3 (k) are given in Table II and the Bogoliubov
transformation reads

ay(k) = bi(k), a(k) = by(k). (D21)

In this case, the condensate component is |z). Such that
w]FQ3 (k) mode gives rise to |z) — |y) transition and is a one-
magnon mode, and w§Q3(k) mode gives rise to |z) < |x, )
transition and is a one-magnon mode too.

AFQI phase. The d vectors in sublattices 1 and 2 are of the
AFQI L ARQI 0 .
form d; = (8), d, = ((1) ), and the corresponding global
rotational matrices Q?FQ] and Q?FQ] read
1 0 0 0 -1 0
0 1 o), =11 0 o0
0 0 1 0 O 1

AFQl __
Q) =

(D22)

Therefore the SU(3) Schwinger bosons in the rotated repre-
sentation can be written as

[43%3 Nix

aiy | = ay |,

az aiz

ars —ay

ay | = o | (D23)
azz as;

where /n,,, = V1-— afnyamy — a;glzamz for m = 1 and 2. Ex-
panding (S, Q) to quadratic order of a,;, and a,, in each
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sublattice gives rise to

St = —i(a},a1; —alayy), S} =i(a], — ax),

y oo T y ., -
§) = —i(a, —ay), S$= —l(aéyazZ — a,,az),
Si =ia}, —ay), S5 =ilal, —ay).

0 = —(a}, +a), 0 = (@), +ay),

Q)lyz = _(a.lryalz + a)lrzaly)’ Q/;Z = _(agl + azz)’

07 = —(aJ{Z +a), 0F = (a;ya2Z + 2;122y),
Tz,yz =—(1-— ZaTyaly — a;(zalz)’

oy | — 24" s
Qz =~ Aoy — azza2z),

1 .
0¥ = —@Bal.a, — 1),

V3
52 _r2 1 +
QZ(‘ = ﬁ(&zkak —1). (D24)
Then the mean-field Hamiltonian of AFQ1 becomes
4
HA =33 " wh k)b, ()b k), (D25)

k m=l1

where a)]i%l(k) are given in Table II in the main text. The
Bogoliubov transformation reads

a:(k) = b3(k),  ax;(k) = bs(k),

by (k)
an (k) _ ! spl —sph\ | ba)
azy (k) =t st s bi(—k) |’
b (k)
(D26)
with
1 1
c,‘?l = E cosh (,o,?l), s,‘?l = E sinh (,o,?l), (D27)
and p;' is given as
1+ yk)
€X 2,0Al = [ — (D28)
P = T

Similar to the case of FQI, all the spins condense at the

|x) state. So that a)f\ng(k) modes give rise to |x) — |y)

transitions and corresiaond to two-magnon excitations. And

a)g ZQI (k) modes give rise to |x) <> |z) transition and are one-

magnon excitations.

AFQ?2 phase. In this phase, the d vectors in two sublattice
cos ¥ cos ¥

are dlAFQ2 =( 0 )and d? FQ2 (o 19)’ and the global rota-
— SIn

sin

tional matrices read

cos 0 —sin?d
Q=1 0 1 o |,
sin 0 cos?
cos ¥ 0 sinv
Qe = 0 1 0 (D29)
—sin® 0 cos?

We have SU(3) Schwinger bosons in such rotated representa-
tion as follows:

ars cos ¥ /nix — sin Pay;,

a5 | = ary )

az sin ¥ \/ny, + cos Yay;

arz cos ¥ /Ny + sin ¥ ay,

axyy | = azy (D30)
a; —sin ¥ /na, + cos Yap,

Then the forms of (S, Q) for each sublattice of AFQ2 are very
similar to Eq. (D13), and here we do not list them explicitly.
The corresponding Hamiltonian becomes

4
HATR = 37N AR k)b, (k)b (k).

k m=l1

(D31)

where w?i%ﬂ are given in Table II in the main text. The

Bogoliubov transformation are chosen as

aiy (k) 1 (1 1)\(bik)
! =7 D32
(aZy(k)) 2\ =1 )\ bak) (D32)
and
bz (k)
a(k)\ _ (€8 W s s ba(l)
ar; (k) C?]? _C?kz s11\k2 _S?kz bi(—k) |
bi(—k)
(D33)
where
1 1
Cmic = 5 cosh (Phd). s = 7 sinh (022),  (D34)
withm =1 and 2 and
1+ yk)
X 2 A2 = _
p( o) 1~ Bey k)
1 —y(k)
2052) = || —————. D35
exp( sz) 1+ Bey () (D35)

Similar to the case of FQ2, in this case condensate compo-
nents are of |x) and |z) spins. So a)? 1;Qz(k) modes which cor-
respond to |x) < |z) transition are one-magnon modes, while
a)fl;Qz(k) modes correspond to |x) & tan ¥|z) <> |y) transi-
tions, and are admixtures of one-magnon and two-magnon
modes.

AFQ3 phase. The AFQ3 ground states are given by

the d-vectors in two sublattices as the following, d?FQ3 =

0 1
(0), d?F@ = (0). Now the global rotational matrices QfF @3
1 0

and Q?Fw read,

0 0 -1 1 0 0
Q¥ =10 1 0], &%=]0o 1 0
1 0 0 0 0 1

(D36)
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The corresponding Schwinger bosons in the rotated represen-
tations are

aix —diz

ay | =1 v |,

asz Ny

arz Nox

dyy | = azy . (D37)
arz as;

And operators (S, Q) for each sublattice read
St = el — ). 55 = —iCehax — L)
S} = —i(a], —a,), S} =—i(al, —ax),
§i = i(aIzal), - aJlryalz)’ ;= i(agy — ax),
Y= aLaly + a-i-yalzs 0y = _(a;y + az),
OF = —(a], +ay), OF = —(d},@. +a] ),

Q? = airz + aig, Q;X = _(a;z + (121)7

2.2 . .
0y " = —(alai. —aj,ay),
2.2 .
0, =-(- 2a;ya2y — aézazz),
32—r? 1 + +
Q‘1 = —ﬁ(3a11a12 + 3a1ya1y - 2),
32— _ _L o T
0y = ﬁ(l 3aj,a;). (D38)
The diagonolized Hamiltonian reads
4
HAS =35 " whFC @b, (k)b (k). (D39)

k m=l

where a)ngf , are given in Table II and

azy (k) = by(k),

aiz(k) '\ _ (cosh (0p3)  sinh (pp) b3 (k)
aj (—k)) — \sinh (p3)  cosh (p%) J\bi(=k))

ay(k) = by (k),

(D40)
Here,
3K3 + K1 — 4K2)/(k)
exp (2013) = . D41
P (20i") \/3K3+K1+4K2y(k) D41)
In this case, all spins condense at the |x) state. Thus a)ﬁg@ k)

modes corresponding to |x) <> |y) transitions are two-magnon
modes. While w?iw (k) modes corresponding to |x) <> |z)
transitions are one-magnon modes.

APPENDIX E: SPECTRAL FUNCTIONS

We provide details for spin spectral function S(g, ) and
spin quardrupole spectral function Q(q, @), which are calcu-
lated by the linearized flavor-wave theory.

1. Spin spectral functions

In this section, we demonstrate details for S(q, w).
FQI phase. The spin operators in the flavor-wave
theory read

S*=(r —irn)a, + (rn + irz)a:,
§* = (—r3 —irg)a; + (—r3 + irg)al,
§% = uay + u*af, (E1)
where
u=i(ro —ir3)* + i(ry + iry )%, (E2)

and the quadratic boson and constant terms are omitted. Note
that the constant does not contribute to any excitations thereby
the spectral functions. Then spin spectral function reads

Sroi(q, @) = 27[8(w — @52 (@) +|ul*8 (0 — ¥ () ]-
(E3)

AFQI phase. The spin operators for sublattice 1 are the
same as Eq. (E1) but with additional sublattice subindex and
the spin operators for sublattice 2 read

Sy = (irg — r3)az, + (—irg — r3)aj,,

Sy = (=1 = iras, + (=r1 +ir)aj,,

S5 = —u*ay, — ua;y. (E4)
And spin spectral function is

Sarqi (g, @) = 218 (0 — 0} (q))

1—y(@ 2o arqQi
27 ,—l—f-y(q)'ul $(w— w2 (g),

(E5)

where u is defined in Eq. (E2).
FQ?2 phase. The spin operators read

S§* = (—ir, + ricos 2¥)a, — sin ¥ (r3 + irg)a, + H.c.,

S = (—irg — r3cos 20)a, — sin ¥ (r; — iry)a, + H.c.,

S§* = ucosvay + (rori + ror3)sin2va; + H.c. (E6)
And spin spectral function reads

Srqa(g, @) = 2 Fi (9, 1)8(w — w0} ¥ (q))

2 Fy (9, 7) llr_l’;’;g(;’)s(w — 03 %)),

(E7)
where u is defined in Eq. (E2) and
Fi(®,#) =1+ (lul*> — 1)cos? ¥,
4r§ + 4r§ —3— |u?
4

AFQ2 phase. The forms of spin operators for sublattice
1 are the same as Eq. (E6). And for sublattice 2 we can
obtain spin operators by taking ¥ — — . So here we do
not list them explicitly. The dipolar spin spectral function

B@O,MH=1+ sin®2¢%. (E8)
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reads

SarQ2(q, )
= 27 5in” 98 (0 — wy' T (q))

+ 27 |uf? cos® 98 (w — 0} P (g))

[1—Bgy(q)
+ 27 (rg + r%) Trv@ I;)(/q;l S(a) — a)‘;FQ2(q))
[ 14y
+ 27 (rf + r32) cos? 20 T Bovia) B;J:yq(q)g(w — w?FQZ(q))
(1 —[u*)sin®29 | 1—y(q) FQ2
e 2 ViTBa@ @ @)

(E9)
where u is defined in Eq. (E2).
FQ3 phase. The spin operators are
§* = (iro + r3)ay + (r1 +iry)a, + H.c.,
§¥ = (irg — r3)a; + (ry — ir)ay + H.c.,
§¢=0. (E10)

And the dipolar spin spectral function reads

Sk3(¢, @) = 27[3(@ — ¥ (@) + 5(0 — P (@)],
(E11)
Note that Srq3 (g, @) does not depend on the d vector.
AFQ3 phase. The forms of spin operators for sublattice
1(2) are the same as Eq. (E10) [Eq. (E1)] with additional
sublattice index. Thus the dipolar spin spectral function for

an AFQ3 state does not depend on the d vector as well and
reads

SarQ3(q, @) = w8 (w — w?F@(tI))

Ckx — Dxy(q) _ AFQ3

ﬂv Cx +DK)/(¢1)8(w 3 (q))
|Ck —Dky(@  ARQ3

+ —CK —I—DK)/(q)(S(w w, (q)).

(E12)

2. Quadrupole spectral functions

In this section, we demonstrate details for Q(q, w).
FQI phase. The Q operators read

0% =va,+H.c.,, Q%= (rp+ir)a,+Hec.,
0% = (iry — ro)a. + He., Q%" =0,
0" = 2(irs — ro)(ry + ir)ay + H.c., (E13)
where
v = (irg + r2)* — (ir3 — rp)*. (E14)

Notice the r;s are defined in Eq. (10) and again the quadratic
boson and constant terms are omitted. Then the quadrupolar

spin spectral function reads
Orqi (g, @) = 213(w — ;%' (9))
+ 272 — [uP)3(o — % (@),

where u is defined in Eq. (E2).

AFQI phase. The Q operators for sublattice 1 are the same
as Eq. (E13) but with additional sublattice subindex and the Q
operators for sublattice 2 read

Xy _ *
0y = —v'ay, + H.c,,

(E15)

Qéz = —(}"0 + ir3)aZZ + H.C.,
05 = (in — m)ay, +Hee., 0¥ " =0,

Q)z‘z‘y2 = 2(ir3 + ro)(r2 — ir1)azy + Hee., (E16)

where v is defined in Eq. (E14). The quadrupolar spin spectral
function is

Oaroi (g, ®) = 278(w — 05 ' (q))

1-y(q)

+2m(2—|ul?) T @

§(w— (),

(E17)

where u is defined in Eq. (E2).
FQ?2 phase. The Q operators read

QY =wvcosda, — (ror, — rir3)sin2%a; + H.c.,
0% = (iry — rocos 20 )a, — sin ¥ (ir; + r2)a, + H.c.,
Q0 = (iry + rycos 2¥)a, + sin ¥ (ir3 — ro)a, + H.c.,
0" = (1/2 = 2 = r3)sin20a,
+2cos ¥ (iry + rp)(ir3 — ro)a, + H.c.,
Q¥ =

where v is defined in Eq. (E14). And quadrupolar spin spectral
function reads

Orqa(q, ) = 21 F3(9, )8 (w — 0} ¥ (q))

|1+ Bgy(q)
+ 27 Fy (9, 7) 1_—[;(/‘1)3(60 — ngz(lI)),

3sin2%a,/2 + H.c. (E18)

(E19)
where u is defined in Eq. (E2) and
F®,#) =141 —|u*)cos’ ¥,
4r2 + 412 — 1 2
B, 7y = 14 it 4n =Tl ooy (m20)

4

AFQ?2 phase. The forms of Q operators for sublattice 1 are
the same as Eq. (E18). And for sublattice 2 we can obtain
the @ operators by taking ¥ — — . The quadrupolar spin
spectral function reads

Oarq2(q, )
= 27 sin® 98 (0 — ) T(q))

+ 27 (2 — |ul*) cos® 98 (w — w?FQZ(q))

[1—Bgy(q)
+ 27 (] +13) T’;{q;}é(w - w?FQz(q))
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| 1+v(@
+ 21 (rg + 7‘%) COS2 20 T[ﬂ/(q)S(w - w?FQZ(q))
G+ [ul?)sin®29 | 1—y(q) FQ2
7 2 V T By@ @7 @)

(E21)
where u is defined in Eq. (E2).
FQ3 phase. The Q operators are
QY =0""=0"" =0,
Q% = (ir, — rn)a; + (ir3s — ro)a, + H.c.,
Q% = (irs + ro)a; — (iry + ra)a, + H.c. (E22)

And the quadrupolar spin spectral function Qrq3(q, w) is the
same as Eq. (E11) and does not depend on the d vector.

AFQ3 phase. The forms of @ operators for sublattice
1(2) are the same as Eq. (E22) [Eq. (E13)] with additional
sublattice index. Thus the quadrupolar spin spectral function
0arq3(g, w) is the same as Eq. (E12). and does not depend on
the d vector.

APPENDIX F: CONNECTION WITH ¢-J-V MODEL

Finally, we would like to point out that the SU(2) x U(1)
model can be mapped to the 7-/-V model in one dimension,
which is exactly solvable in the supersymmetric point [39,40].
We use S, to denote the effective spin for SU(2), symmetry.

Then the local spin state |z) is SU(2), invariant and belongs to
SU(2), irreducible representation (IR) S,, = 0, while |x) and
ly) belong to SU(2), IR S, = % Therefore |z) can be treat as a
“hole” state, and the SU(2) x U (1) symmetric model defined
in Eq. (9) can be mapped to the #-J-V model, which reads
[8,9,41]

H=—tY Pyl ¥js1.P+Hec
j.a
+ Y PUS; Sjp1 + Vnnj)P, (F1)
j

where P projects out states with double occupancy and elec-
tron spin 5; and n; on site j are defined as

5j = Z V! BaVin, nj = Z Vi Vi (F2)
a,b a

The spin-1/2 indices, a, b = 1, |. Letting 1) and | |) corre-
spond to |x) and |y), and the “hole” state correspond to |z)
in spin-1 system, we can establish a mapping form the ¢-J-V
model to the SU(2) x U(1) model defined in Eq. (9) through

K =J/4, K> =1/2, K3 = V/3. (F3)

Hamiltonian given in Eq. (F1) is equivalent to the SU(3)
symmetric model when J =2t and V = 3¢/2. And the su-
persymmetric #-J-V model can be realized when K| = K, =
—K3/3.
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