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Theory of quantum oscillations in quasicrystals: Quantizing spiral Fermi surfaces
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We show that electronic materials with disallowed rotational symmetries that enforce quasiperiodic order
can exhibit quantum oscillations and that these are generically associated with exotic “spiral Fermi surfaces.”
These Fermi surfaces are self-intersecting, and characterized by a winding number of their surface tangent—a
topological invariant—that is larger than one. We compute the nature of the quantum oscillations in two
experimentally relevant settings which give rise to spiral Fermi surfaces: a “nearly-free-electron” quasicrystal,
and 30◦ twisted bilayer graphene.
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Introduction. Quasiperiodic systems are long-range or-
dered and yet nonperiodic [1,2]. This places them in a fas-
cinating intermediate regime between periodic and disordered
[3,4]. They first entered physics with the discovery by Shecht-
man et al. [5] of quasicrystals—electronic materials with crys-
tallographically disallowed rotational symmetries [6]. How-
ever, due to the lack of Bloch’s theorem, there still remain
many open questions about their electronic properties. More
recently, a surge of interest has risen due to the possibility of
studying these questions in new, highly controllable, contexts
such as cold atoms [7,8] and photonics [9], allowing for the
exploration of physics such as localization [10–12], topology
[13–19], and synthetic dimensions [8,20].

While progress is being made in artificial quasiperiodic
systems, new avenues are also opening for electronic qua-
sicrystals, including a recent realization of quasicrystalline
30◦ twisted bilayer graphene [21–23]. One of the key tools
for studying periodic electronic materials are quantum oscil-
lations [24–26]—a well-established technique for characteriz-
ing Fermi surfaces based on the semiclassical quantization of
orbits into Landau levels [27,28]. For quasicrystals, one might
expect that quantum oscillations are precluded by the lack of
a well-defined Fermi surface or the typically low conductivity
[4]. Nevertheless, an early experimental study surprisingly
found these to be present [29]. Despite this finding, there
has yet to be a theory developed to explain how quantum
oscillations could occur in a quasicrystal [30,31].

In this Rapid Communication, we develop such a theory.
We show how quantum oscillations can occur in quasicrystals,
using two experimentally relevant models as examples: a
nearly-free-electron quasicrystal [32–35,46] and 30◦ twisted
bilayer graphene [21–23]. Surprisingly, we find that when
quantum oscillations do occur, these are associated with a
unconventional type of Fermi surface—which we dub a “spi-
ral Fermi surface”—with topological character. Moreover, we
find that the presence of a spiral Fermi surface in quasicrystals
is generic—the only requirement is a separation in energy
scales of their gaps [36,37].

The topology of the spiral Fermi surfaces is classified using
the turning number Nt, which is defined as the winding num-
ber of the surface tangent—an invariant for two-dimensional

plane curves [38,39]. A Fermi surface that can be smoothly
deformed to a circle has Nt = ±1 and is considered trivial,
while all other turning numbers are considered nontrivial. In
quasicrystals, nontrivial turning numbers generically occur
when the Fermi surface winds the pseudo-Brillouin-zone cor-
ner [36]. As such, the presence of nontrivial turning numbers
is related to their crystallographically disallowed 2m-fold
rotational symmetry according to [36] (with quasicrystals
satisfying m � 4)

Nt =
{

m − 1 if m even,

(m − 1)/2 if m odd.
(1)

Moreover, the turning number is measurable experimentally
in quantum oscillations. This appears in the so-called Maslov
contribution [28,40–43] to the offset γ in semiclassical quan-
tization [24,26–28],

�2
BS(E ) = 2π (n + γ ), (2)

where �B = √
h̄/eB is the magnetic length, S(E ) is the area

swept out by the wave packet in reciprocal space, n is an
integer, and

γ = Nt

2
− ϕBerry

2π
. (3)

The first term of the right hand side is the topological Maslov
contribution [28,40–43], while the second part is the geomet-
rical Berry phase contribution [28,44].

Nearly-free-electron quasicrystal. Our first model is for
a nearly-free-electron quasicrystal with an axis of tenfold
rotational symmetry. This model is an approximation to
icosahedral [5] and decagonal quasicrystals [45] that have
nearly-free-electron qualities [35,46–50], such as the various
aluminum-based quasicrystals studied in angle-resolved pho-
toemission spectroscopy [32–34], and is known to exhibit
a spiral holonomy [51]. We consider the two-dimensional
single-particle spinless Hamiltonian Ĥ = p̂2/2m + V (r̂), with
potential in real space given by [35,46,47]

V (r) ≡ 2V0

5∑
j=1

cos G j · r, (4)
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FIG. 1. Quantum oscillations in a nearly-free-electron quasicrys-
tal. (a) Sketch of our model for a nearly-free-electron quasicrystal,
consisting of ten Fourier components (largest blue points) at mo-
menta ±Gi (red arrows) which have Bragg planes (gray dotted lines)
forming a pseudo-Brillouin zone (orange decagon) and which inter-
sect the free-electron Fermi surface (blue circle). All combinations
of these ten—the reciprocal lattice of periodic systems—cover k
space densely (smaller blue points). (b) The semiclassical trajectories
in an external magnetic field (solid blue curves) drift along the
free-electron Fermi surface (dotted circle) with scattering by each
Gi at the pseudo-Brillouin-zone boundary. (c) These semiclassical
trajectories are seen as constant energy contours (blue curves) of an
“effective band structure,” which is shown for V0 = 0.1Eκ . (d) The
resulting spiral Fermi surface with nontrivial turning number of
Nt = 2.

where G j ≡ 2κ (cos 2π j/5, sin 2π j/5) and V0 is the strength
of each individual Fourier component, which is assumed
to satisfy the nearly-free-electron limit V0 � Eκ ≡ h̄2κ2/2m.
This model amounts to keeping the ten dominant Fourier
components (i.e., the brightest spots in the diffraction pattern),
in particular, those with Bragg planes that intersect the free-
electron Fermi surface.

Our analysis of this model relies on the nearly-free-
electron limit. This tells us that the free-electron Fermi sur-
face [the blue circle shown in Fig. 1(a)] remains mostly
unchanged except for the opening of gaps proportional to
V0 at intersections with Bragg planes to ±Gi [dotted lines
in Fig. 1(a)] and also gaps from combinations of n Bragg
reflections. Since all combinations of Gi form a dense set in k
space [shown in Fig. 1(a)], the set of all associated gaps will
also be dense. Crucially, these gaps form a distinct hierarchy,
�nth

gap ∝ (V0/Eκ )n. Thus, for V0/Eκ small, one can choose a
magnetic field that removes (n + 1)th-order gaps via magnetic
breakdown, while keeping nth-order gaps. The probability of
magnetic breakdown is given by PMB = e−πab�2

B , where a and
b are the axes of the avoided crossing hyperbola [43,52–55].
The simplest scenario is the regime of fields in which only

first-order gaps are kept,(
V0

Eκ

)4

� h̄ωc

Eκ

�
(

V0

Eκ

)2

, (5)

where ωc ≡ eB/m is the cyclotron frequency. We refer to
this as the “first-order regime” of fields. The relevant gaps in
this regime are along the pseudo-Brillouin-zone edges [yellow
decagon in Fig. 1(b)].

Having specified an appropriate regime of magnetic
fields—the first-order regime—the semiclassical trajectories
can be found by tracing a path along the unperturbed free-
electron Fermi surface and making jumps at intersections with
relevant Bragg planes. This procedure is shown in Fig. 1(b)
for a wave packet that is initially localized at the top of the
pseudo-Brillouin zone in the free-particle state |k〉. This state
proceeds clockwise around the free-electron Fermi surface
until it encounters the Bragg plane to G1, at which point it
is scattered into the state |k − G1〉. Continuing in this manner
the wave packet is scattered a total of five times between the
following states,

|k〉 → |k − G1〉 → |k − G1 − G3〉
→ |k + G2 + G4〉 → |k + G4〉 → |k〉, (6)

after which the wave packet returns and can be quantized
according to (2).

By projecting onto the above subset of states we find an
effective band structure, as shown in Fig. 1(c). The semiclas-
sical trajectories described qualitatively above [blue curves
in Fig. 1(b)] can now be seen quantitatively as the constant
energy contours of this band structure shown in Figs. 1(c)
and 1(d). The turning number can be computed by using a
sum over the extremal points (points with vertical tangent),
Nt = 1

2

∑
i νi, where νi = ±1 for an extremal point with an-

ticlockwise (clockwise) orientation. For the Fermi surface in
Fig. 1(d), there are four extremal points (yellow dots) with
anticlockwise orientation. This gives a turning number of
Nt = 2, as expected from (1) with m = 5. This spiral Fermi
surface (with Nt = 2) does not require fine tuning of the Fermi
energy, unlike the “twisted Fermi surface” (with Nt = 0) of a
tilted Weyl point [39].

We highlight two key signatures of this nontrivial turning
number for quantum oscillations. The first is for the offset γ

in the semiclassical quantization (2). A conventional Fermi
surface that is deformable to a circle results in γ = 1/2, with
deviations from this indicating a nonzero Berry phase. Here,
Nt = 2 results in γ = 0 for zero Berry phase. The second
signature is related to the “magnetic breakdown transition” as
a function of magnetic field between first-order and second-
order field regimes, shown in Fig. 2. As this transition occurs
at a fixed Fermi energy, the total turning number is conserved
[36]. Since the transition is between an odd number of dom-
inant frequencies (a single frequency γ ) and an even number
(α and β), at least one Fermi surface must be nontrivial [36].

In order to address these results experimentally, one must
consider three key parameters: the Fermi energy EF, the
field B, and the potential V0. In typical nearly-free-electron
quasicrystals, EF is already at the required location—with the
free-electron Fermi surface intersecting the pseudo-Brillouin-
zone boundary [56]—therefore little to no doping should
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FIG. 2. Quantum oscillation frequency spectrum across the tran-
sition between second-order and first-order field regimes. (a) Density
plot of the frequency spectrum (with frequencies given as a ratio of
the spiral Fermi surface frequency Fγ ) as a function of magnetic field
(given in terms of nφ = eB/h and n2D = k2

F/2π ), for the parameters
V0/Eκ = 0.01 and EF/Eκ = 1.01. A transition is seen from a single
frequency (γ ) at high fields (nφ/n2D ≈ 10−4) to a pair of frequencies
(α and β) at lower fields (nφ/n2D ≈ 10−7). (b) Plot of the magnetic
breakdown probabilities at second-order gaps (orange curve) and
first-order gaps (blue curve). (c) A selection of semiclassical contours
used to label frequencies. For intermediate fields a complex mix of
frequencies is present that can be labeled using intermediate contours
such as ε1 and ε2.

be required. For the model parameters used in Fig. 2, the
flux density required to reach the first-order regime is small
compared to the electron density. Using typical experimental

parameters of κ = 1.3 Å
−1

and m = me (the free-electron
mass) [33], this occurs for fields of B ≈ 10 T—a regime
attainable experimentally. The required potential V0, however,
provides the most severe constraint experimentally. The cal-
culation of the magnetic breakdown transition in Fig. 2 allows
us to quantify the maximum allowed V0/Eκ—for a ratio that
is too large the two regimes (first and second order) are not
distinguishable. Using these criteria we find a maximum of
V0/Eκ ≈ 0.02, which corresponds to a gap at the pseudo-
Brillouin-zone edge of approximately 0.2 eV. Additionally, a
small ratio of V0/Eκ ensures the pseudogap at EF is not fully
formed [35], and the system remains metallic.

Twisted bilayer graphene. Our second model is for 30◦

twisted bilayer graphene, a system that has recently seen its
first experimental realization [21–23]. This incommensurate
superstructure satisfies the typical definition of a quasicrystal
[1] in that its diffraction pattern contains sharp peaks possess-
ing a 2m-fold symmetry (here m = 6) that requires more basis
vectors (four) than dimensions (two) in order to be indexed
[57]. The quasiperiodic structure of the diffraction peaks is
sufficient to cause the effective band structure to exhibit a
spiral Fermi surface with a highly nontrivial turning number
of Nt = 5.

To show this, we use the model of twisted bilayer graphene
developed in Ref. [58]. This takes a standard nearest-neighbor
tight-binding Hamiltonian H‖ for each layer, which is off

diagonal in a Bloch basis |k, X 〉, with X = A, B sublattice
indices [59],

〈k, A|H‖|k, B〉 = −t
3∑

i=1

e−ik·ρi , (7)

where the vectors ρi connecting nearest neighbors in layer 1
are rotated by 30◦ with respect to those in layer 2. Tunneling
between the layers causes a Bloch state from layer 1 with
crystal momentum k to be coupled to all those from layer 2
with crystal momentum k̃ = k + G − G̃ [58],

〈k̃, X̃ |H⊥|k, X 〉 = −t⊥(k + G)e−iG·τX +iG̃·τX̃ , (8)

where a tilde (no tilde) denotes layer 2 (1), G is a reciprocal
lattice vector, τX are position vectors of the sublattice sites
within the unit cell, and t⊥(k) is radially symmetric and
decays exponentially for k beyond the first Brillouin zone
[60].

We analyze this model by assuming a weak coupling
between the two layers, t⊥(k) � t . As with the nearly-free-
electron limit in the previous section, this assumption is key to
deriving meaningful semiclassical trajectories. In particular,
this allows us to assert that the Fermi surfaces of each layer
will be little affected, except at degenerate points that satisfy

E (k) = Ẽ (k̃), k + G = k̃ + G̃, (9)

where E (k) and Ẽ (k̃) are the band structures of the unper-
turbed layers 1 and 2. This is considered a first-order coupling,
as a gap will open proportional to t⊥. However, there will also
be gaps opened due to second-order processes that couple a
layer to itself at the following degeneracies,

E (k) = E (k + G̃), Ẽ (k) = Ẽ (k + G), (10)

with these gaps proportional to t2
⊥/t . For simplicity we choose

to work in a field regime in which second-order, intralayer
gaps can be ignored, while interlayer are kept—which can be
safely assumed to exist given the weak-coupling assumption.
However, this still leaves a dense set of gaps given by (9).
Fortunately, many of these are exponentially small due to the
k dependence of t⊥(k), as shown in Fig. 3(b). We therefore
choose a field such that those gaps opened by the exponential
tail of t⊥(k) beyond the first Brillouin zone are ignored. In this
regime, one finds that spiral Fermi surfaces appear at those
dopings for which the original Fermi surfaces of the two layers
intersect.

Having determined a suitable field regime and doping,
we derive the semiclassical trajectories by simply tracing
a path along the unperturbed Fermi surfaces and switching
between layers at the relevant intersections. If one begins this
process, as shown in Fig. 3(c), on layer 1 (blue contour), the
wave packet will progress anticlockwise before jumping to
layer 2 (red contour). Here, it essentially repeats this contour
again, now rotated by 5π/6. This occurs a total of 12 times,
resulting in a trajectory that winds the center a total of five
times, as shown in Fig. 3(c). This is reflected in the effective
Fermi surface shown in Fig. 3(d), shown for typical model
parameters. The turning number is computed by summing
over the extremal points (as discussed in the previous section).
For each 2π winding about the center there are two extremal
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FIG. 3. Quantum oscillations in incommensurate 30◦ twisted
bilayer graphene. (a) Sketch of each layer’s Brillouin zone: Blue is
referred to as layer 1 and red as layer 2. (b) The Fermi surface of layer
1 is coupled to the Fermi surface of layer 2, in addition to all possible
translations of this Fermi surface by reciprocal lattice vectors from
layer 1. (c) For sufficiently large doping, the Fermi surface of layer
1 intersects that of layer 2, allowing a semiclassical trajectory that
jumps from layer 1 to layer 2. This repeats a total of 12 times before
returning to be quantized by semiclassical quantization. (d) The
Fermi surface of an effective model, shown for the experimental
parameters given in Ref. [61].

points with anticlockwise orientation. As the Fermi surface
winds the center five times, there are a total of ten extremal
points with anticlockwise orientation, which means Nt = 5,
as expected from (1) with m = 6.

Since the turning number in this case is odd, the two
signatures highlighted in the previous section for a nearly-
free-electron quasicrystal do not apply here—γ = 1/2, which
is indistinguishable from the trivial case and breakdown tran-
sitions cannot identify odd turning numbers [36]. Instead,
the key signature here is in the dependence of the quantum
oscillation frequency on doping, as shown in Fig. 4. Below
a critical doping of approximately 2 eV, the Fermi surfaces
of each layer do not cross and only a single frequency is
present, associated with a broadening Dirac cone. However,
above 2 eV, the two layers’ Fermi surfaces intersect and
form three distinct contours: a square holelike contour that
is topologically trivial (Nt = −1), a hexagonal electronlike
contour that is also trivial (Nt = 1), and finally the nontrivial

0.0 0.5 1.0 1.5 2.0 2.5
0

10

20

30

40

FIG. 4. Phenomenology for 30◦ twisted bilayer graphene. Plot
of quantum oscillation frequencies as a function of doping away
from charge neutrality, using the same parameters given in Fig. 3.
Inset: Each frequency is identified with a different starting point
on the unperturbed “Dirac” Fermi surface. The purple contours are
those with a nontrivial turning number and have a larger than naively
expected frequency.

(Nt = 5) electronlike contour derived above. Crucially, the
spiral Fermi surface is distinguished by a sharp increase of
frequency with doping due to multiple overlapping Fermi
surface areas.

We address the experimental feasibility by using tight-
binding parameters for bilayer graphene [61]. This leaves
two key parameters: the required field strength B and doping
EF. By extracting gap parameters we determine the required
field to be B ≈ 7 T, which is within experimental capabilities.
The key challenge experimentally will be to reach a doping
of EF ≈ 2 eV, although larger dopings have been realized
experimentally for single layers [62].

In summary, we have used two very different models to
show that quantum oscillations can arise in quasicrystalline
materials. In both cases these are associated with spiral Fermi
surfaces. In fact, this is a generic result, relying only on
their unconventional rotational symmetry. As detailed in the
Supplemental Material [36], this alone can be used to deduce
the nontrivial turning number of the spiral Fermi surface.
Moreover, that this arises for twisted bilayer graphene offers
exciting opportunities for experimental observation.

In compliance with EPSRC policy framework on research
data, all data are directly available within the publication.
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