
PHYSICAL REVIEW B 100, 081301(R) (2019)
Rapid Communications

Dynamic spin-charge coupling: ac spin Hall magnetoresistance in nonmagnetic conductors
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The dynamic coupling between spin and charge currents in nonmagnetic conductors is considered. As a
consequence of this coupling, the spin dynamics is directly reflected in the electrical impedance of the sample,
with a relevant frequency scale defined by spin relaxation and spin diffusion. This allows the observation of the
electron spin resonance by purely electrical measurements.
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Introduction. It was predicted nearly half a century ago
[1,2] that spin-orbit interaction results in the interconnection
between electrical and spin currents: an electrical current
produces a transverse spin current and vice versa. This leads
respectively to the direct and inverse spin Hall effects. Follow-
ing the proposal in Ref. [3], the inverse spin Hall effect was
observed experimentally by Bakun et al. [4] in 1984, without
causing much excitement at that time.

Twenty years later, after the first experimental observations
of the (direct) spin Hall effect [5,6] this topic has become a
subject of considerable interest with thousands of publications
(see, e.g., a review in Ref. [7]).

Because of the interconnection between the spin and
charge currents, anything that happens with spins will influ-
ence the charge current, i.e., result in corresponding changes
of the electrical resistance, which can be measured with a very
high precision. An example of this link is provided by the
spin Hall magnetoresistance [8], the reason for which is the
depolarization of spins accumulated at the sample boundaries
by a transverse magnetic field and the resulting decrease of the
driving electric current (for a given voltage) [9]. This effect
was experimentally demonstrated in platinum by Vélez et al.
[10].

Earlier, a similar effect was discovered and studied by
Nakayama et al. [11] in layered structures ferromagnet–
normal metal. The magnetization in the ferromagnet can be
rotated by an applied magnetic field which results in a change
in the normal metal resistivity.

In recent years, the ac spin Hall effect in ferromagnet–
normal metal structures has also been studied both experi-
mentally [12–15] and theoretically [16–19]. The precession
of the magnetization in a ferromagnet leads to a time-varying
injection of spin into the normal metal. Due to the inverse
spin Hall effect, the resulting spin current in the normal metal
generates the ac electric current.

In particular, the observed ac voltage resonantly depends
on the Larmor frequency in the ferromagnet and the frequency
of the external ac magnetic field, which excites the precession
of magnetization. In this way, with the aid of the spin Hall
effect in a normal metal, the ferromagnetic resonance was
observed by electric measurements.

While these studies are quite important for achieving the
ultimate goal of storing and manipulating information by the

use of spin Hall effect for switching magnetic domains in
magnetics (see the reviews [20,21]), the physics of the layered
magnetic structures is quite complicated, and this makes the
exact theory and the quantitative analysis of experimental data
rather difficult.

Here, following Ref. [8], we develop a much more simple
theory of ac electron magnetotransport controlled by the
direct and inverse spin Hall effects in nonmagnetic materi-
als, semiconductors, or metals. The theory is based on the
phenomenological transport equations [1,2,7,8] describing the
interconnection between spin and charge currents. We show
that spin resonance in nonmagnetic materials can be observed
by purely transport measurements.

Transport equations. Consider a conductor in an external
ac electric field E(t ) ∼ cos(ωt ) and a magnetic field B (see
Fig. 1). We assume that the ac frequency ω is much lower
than the cyclotron frequency ωc, and that ωτ � 1, where τ

is the momentum relaxation time. However, the spin Larmor
frequency � and the spin relaxation time τs � τ are such that
ω ∼ � ∼ 1/τs.

In this frequency range, the basic phenomenological equa-
tions for the electron flow density q = j/e, the spin current
density tensor qi j , and the spin density vector P are [7]

q = μnE + γ D rotP, (1)

qi j = −D
∂Pj

∂xi
+ γμnεi jkEk, (2)

∂Pj

∂t
+ ∂qi j

∂xi
+ (� × P) j + Pj

τs
= 0, (3)

where n is the electron density, μ is the electron mobility,
D is the diffusion coefficient, γ � 1 is the dimensionless
parameter proportional to the strength of the spin-orbit inter-
action and describing the interconnection between the particle
and the spin currents, εi jk is the unit antisymmetric tensor,
the vector � is directed along the applied magnetic field, �

being the Larmor frequency for electron spins, and τs is the
spin-relaxation time.

The first term in Eq. (1) is the usual Drude contribution,
while the second term expresses the interconnection (caused
by spin-orbit interaction) between particle current and the spin
current caused by the inhomogeneity of the spin density.
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FIG. 1. A metal or semiconductor sample in a magnetic field B
and ac electric field E(t ). The length of the sample, L, is much greater
than its width, W . It is assumed that the ac electric field penetrates
everywhere into the sample, i.e., that the electron system is either
two-dimensional, or three-dimensional, but with thickness less than
the skin depth.

Equation (2) describes two contributions to the spin current
density qi j : the first one is due to diffusion of spin-polarized
electrons and the second one is due to the transformation of
particle current into spin current.

Equation (3) is the continuity equation for the spin density,
taking into account spin diffusion, rotation of spin in magnetic
field, and spin relaxation.

It should be noted that in the absence of inversion sym-
metry there may be additional terms describing spin-charge
coupling. In particular, there is a spin current induced by a
nonequilibrium spin polarization and a uniform spin polar-
ization generated by electric current. A direct excitation of
spin resonance by an ac electric field (the Rashba-Sheka effect
[22]) also becomes possible. Here, we do not consider this
type of effects due to inversion symmetry breaking.

In the geometry of Fig. 1, both the particle and the spin
flows depend on the y coordinate only. We consider that the ac
electric field, as well as the magnetic field, are directed along
the x direction.

As follows from Eq. (2), the two nonzero components of
the spin current density tensor are

qyy = −D
dPy

dy
, qyz = −D

dPz

dy
+ γμnE cos ωt . (4)

The absence of spin currents across the sample boundaries
is described by the boundary conditions qyy = 0 and qyz = 0
at y = ±W/2.

Solution of the transport equations. The nonzero com-
ponents of the spin density vector P can be written in a
complex form: Py(y, t ) = [Py(y)e−iωt + c.c.]/2, and similarly
for Pz(y, t ). Then, from Eqs. (3) and (4) we obtain a system of
coupled equations for Py(y) and Pz(y):

D
d2Py

dy2
=

(
−iω + 1

τs

)
Py + �Pz,

D
d2Pz

dy2
=

(
−iω + 1

τs

)
Pz − �Py, (5)

with the boundary conditions

dPy

dy

∣∣∣∣
y=±W/2

= 0,
dPz

dy

∣∣∣∣
y=±W/2

= γ
μnE

D
. (6)

The solution of Eqs. (5) with the boundary conditions (6)
yields the spin density profile:

Py(y) = −iγ
μnE

2D
[F+(y) − F−(y)],

Pz(y) = γ
μnE

2D
[F+(y) + F−(y)], (7)

where

F±(y) = sinh(λ±y)

λ± cosh(λ±W/2)
, (8)

λ± =
√

1 + i(−ω ± �)τs

Ls
, (9)

and Ls = √
Dτs is the spin-diffusion length.

Thus for narrow samples, |λ±|W � 1, the spin density P
depends linearly on the coordinate y, while for wide samples,
|λ±|W � 1, the spin density P is concentrated near the sam-
ple edges. In the last case, spin density exhibits spin resonance
at ω = ±� provided that ωτs � 1. The signs ± correspond to
the contribution to P from the components of E(t ) with the
right and the left circular polarizations, respectively.

The current density jx = eqx can now be calculated using
Eq. (1): jx = eμnE cos ωt + 	 j(y, t ), where the first term is
the normal Drude contribution (in the assumed limit ωτ �
1), while the second term is a correction which is of second
order in the spin-orbit interaction: 	 j(y, t ) = [	 j(y)e−iωt +
c.c.]/2, where

	 j(y) = γ 2 eμnE

2

[
dF+
dy

+ dF−
dy

]
. (10)

For wide samples, |λ±|W � 1, this correction to the ac den-
sity, like the spin density, is concentrated near the sample
edges.

The spin-orbit correction 	I to the main Drude part, I0 =
eμnEW , of the total current can be calculated from Eq. (10):

	I =
∫ W/2

−W/2
	 j(y)dy. (11)

Thus we obtain the final result for the correction to the
sample impedance, 	Z = 	Z (ω,�), caused by spin-orbit
interaction:

	Z

Z0
= −γ 2

[
tanh(λ+W/2)

λ+W
+ tanh(λ−W/2)

λ−W

]
, (12)

where Z0 = L/(eμnW ) and λ± are defined by Eq. (9).
Results and discussion. We now analyze our results given

by Eq. (12) for some special cases.
(i) Low frequencies: ωτs � 1. The results coincide with

those of Ref. [8] for the dc spin Hall magnetoresistance.
(ii) Zero magnetic field, B = 0. In Fig. 2 we plot the ratio


(ω) = Re	Z (ω, 0)/	Z0 of the real part of the spin-orbit
correction 	Z [Eq. (12)] in the absence of magnetic field to its
value at zero frequency, 	Z0 = 	Z (0, 0). It is seen that 
(ω)
has a quasiuniversal behavior as a function of the parameter
ωτ ∗. Here 1/τ ∗ = 1/τs + 1/τd is the effective total relaxation
rate which is the sum of the bulk spin-relaxation rate 1/τs

and the diffusion rate for space inhomogeneity in the spin
distribution 1/τd = 4D/W 2.
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FIG. 2. The ratio 
 of the real part of the spin-orbit correction to
impedance 	Z to its value at zero frequency 	Z0 as a function of ac
frequency ω in the absence of magnetic field. Thin curves correspond
to W/Ls = 0.2, 0.8, 1.3, 2, while the thick curve corresponds to
W/Ls = ∞. It is seen that all curves practically coincide.

Thus there are the two relaxation processes: the bulk
spin relaxation with the rate 1/τs and the decay of spin
inhomogeneity due to diffusion of spin-polarized electrons.
The quasiuniversal results in Fig. 2 are quite similar to those
obtained in Ref. [8] for the dc spin Hall magnetoresistance.

Indeed, from Eq. (12) one can obtain the relation between
the corrections to the ac impedance in zero magnetic field and
to the dc magnetoresistance:

Re 	Z (ω, 0) = 	Z (0,� = −ω). (13)

Here 	Z (0,�) is, in fact, the spin Hall magnetoresistance
calculated in Ref. [8] and denoted therein as 	R(�).

(iii) High frequencies: ωτs � 1. For narrow samples (W �
Ls/

√
ωτs) the correction 	Z depends neither on frequency,

nor on magnetic field in the main order by the parameter
W/Ls � 1 (at not too high magnetic fields when � � ω).
With the small correction on the order of (W/Ls)2 included,
we obtain

	Z

Z0
= −γ 2

(
1 − 1 − iωτs

24

W 2

L2
s

)
(14)

For wide samples (W � Ls) Eq. (12) leads to the formula

	Z

Z0
= −γ 2 Ls

W

∑
±

1√
1 + i(−ω ± �)τs

, (15)

displaying spin resonance at ω = ±� with a width 1/τs.
The general formula (12) is needed for medium sample

widths (Ls/
√

ωτs � W � Ls). In this case Eq. (12) describes
the crossover between the resonant dependence of 	Z on �

for wide samples [Eq. (15)] and the nonresonant dependence
of 	Z on � for narrow samples [Eq. (14)].

In Fig. 3 we plot the ratio ζ = Re 	Z/(−γ 2Z0), given by
the general equation (12), as a function of � at a fixed ω

FIG. 3. The real part of the correction to the ac impedance ζ as
a function of the Larmor frequency � at a fixed ac frequency ω for
medium and large sample widths. For curves 1, 2, 3, 4, and 5 the
parameter W/Ls is equal to 0.4, 0.6, 1, 2, and 6, respectively.

for different sample widths W . In the limit of very narrow
samples, when W � Ls, this ratio is equal to 1 [see Eq. (14)].
The transition from the nonresonant to the resonant behavior
of ζ (�) with the increase of W is clearly seen. Equation (15)
and Fig. 3 show that the wider the sample, the smaller both
the amplitude and the width of the resonance peak.

It is interesting to study the behavior of the normalized ac
magnetoresistance


(ω,�) = Re	Z (ω,�)

Re	Z (ω,� = ω)
. (16)

An analysis similar to that performed above for the depen-
dence 
(ω) in zero magnetic field, shows that 
(ω,�) at a
fixed ω has a quasiuniversal behavior as a function of the
parameter (� − ω)τ ∗ at |�| > ω, similar to the behavior of

(ω) displayed in Fig. 2. However, the dependencies of 
 on
� at |�| < ω, as seen from Fig. 3, are qualitatively different
for wide and for narrow samples.

Conclusion. We have shown that the combination of the
direct and inverse spin Hall effects in nonmagnetic metals
and semiconductors offers an interesting possibility to study
high-frequency spin phenomena, including spin resonance,
by purely electrical measurements. The corresponding cor-
rections to the sample impedance are of second order in the
spin-orbit coupling parameter, γ .

In the absence of an external magnetic field, the frequency
dependence of the electrical impedance is defined by the sum
of the bulk spin-relaxation rate and the spin-diffusion rate.
The interplay between the two corresponding relaxation times
defines also the width and the amplitude of the electrically
measured spin resonance.
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