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Obtaining Majorana and other boundary modes from the metamorphosis of impurity-induced
states: Exact solutions via the T-matrix
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We provide here a direct and exact formalism to describe the formation of edge or surface states, as well as to
calculate boundary Green’s functions. Modeling the boundary as an impurity potential, we show via the T-matrix
formalism that the impurity states evolve into boundary modes when the impurity potential goes to infinity. We
apply this technique to obtain Majorana states in one- (1D) and two-dimensional Kitaev systems. For the 1D case
we also calculate the corresponding boundary Green’s functions. We argue that our formalism can be applied to
other topological models, as well as to any model exhibiting edge states.
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Introduction. One of the oldest and challenging quantum
physics problems is taking into account the presence of
boundaries. As Pauli once said, “God made the bulk; surfaces
were invented by the devil” [1]. One of the most common
techniques to describe the boundary effects is the numerical
diagonalization of a tight-binding Hamiltonian [2,3]. Analyt-
ically, the formation of boundary modes is usually studied
by solving the Schrödinger equation with specific boundary
conditions [4]. The latter is sometimes cumbersome and of-
tentimes requires making specific approximations which de-
crease the generality of the solution. Less common techniques
rely on the use of boundary Green’s functions [5–7] and the
bulk-boundary correspondence [8].

Here, we propose a general, direct, and exact technique
to obtain the energies and the wave functions of boundary
modes in systems of arbitrary dimensions. Instead of solving
the problem of a finite-size system with a desired boundary,
we suggest to consider an infinite system with a localized
impurity. We subsequently obtain the corresponding impurity-
induced states using the T-matrix formalism [9]. As intuitively
expected, we show that by taking the impurity potential to
infinity we recover the formation of edge states. Remarkably,
this technique also allows us to obtain in a very simple and
straightforward manner the boundary Green’s functions, while
previous derivations of such quantities are often not exact and
harder to implement.

For the sake of clarity, we exemplify our proposal by
focusing on the formation of Majorana end modes in a Ki-
taev chain [10] and Majorana chiral edge states in a two-
dimensional (2D) p-wave superconductor [11–13]. We also
calculate the boundary Green’s function for the former and
compare the result with previous calculations [7]. Moreover,
we show that the analytical T-matrix formalism is entirely
consistent with a numerical tight-binding calculation.

We thus suggest the following algorithm for finding edge
states:

(1) Take an infinite 1D, 2D, or 3D system.
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(2) Introduce a point, line, or plane scalar impurity de-
scribed by a delta-function potential (see Fig. 1).

(3) Use the T-matrix formalism to find the Green’s func-
tions for the perturbed system, as well as the energies and
wave functions of the impurity-bound states.

(4) Formally set the impurity potential to infinity to re-
cover the formation of boundary modes and the boundary
Green’s functions.

T-matrix formalism. We denote the momentum-space
Hamiltonian of a given system Hp, and we define the
unperturbed Matsubara Green’s function (GF) as follows,
G0(p, iωn) ≡ (iωn − Hp)−1, where ωn denote Matsubara fre-
quencies. In the presence of an impurity Vimp(r) the latter is
modified to

G(p1, p2, iωn) = G0(p1, iωn)δ(p1 − p2)

+G0(p1, iωn)T (p1, p2, iωn)G0(p2, iωn),

(1)

1D - small impurity: bound state

1D - large impurity: two disconnected systems with end states

2D - large impurity: two disconnected systems  
with edge states

FIG. 1. A simple exemplification of a 1D system with a localized
impurity: When the impurity potential goes to infinity, this is equiva-
lent to two disconnected semi-infinite wires. Similarly, a 2D infinite
system with a linelike infinite-potential impurity is equivalent to two
disconnected half planes.
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where the T-matrix T (p1, p2, iωn) describes the cumulated ef-
fect of all-order impurity-scattering processes [9,14]. For the
particular case of a delta-function impurity Vimp(r) = V δ(x),
the form of the T-matrix in 1D is momentum independent and
is given by [9,15–18]

T (iωn) =
[
I − V ·

∫
d p

2π
G0(p, iωn)

]−1

· V, (2)

while in 2D we have

T (p1x, p1y, p2x, p2y, iωn)

= δ(p1y − p2y)

[
I − V ·

∫
d px

2π
G0(px, p1y, iωn)

]−1

· V.

(3)

Note that this is independent of p1x and p2x (due to the fact the
impurity is a delta potential in the x direction, and conversely,
that it is a delta function in p1y − p2y since the impurity is
independent of position in the y direction). When V → ∞,
G(p1, p2, iωn) the corresponding Fourier transforms become
the boundary GFs, and the poles of the T-matrix yield the
energies of the edge states.

In what follows we use this formalism at zero temperature
to calculate the retarded GF G(p1, p2, E ) obtained by the
analytical continuation of the Matsubara GF G(p1, p2, iωn)
(i.e., by setting iωn → E + iδ, with δ → +0).

1D Kitaev chain. We start by considering an infinite spin-
less Kitaev chain described by the Hamiltonian

HTB =
∑

i

−μc†
i ci − (tc†

i ci+1 − �ci ci+1 + H.c.), (4)

where c†
i (ci ) are creating (annihilating) operators on the ith

site, t is the hopping amplitude, μ denotes the chemical poten-
tial, and � > 0 is the superconducting pairing amplitude. We
set the lattice constant a as well as h̄ to unity. In momentum
space the Hamiltonian in Eq. (4) becomes

H1D
p =

(−μ/2 − t cos p i� sin p
−i� sin p μ/2 + t cos p

)
. (5)

We introduce an impurity into the chain, localized at x = 0,

Vimp(x) = Uδ(x)

(
1 0
0 −1

)
≡ Uδ(x)τz. (6)

We solve the problem of the impurity Yu-Shiba-Rusinov
(YSR) states [19–21] exactly using the T-matrix formalism
described above (see also Refs. [22–24]). In momentum
space the unperturbed retarded GF is given by G0(p, E ) =
[E + i0 − H1D

p ]−1, and the corresponding real-space GF

G0(x, E ) = ∫ d p
2π
G0(p, E )eipx . We take μ = 0 and we compute

analytically the real-space GF at x = 0,

G0(0, E ) =
(

EX0(0) 0
0 EX0(0)

)
, (7)

with X0(0) = −(
√

t2 − E2
√

�2 − E2)
−1

. The energies of the
impurity bound states can be obtained by calculating the poles
of the T-matrix,

1 ± U
1√

t2 − E2

E√
�2 − E2

= 0. (8)

FIG. 2. The energies of YSR states given by Eq. (9) plotted as
a function of the impurity strength U (in units of t). The black
dashed line corresponds to U/t = 1, for which E/t ≈ 0.28. The
energies asymptotically approach zero when U → ∞ marking the
metamorphosis of YSR states into Majorana states. We have set
μ/t = 0, �/t = 0.4.

This equation yields a pair of spurious solutions outside the
gap, and a pair of YSR-like solutions inside the gap,

E± = ±
√

1

2
[t2 + �2 + U 2 −

√
(t2 + �2 + U 2)2 − 4t2�2].

(9)

When U → 0 these solutions approach the edges of the gap,
i.e., E± → ±� (see Fig. 2), whereas when U → ∞ these
solutions decay as

E± = ± �

U/t
. (10)

We can also obtain the impurity wave functions using
Refs. [22–24],

�(x) ∝ G0(x, E ) · τz · �(0),

where �(0) = (1 0)T (for E = E+) and �(0) = (0 1)T (for
E = E−) are the null-space vectors of the matrix I2

− Uτz · G0(0, E ).
In the case of an infinite potential the energies of the bound

states E± → ±0. In what follows we consider that x can only
be an integer multiple of the lattice constant a, i.e., x = na,
with n ∈ Z. This is a fair restriction taking into account that
we work within a lattice model. This allows us to obtain an
exact form for the two zero-energy wave functions,

�1(x) ∝
(

1
− sgn x

)
e
− 1

2 ln
(

1+�/t
1−�/t

)
|x|

sin

(
π |x|

2

)
, (11)

�2(x) ∝
(− sgn x

1

)
e
− 1

2 ln
(

1+�/t
1−�/t

)
|x|

sin

(
π |x|

2

)
. (12)

We note that by combining states 1 and 2 we get left and right
Majorana bound states, since the factors 1±sgn x

2 ensure that
the WF “lives” either only on the left side or on the right side
of the impurity. The Majorana coherence length is given by

ξ = [ 1
2 ln ( 1+�/t

1−�/t )]
−1

, and diverges as t/� when � → 0. Such
behavior is expected since the Majorana bound states become
more and more delocalized when reducing �. Note that the
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(a) (b)

FIG. 3. The local DOS (black dashed lines) and the Majorana
polarization (red solid lines) plotted as a function of position for
U/t = 1, E/t ≈ 0.28 (left panel), and U/t = 100, E/t ≈ 0 (right
panel). YSR states form for an impurity strength U/t = 1, whereas
for U/t = 100 they morph into Majorana states localized on the two
sides of the potential barrier at x = 51. We have considered a chain
of 101 sites and we have set μ/t = 0, �/t = 0.4.

wave functions in Eqs. (11) and (12) fully correspond to those
calculated in Ref. [10].

We confirm these findings numerically by diagonalizing a
1D Kitaev chain with an impurity using the MATQ code [25],
and by plotting the Majorana polarization (red line) and
the local density of states (DOS) (black dashed line) for
the impurity-bound states (see Fig. 3). The energy of the
impurity-bound states goes to zero with increasing the im-
purity strength, for instance, we get E ≈ 0.28 and E ≈ 0
when setting U/t = 1 and U/t = 100, respectively (the other
parameters are μ/t = 0 and �/t = 0.4). The Majorana po-
larization [26,27] differs from the density of states (DOS) for
small impurity strengths [see Fig. 3(a)], but they become equal
(up to a sign) when the impurity potential goes to infinity
[Fig. 3(b)]. This indicates [26,27] the formation of Majorana
states at the ends of the two systems obtained by cutting
the original system into two disconnected halves. Note the
perfect agreement between the numerical and the analytical
techniques: the one-to-one correspondence for the energies of
the bound states between Figs. 2, 3, and Eq. (9), as well as for
the form of the wave functions in Eqs. (11) and (12) versus
Fig. 3.

We also discuss the versatility of our method in terms of
obtaining the boundary GFs of a system. This can be done
easily, directly, and exactly by noting that Gb ≡ G0 + G0T∞G0,
with the exact form of G0 given in Eq. (7). For μ = 0, T∞ is
given by

T∞(E + i0) = lim
U→∞

[I − UτzG0(0, E + i0)]−1Uτz

=−[G0(0, E + i0)]−1=
√

t2 − E2
√

�2 − E2

E + i0
τ0.

We can compare our result with the approach in Ref. [7]
where the authors proposed to use a recurrent procedure to
derive the boundary GF for a Kitaev chain. They find that
in the topological regime it has a pole at E = 0, consistent
with the formation of MBS. This is what transpires also
from our expressions above corresponding to μ = 0. In order
to capture the transitions to a trivial phase at μ = ±2t we
study the dependence of the boundary GF (or equivalently
of the T-matrix) on μ. We find that such a phase transition

FIG. 4. On the left (right) panel we present the average spectral
function of a 2D infinite system in the presence of a weak (strong)
linelike impurity, plotted as a function of py. For a weak impurity
we take U/t = 1 and we see clearly the formation of a subgap Shiba
band, which for a strong impurity with U/t = 100 morphs into chiral
dispersive Majorana modes with energies E± = ±κpy. We have set
μ/t = 0.5, κ/t = 0.4, and the quasiparticle broadening δ/t = 0.03.

is captured perfectly: In the topological regime the T-matrix
has a pole at E = 0, whereas in the trivial one its behavior
is regular. This result is in perfect agreement with the results
of Ref. [7]. For brevity, we leave this demonstration to the
Supplemental Material [28]. Moreover, we should stress once
more the simplicity and the directness of our approach, as
well as the absence of any approximation or supplementary
assumption.

2D p-wave superconductor. Below we turn to an infinite 2D
system with a deltalike line impurity at x = 0 described by the
real-space tight-binding Hamiltonian

H2D
TB =

∑
m,n

−μc†
m,ncm,n − [t (c†

m+1,ncm,n + c†
m,n+1cm,n)

−�(cm,ncm+1,n − i cm,ncm,n+1) + H.c.], (13)

where μ denotes the chemical potential, t is the hop-
ping parameter, and � > 0 is the pairing amplitude.
Operators c†

m,n(cm,n) create (annihilate) spinless fermions
on the site (m, n). The corresponding momentum-space
Hamiltonian is

H2D
p =

(
εp �p

�∗
p −εp

)
, (14)

with εp ≡ −μ/2 − t (cos px + cos py), �p = i�(sin px +
i sin py).

The line impurity can be described by Eq. (6). From Eq. (3)
we see that the poles of the T-matrix, which correspond to the
impurity energy levels, are py dependent and can be obtained
by solving

det

[
I2 − Uτz ·

∫
d px

2π
G0(px, p1y, E )

]
= 0, (15)

with G0(px, p1y, E ) being the unperturbed retarded GF.
At low energies we can use the approximation

H2D
p ≈

(
ξp iκ(px + ipy)

−iκ(px − ipy) −ξp

)
, (16)
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FIG. 5. The band structure of a 2D infinite ribbon obtained via
numerical diagonalization of the tight-binding Hamiltonian. We note
the formation of chiral dispersive Majorana modes with energies
E± = ±κpy, as expected theoretically for a 2D p-wave supercon-
ductor. Parameters are the same as in Fig. 4, and the width of the
ribbon is 101 sites. The infinite system (bulk) spectrum is denoted by
the dashed yellow lines.

where ξp ≡ p2

2m0
− p2

F
2m0

, with pF denoting the Fermi momen-
tum, m0 the quasiparticle mass, and κ the p-wave pairing
parameter. Such a low-energy description enables us to obtain
in the limit of U → ∞ an exact analytical solution of the
Eq. (15) for the poles of the T-matrix,

E± = ±κpy. (17)

We note that when py → 0, E → 0, which is consistent
with previous findings. These two solutions correspond to
counterpropagating chiral Majorana modes.

To obtain information about the higher-energy bound states
we plot the average perturbed spectral function A(p, E ) =
− 1

π
Im{tr[G(p, p, E )]}. The poles of the spectral function

contain both the unperturbed band structure, as well as the
impurity-induced bands. In order to obtain the energy dis-
persion of the bound states along the impurity direction we
will take px = 0 and plot A(0, py, E ) as a function of py

and E . In Fig. 4 we consider two values of the impurity
strength U/t = 1 and U/t = 100. For a small impurity we
note the formation of a finite-energy dispersive Shiba band
[see Fig. 4(a)], while for the very large impurity this band
touches zero at py = 0 [see Fig. 4(b)], marking the separation
of the system in two independent ones and the formation of
chiral Majorana states. Note here that the bands above the gap
correspond to the bulk unperturbed states of the system, while
the subgap band is the impurity-induced band. Note also the
agreement with the low-energy approximation, where close
to py = 0 the energy dispersion of the bound states is indeed
described by E± = ±κpy with κ/t = 0.4.

We compare this with a fully numerical analysis of the
spectrum of a ribbon, obtained using a full tight-binding exact

diagonalization via the MATQ code, and plotted in Fig. 5. We
note the bulk ribbon bands (denoted in blue), quantized due to
the finite size of the ribbon in the x direction. For comparison
we also give the infinite-system band structure superposed
as dashed yellow lines. We also note the formation of the
Majorana edge states crossing at py = 0 (cf. E± = ±κpy ob-
tained above, denoted in red). We stress the remarkable agree-
ment between the analytical and the numerical techniques,
both for the bulk, and especially for the subgap impurity
states.

Our method can also help to describe more experimentally
relevant situations corresponding to imperfect boundaries.
We set the impurity potential to infinity, however “soft”
boundaries could be described by assigning a finite value
to it. We should note that even in this limit we can obtain
analytically and without approximations the energies of the
bound states and the form of the bound-state wave func-
tions [see, e.g., Eqs. (9), (11), and (12)], rendering our tech-
nique very powerful from both a theoretical and experimental
perspective.

Conclusions. We have developed an exact formalism,
which provides us with a direct manner to describe the for-
mation of boundary modes, as well as to calculate boundary
GFs. The technique is based on modeling the boundary as
a localized impurity and using the T-matrix formalism. We
should point out that this formalism does not require making
either a low-energy approximation, or any supplementary
assumptions, and for the systems for which the form of the
real-space GF can be derived analytically it does not even
require a numerical integration.

We have successfully applied our method to a 1D Kitaev
model and a 2D p-wave superconductor to describe the for-
mation of Majorana states, and we have checked that our
formalism is fully consistent with a tight-binding numerical
approach. We note that this formalism can be generalized
very easily to other models supporting end, edge, and sur-
face states, as well as other types of bound states, regard-
less of their topological or trivial nature. A nonexhaustive
list includes models combining s-wave superconductivity,
spin-orbit coupling and a Zeeman field [29,30], surface and
edge states of topological insulators [31–33], graphene [34],
boundary modes of the Kane-Mele model [33], and Andreev
bound states in S-N-S junctions [35], as well as Fermi-arc
states in Weyl and Dirac semimetals [36,37]. Our results
are also in agreement with previous work [38] proposing
impurities as local probes of topology in band insulators.
Moreover, we believe that combining scattering matrix theory
and our formalism may allow one to study also arbitrary-shape
potentials, thus making our proposition even more relevant
from an experimental perspective; this possibility is currently
under investigation.
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