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Topological edge states in the Su-Schrieffer-Heeger model
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The Su-Schrieffer-Heeger (SSH) model on a two-dimensional square lattice exhibits a topological phase
transition which is related to the Zak phase determined by bulk band topology. The strong modulation of electron
hopping causes nontrivial charge polarization even in the presence of inversion symmetry. The energy band
structures and topological edge states have been calculated numerically in previous studies. Here, however, the
full energy spectrum and explicit form of wave functions for two-dimensional bulk and one-dimensional ribbon
geometries of the SSH model are analytically derived using the wave mechanics approach. Explicit analytic
representations of wave functions provide the information of parity for each subband, localization length, and
critical point of the topological phase transition in the SSH ribbon. IThe dimensional crossover of the topological
transition point for the SSH model from one to two dimensions is also shown.
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I. INTRODUCTION

The recent development of topological band theory in
condensed-matter physics [1–3] has established a new class
of electronic materials such as topological insulators [4–11],
topological crystalline insulators [12–15], and topological
semimetals [16–23]. In these topological materials, topologi-
cally protected edge states (TESs) emerge owing to nontrivial
bulk band topology. TESs are robust to defects and edge
roughness and can be exploited for application in low-power
consumption electronic and spintronic devices. One origin
of TESs is nonzero Berry curvature induced by spin-orbit
couplings. Berry curvature is a geometric field strength in
momentum space. Its integration over momentum space yields
a magnetic monopole that is characterized by the Chern
number.

Even under zero Berry curvature, the Berry connection,
a geometric vector potential whose curl yields the Berry
curvature, can also lead to TESs [24]. Integration of the Berry
connection over momentum space (also called the Zak phase
[25]) results in an electric dipole moment that generates robust
fractional surface charges [26–28]. Such a dipole field related
to the Zak phase is used to design topological materials, i.e.,
topological electrides [29,30] and A3B atomic sheets such as
C3N [31,32]. Recently, this idea was extended to an electric
quadrupole moment which induces topological corner states
[33–40]. In addition, since topological design on the basis
of the Zak phase does not demand the spin-orbit couplings,
this approach is useful for application to nonelectronic sys-
tems such as topological photonics [41–45], acoustic crystals
[46–49], and topological circuits [50,51].
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One of the simplest models to demonstrate the topological
phase transition owing to the Zak phase associated with zero
Berry curvature is the Su-Schrieffer-Heeger (SSH) model
[52,53] on a two-dimensional (2D) square lattice [24]. Es-
sentially the same model was also introduced by Shockley to
discuss the surface localized modes [54], which is nowadays
known as Shockley model [55,56]. In these models, the topo-
logical phase transition occurs by tuning the ratio between
inter- and intracell electron hoppings. If intercell hoppings
become larger than the intracell hoppings, the Zak phase
becomes nonzero, and edge states appear as a consequence of
bulk-edge correspondence. However, the emergence of edge
states in ribbon systems has been confirmed only by numerical
calculations so far.

Meanwhile, graphene is another good example that pro-
vides the finite Zak phase accompanying TESs. Graphene has
two characteristic edge structures, i.e., zigzag and armchair.
Zigzag graphene edges provide the robust edge localized
states at the Fermi energy [57–59], which can be attributed
to the existence of the finite Zak phase in the bulk wave
function of graphene [60–62]. Actually, edge states provide
the perfectly conducting channel [63–65] and lead to very
high conductivity in graphene nanoribbons [66]. However,
armchair graphene edges do not provide such edge states
at all owing to the zero Zak phase. Graphene nanoribbons
are particularly advantageous since their complete energy
spectrum and wave functions can be analytically obtained by
solving the equations of motion of the tight-binding model
using wave mechanics approaches [67,68].

In this paper, we analytically derive the full energy spec-
trum and corresponding wave functions of one-dimensional
(1D) SSH ribbons using the wave mechanics approach. From
the explicit form of the wave functions, we obtain the infor-
mation of the parity for each subband, the localization length
of the TES, and the critical point of the topological phase
transition in 1D SSH ribbons to clarify the crossover from

2469-9950/2019/100(7)/075437(9) 075437-1 ©2019 American Physical Society

https://orcid.org/0000-0002-9147-9939
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.100.075437&domain=pdf&date_stamp=2019-08-29
https://doi.org/10.1103/PhysRevB.100.075437


OBANA, LIU, AND WAKABAYASHI PHYSICAL REVIEW B 100, 075437 (2019)

FIG. 1. (a) Schematic of the SSH model on a square lattice.
Thick and thin bonds represent the intra- and intercell electron
hoppings, respectively. The primitive translation vectors are a1 =
(a, 0) and a2 = (0, a). (b) Corresponding first BZ. The reciprocal
lattice vectors are b1 = ( 2π

a , 0) and b2 = (0, 2π

a ).

the 1D to 2D system. In the 2D limit, the topological phase
transition happens when the inter- and intracell hoppings are
equal. However, in 1D SSH ribbons, it is found that stronger
intercell hoppings are needed for the topological phase tran-
sition owing to the finite-size effect. It is also found that the
critical value of the transition has a power-law dependence on
the ribbon width.

This paper is organized as follows. In Sec. II, we give a
brief summary of the energy spectrum and wave functions of
the SSH model in the 2D limit, where the topological phase
transition is related to the Zak phase. In Sec. III, we ana-
lytically derive the energy spectrum and corresponding wave
functions of SSH ribbons by using the wave mechanics ap-
proach. The critical ratio between intra- and intercell electron
hoppings for the topological phase transition is calculated by
using the analytic solutions. Section IV provides a summary
of the paper.

II. TWO-DIMENSIONAL SSH MODEL

In this section, we briefly discuss the electronic states and
their topological properties in the 2D SSH model. Figure 1(a)
shows a schematic of the 2D SSH model on a square lattice.
The yellow shaded square indicates the unit cell, in which
there are four atomic sites labeled A, B,C, and D. We assume
that each atomic site possesses a single electron orbital and
intra- and intercell hoppings, −γ and −γ ′, respectively. Here,
γ and γ ′ are defined as positive real values. The primitive
vectors are defined as a1 = (a, 0) and a2 = (0, a), where a
is the lattice constant. The system has Nx cells along the x
direction Ny cells along the y direction, resulting in a system
size of Lx = Nxa along the x direction and Ly = Nya along the
y direction. Note that this system has a point group symmetry
of C4v . Since the system possesses both inversion and time-
reversal symmetries, Berry curvature is absent in this system.
Figure 1(b) shows the corresponding first Brillouin zone (BZ).

The eigenvalue equation of the 2D SSH model on a square
lattice is written as

Ĥ (k)|u j (k)〉 = ε j (k)|u j (k)〉, (1)

TABLE I. Relation between band index j, eigenvalue ε j , and
eigenfunction uj . ζ j denotes the parity of the eigenvector at the M,
X , and � points for the trivial (nontrivial) phase.

j s1 s2 ε j u j ζ j (M) ζ j (X ) ζ j (�)

1 − − ε1 u1 + (+) + (−) + (+)
2 + − ε2 u2 − (−) − (+) − (−)
3 − + ε3 u3 − (−) − (+) − (−)
4 + + ε4 u4 + (+) + (−) + (+)

where k = (kx, ky) is the wave number vector and j
(= 1, 2, 3, 4) is the band index. The eigenvector is
defined as |uj (k)〉 = (ψ j,A(k), ψ j,B(k), ψ j,C (k), ψ j,D(k))T ,
where (· · · )T indicates the transpose of the vector. ψ j,α (k)
(α = A, B,C, D) is the amplitude at site α for the jth energy
band at k. The Hamiltonian Ĥ (k) is explicitly written as

Ĥ (k) =

⎛
⎜⎜⎜⎝

0 −ρx(kx ) −ρy(ky) 0

−ρ∗
x (kx ) 0 0 −ρy(ky)

−ρ∗
y (ky) 0 0 −ρx(kx )

0 −ρ∗
y (ky) −ρ∗

x (kx ) 0

⎞
⎟⎟⎟⎠, (2)

where ρl (kl ) = γ + γ ′eikl a = |ρl (kl )|eiφl (kl ), with l = x, y.
Here, φl (kl ) is defined as the argument of ρl (kl ) with a range
of −π � φl (kl ) � π .

By solving Eq. (1), the energy spectra for bulk states are
obtained as

ε j (k) = s1|ρx(kx )| + s2|ρy(ky)|, (3)

where s1 = s2 = ±1. The energy spectrum contains four sub-
bands; the relations between the band index j and signs s1 and
s2 are summarized in Table I. Eigenvectors for bulk states are
obtained as

|u j (k)〉 = 1

2

⎛
⎜⎜⎜⎜⎝

−1

s1e−iφx (kx )

s2e−iφy (ky )

−s1s2e−i[φx (kx )+φy (ky )]

⎞
⎟⎟⎟⎟⎠. (4)

Figures 2(a) and 2(b) show the energy band structures
for γ ′/γ �= 1 and γ ′/γ = 1, respectively. In general, the
energy band structures of the 2D SSH model become identical

FIG. 2. Energy band structure of the 2D SSH model for
(a) γ ′/γ = 1/3.0 (γ ′/γ = 3.0) and (b) γ ′/γ = 1. The signs (±) in
the plot of the energy band structure represent the parity of the wave
function. It should be noted that band inversion occurs at the X (Y )
point.
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FIG. 3. Density plot of the phase φl (kl ) for (a) trivial and (b) non-
trivial phases. In the trivial phase, no phase jumps occurs. In the
nontrivial phase, however, the phase jumps by 2π occur along the
lines of kx = ±π and ky = ±π , respectively.

between cases with the ratio γ ′/γ and its inverse ratio γ /γ ′.
For finite γ ′/γ , two band gaps open between the first and
second subbands and between the third and fourth subbands.
The band gaps close at γ ′/γ = 1. However, it should be noted
that the parities at the X (Y ) point are inverted between the
regions of γ ′/γ � 1 and γ ′/γ > 1.

The topological properties of the 2D SSH model can
be characterized in terms of the vectored Zak phase Z =
(Zx,Zy ), which is defined as the line integration of the
Berry connection. The Berry connection for the jth en-
ergy band is defined as A j = (a j (kx ), a j (ky)), with a j (kl ) =
−i 〈u j (k)| ∂

∂kl
|u j (k)〉. Since the band inversion happens in the

2D SSH model at γ ′/γ = 1, the finite Zak phase appears for
|γ ′/γ | > 1 and is absent for |γ ′/γ | � 1. In the case of the
finite Zak phase, the system possesses charge polarization,
which induces the TESs. From now on, we call the phase with
the finite Zak phase the nontrivial phase; otherwise, we have
the trivial phase. The lth component of the vectored Zak phase
in the 2D SSH model can be related to the winding phase of
the eigenvectors as

Zl = −i
occ.∑
j=1

∫ 2π

0
〈u j (k)| ∂

∂kl
|u j (k)〉 dkl

= Nocc.
1

2
�φl (kl ), (5)

where �φl (kl ) is the winding phase of the eigenvectors ac-
companied by the variation of kl from zero to 2π and Nocc.

is the number of occupied energy bands. The derivation of
Eq. (5) is given in Appendix A.

Figures 3(a) and 3(b) show the density plot of phase φl

in the trivial and nontrivial phases, respectively. In the trivial
case, the magnitude of the phase is almost zero everywhere in
momentum space. However, in the nontrivial case, phases φx

and φy jump by 2π along the lines of kx = ±π and ky = ±π ,
respectively. By looking at these figures, we can find the Zak

phase as follows:

Zl = 1

2
�φl (kl ) =

{
0 γ ′/γ � 1,

π γ ′/γ > 1.
(6)

Thus, the nontrivial phase appears for γ ′/γ > 1. The deriva-
tion of Eq. (6) is given in Appendix A.

Zak phases are related to charge polarization P = (Px, Py )
as follows [26,27]:

Pl = −i
1

Ll

occ.∑
j=1

π∑
kl =−π

〈u j (k)| ∂

∂kl
|u j (k)〉 = Zl

2π
. (7)

Thus, if the system has the nonzero Zak phase, charge polar-
ization occurs, i.e., the appearance of edge states. Because of
C4 symmetry, the 2D SSH model has Px = Py in general. Thus,
charge polarization of the 2D SSH model is P = (0, 0) for the
trivial phase and (1/2, 1/2) for the nontrivial phase.

Inversion symmetry puts a strong constraint on the value of
P, which is determined gauge independently by the parities at
the � and X (Y ) points as [69]

P j
l = 1

2

(
q j

l mod 2
)
, (8)

(−1)q j
x =

∏
j∈occ.

ζ j (X)

ζ j (�)
, (−1)q j

y =
∏

j∈occ.

ζ j (Y)

ζ j (�)
, (9)

where P j
l indicates the lth charge polarization and q j

l is
topologically invariant, which is 0 or 1. The details of Eq. (8)
and (9) are described in Appendix B. Thus, the value of the
Zak phase determines the presence or absence of electrical
polarization.

Since the present system has a point group symmetry of
C4v , it has mirror symmetry Mx (My) with respect to the
x (y) axis. In our system, Mx and My commute. However,
the inclusion of π flux in the system makes Mx and My

noncommutative, which leads to a gap opening in the Wannier
band and topological quadrupole corner states [33].

III. EIGENSYSTEM OF SSH RIBBONS

In this section, we analytically derive the energy spectrum
and corresponding wave functions of 1D SSH ribbons by
using the wave mechanics approach under the open bound-
ary condition. This method has been successfully used to
derive the energy spectrum and wave functions for graphene
nanoribbons to show the existence of edge states [67,68].
Explicit wave functions provide information of the parity for
each subband and the localization length of the TES. We also
inspect the topological properties of a 1D SSH ribbon and the
crossover from a one-dimensional to 2D system. In the 2D
limit, the topological phase transition happens when the inter-
and intracell hoppings are equal. However, in the 1D SSH
ribbon, it is found that stronger intercell hoppings are needed
for the topological phase transition owing to the finite-size
effect. It is also found that the critical value of the transition
has a power-law dependence on the ribbon width. We also
show the localization length of the TES for 1D SSH ribbons
strongly depends on γ ′/γ .

Figure 4 shows the schematic structure of a SSH ribbon,
where we assume that the lattice is translationally invariant
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FIG. 4. (a) SSH ribbon model on a square lattice. Nx is the
ribbon width. The × marks indicate the missing atoms for the
open boundary condition. Energy band structure of Nx = 20 for
(b) γ ′/γ = 1/3.0 and (c) γ ′/γ = 3.0. In the nontrivial case, edge
states appear (red lines).

only along the y direction and is finite for the x direction.
From now on, we assume a = 1 for simplicity. The yellow
shaded rectangle indicates the unit cell of the SSH ribbon,
which contains Nx plaquettes, i.e., 4 × Nx atomic orbitals. We
call the four atomic sites of the mth plaquette mA, mB, mC,
and mD and define the corresponding wave functions as ψm,A,
ψm,B, ψm,C , and ψm,D, where m = 0, 1, . . . , Nx + 1.

The equations of motion for a 1D SSH ribbon are described
by

εψm,A = −ρ∗
y ψm,C − γψm,B − γ ′ψm−1,B,

εψm,B = −ρ∗
y ψm,D − γψm,A − γ ′ψm+1,A,

εψm,C = −ρyψm,A − γψm,D − γ ′ψm−1,D,

εψm,D = −ρyψm,B − γψm,C − γ ′ψm+1,C . (10)

The open boundary conditions for a 1D SSH ribbon are given
as

ψ0,B = ψ0,D = 0, ψNx+1,A = ψNx+1,C = 0. (11)

Before explaining the analytic details, we shall briefly dis-
cuss the energy band structures of the ribbon. Figures 4(b) and
4(c) show energy band structures with Nx = 20 in the trivial
phase with γ ′/γ = 1/3.0 � 1 and the nontrivial phase with
γ ′/γ = 3.0 > 1, respectively. These band structures were
numerically obtained by solving the equations of motion. In

the trivial phase, gapped energy band structures are obtained.
However, in the nontrivial phase, doubly degenerate TESs
appear inside the gaps (indicated by magenta lines).

Now let us derive the eigensystem of 1D SSH ribbons by
assuming the generic solutions of wave functions as

ψm,σ = Cσ eikxm + C̃σ e−ikxm, (12)

where σ = A, B,C, D. Cσ and C̃σ are arbitrary coefficients.
The open boundary condition leads to the following relations:

ψNx+1,A = CAZ + C̃AZ−1 = 0,

ψNx+1,C = CCZ + C̃CZ−1 = 0,

ψ0,B = CB + C̃B = 0,

ψ0,D = CD + C̃D = 0, (13)

where Z = eikx (Nx+1). Thus, we can rewrite the generic
solution as

ψm,A = CA(eikxm − Z2e−ikxm),

ψm,B = CB(eikxm − e−ikxm),

ψm,C = CC (eikxm − Z2e−ikxm),

ψm,D = CD(eikxm − e−ikxm). (14)

By substituting these functions into the equations of motion,
we obtain the secular equation for the 1D SSH ribbon,

M̂� = 0, (15)

where � = (CA,CB,CC,CD)T and M̂ is a 4 × 4 matrix. The
matrix elements Mi, j (i, j = 1, 2, 3, 4) of M̂ are

M11 = M33 = ε(eikxm − e−ikxmZ2),

M22 = M44 = ε(eikxm − e−ikxm),

M21 = M43 = ρxeikxm − ρ∗
x e−ikxmZ2,

M12 = M34 = ρ∗
x eikxm − ρxe−ikxm,

M13 = ρ∗
y (eikxm − e−ikxmZ2),

M24 = ρ∗
y (eikxm − e−ikxm),

M31 = ρy(eikxm − e−ikxmZ2),

M42 = ρy(eikxm − e−ikxm),

M14 = M23 = M32 = M41 = 0. (16)

It should be noted that � = 0 and kx = 0,±π are unphysical
solutions because wave functions ψm,σ become identically
zero; that is, electrons are absent in the system. Thus, detM̂ =
0 is demanded and leads to the following form:

ue4ikxm + ve2ikxm + w + ve−2ikxmZ2 + ue−4ikxmZ4 = 0, (17)

where u, v, and w are functions of ε, ρy, γ , γ ′, and Z .
Thus, all the coefficients of the e±i4kxm, e±i2kxm terms and the
constant term should be zero to hold Eq. (15), i.e., u = 0,
v = 0, and w = 0.

By using space-inversion symmetry, i.e., ψNx+1−m,A =
±ψm,D, ψNx+1−m,C = ±ψm,B, we can obtain the relations
CD = ±CAZ and CB = ±CCZ from Eq. (14). In addition, the
mirror symmetry leads to ψm,A = ±ψm,C , i.e., CC = ±CA.
Thus, the general form of the wave function can be written
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as ⎛
⎜⎜⎜⎝

ψm,A

ψm,B

ψm,C

ψm,D

⎞
⎟⎟⎟⎠ = Nc

⎛
⎜⎜⎜⎝

sin[kx(Nx + 1 − m)]

(−1)rs1 sin[kxm]

s2 sin[kx(Nx + 1 − m)]

(−1)rs1s2 sin[kxm]

⎞
⎟⎟⎟⎠, (18)

where r = 1, 2, 3, . . . , Nx indicates the band index of the 1D
SSH ribbon. However, as will be clarified later, the index will
be r = 1, 2, 3, . . . , Nx − 1 in the nontrivial phase because the
one missing mode will form the mode of TESs. It should be
noted that the parity of the wave function clearly depends on
the band index r. Nc is the normalization constant. Owing to
the translational invariance along the y direction, the wave
function for the whole ribbon system can be obtained by
multiplying the Bloch phase eikyy and Eq. (18).

The coefficients of e±i4kxm are shown to be identically zero
by using the bulk energy spectrum equation (3), i.e.,

u(kx, ky, Nx ) = ε4 − 2ε2(|ρx|2 + |ρy|2)2 + (|ρx|2 − |ρy|2)2

= {ε2 − (|ρx| ± |ρy|)2}2 = 0. (19)

Thus, u(kx, ky, Nx ) is irrelevant for later discussion.
The solutions of v = w = 0 determine the transverse wave

number kx for a given γ ′/γ . Thus, we obtain

v(kx, ky, Nx ) = ε4[Z + Z−1] − ε2
[(

ρ∗2
x + |ρx|2 + 2|ρy|2

)
Z

+ (
ρ2

x + |ρx|2 + 2|ρy|2
)
Z−1

]
+ (|ρx|2 − |ρy|2)

[(
ρ∗2

x − |ρy|2
)
Z

+ (
ρ2

x − |ρy|2
)
Z−1

] = 0, (20)

w(kx, ky, Nx ) = ε4[Z2 + Z−2 + 4] − 2ε2
[(

ρ∗2
x + |ρy|2

)
Z2

+ (
ρ2

x + |ρy|2
)
Z−2 + (

ρx + ρ∗
x

)2 + 4|ρy|2
]

+ (
ρ∗2

x − |ρy|2
)2

Z2 + (
ρ2

x − |ρy|2
)2

Z−2

+ 4ρ2
x ρ∗2

x − 2|ρy|2(ρx + ρ∗
x )2 + 4|ρy|4 = 0.

(21)

It should be noted that both v(kx, ky, Nx ) and w(kx, ky, Nx )
are periodic and even functions of kx with a period of 2π ,
i.e., v(kx, ky, Nx ) = v(−kx, ky, Nx ) and v(kx + 2nπ, ky, Nx ) =
v(kx, ky, Nx ) (n is an arbitrary integer). Similarly, w(kx, ky, Nx )
has the properties of w(kx, ky, Nx ) = w(−kx, ky, Nx ) and
w(kx + 2nπ, ky, Nx ) = w(kx, ky, Nx ). Thus, it is sufficient to
find the solutions within the range 0 < kx < π .

At γ ′/γ = 1, Eqs. (20) and (21) safely reproduce the
energy spectrum of a simple 2D square lattice, i.e., ε(k) =
±2γ [cos ( kx

2 ) ± cos ( ky

2 )]. In addition, the open boundary con-
dition for the ribbon structure leads to the transverse wave
numbers kx as

kx = m

Nx + 1
π, m = 1, 2, 3, . . . , Nx. (22)

Figures 5(a) and 5(b) show the kx dependence of
u(kx, ky, Nx ), v(kx, ky, Nx ), and w(kx, ky, Nx ) for trivial and
nontrivial phases, respectively. Here, we have fixed the ribbon
width as Nx = 5. The functions u(kx, ky, Nx ), v(kx, ky, Nx ),
and w(kx, ky, Nx ) are calculated under the condition ε2 =
(|ρx| + |ρy|)2. The case of ε2 = (|ρx| − |ρy|)2 is not shown

because the results do not change. The solutions of
u(kx, ky, Nx ), v(kx, ky, Nx ), and w(kx, ky, Nx ), which are de-
noted by black circles in Figs. 5(a) and 5(b), give the trans-
verse wave numbers kx which determine the eigenstates of the
1D SSH ribbon. The variation of the longitudinal wave num-
ber ky alters only the amplitude of u(kx, ky, Nx ), v(kx, ky, Nx ),
and w(kx, ky, Nx ) and does not change the positions of the zero
points. Thus, the solutions of detM = 0 do not depend on ky.

For a fixed Nx, the number of real solutions N for detM̂ = 0
becomes different depending on the value of γ ′/γ , i.e.,

N =
{

Nx, |γ ′/γ | � (γ ′/γ )c,

Nx − 1, |γ ′/γ | > (γ ′/γ )c.
(23)

Here, (γ ′/γ )c is the critical value at which the topological
phase transition occurs. (γ ′/γ )c can be derived by

∂

∂kx
v(kx, ky, Nx )|kx=π = 0. (24)

Further, as indicated by Eq. (23), one real solution is
missing for |γ ′/γ | > (γ ′/γ )c. This disappearance of a real
solution happens near kx = π by looking at w(kx, ky, Nx ) un-
der the evolution of γ ′/γ , as shown in the insets of Figs. 5(a)
and 5(b). Thus, the remaining missing solution can be ob-
tained by analytical continuation of kx → π + iη. This imag-
inary solution η depends on γ ′/γ . If γ ′/γ is larger, η also
increases.

Figures 5(c) and 5(d) show the relation between the ob-
tained transverse complex wave number (kx + iη) and energy
band structures of 1D SSH ribbons with Nx = 5 for trivial and
nontrivial phases, respectively. In the trivial phase, as shown
in Fig. 5(c), no imaginary solutions appear. The real transverse
wave numbers kx (denoted by thick black lines) lead to the
energy subbands of extended bulk states. However, in the
trivial phase, as shown in Fig. 5(d), an imaginary solution
η appears, which gives the subband of TESs (thin magenta
lines). Note that edge states are doubly degenerate owing to
inversion symmetry.

The wave function of TESs can be written as⎛
⎜⎜⎜⎝

ψm,A

ψm,B

ψm,C

ψm,D

⎞
⎟⎟⎟⎠ = Nc

⎛
⎜⎜⎜⎝

sinh[η(Nx + 1 − m)]

(−1)Nx s1 sinh[ηm]

s2 sinh[η(Nx + 1 − m)]

(−1)Nx s1s2 sinh[ηm]

⎞
⎟⎟⎟⎠, (25)

where Nc is the normalization constant. Similar to the ex-
tended states, the wave function of TESs for the whole ribbon
system can be obtained by multiplying the Bloch phase eikyy

and Eq. (25). It should be noted that the parity of TESs
depends on Nx, resulting in the even-odd effect of Nx on
the parity. This property can be used for a band-selective
filter [70]. We should note that the wave function for TESs
contains hyperbolic sine functions which are characterized by
the imaginary transverse wave number η. Thus, TESs are lo-
calized states with a characteristic localization length of 1/η.

Figure 6(a) shows the electron hopping (γ ′/γ ) dependence
of the localization length (1/η). Here, 1/η decays with the
power law on increasing γ ′/γ . With an increase of γ ′/γ , the
localization length of TESs becomes shorter; that is, electrons
are more strongly localized near the edges of ribbon. Thus,
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FIG. 5. Schematic chart of functions v (magenta line) and w (cyan line) for Nx = 5 in (a) the trivial [|γ ′/γ | � (γ ′/γ )c] and (b) nontrivial
[|γ ′/γ | > (γ ′/γ )c] phases, respectively. White circles at kx = 0 and π are unphysical solutions. The black circle in the region of 0 < kx < π

indicates the real-value solution of the transverse wave number kx . It should be noted that there are Nx solutions for the trivial phase but
only Nx − 1 solutions for the nontrivial phase. The insets show the dependence of w on the longitudinal wave number ky near kx = π . The
relation between the obtained complex transverse wave number kx + iη and the corresponding energy band structure for the 1D SSH model
with Nx = 5 for (c) the trivial and (d) nontrivial phases. In the top panels of (c) and (d), solutions of the complex transverse wave number
kx + iη in the BZ are plotted. Both kx and η do not have ky dependence, and no imaginary part exists in the trivial phase. The bottom panels
of (c) and (d) show the corresponding energy band structures. Real-value solutions kx lead to energy dispersion of bulk states, denoted by thin
black lines; however, the imaginary solution η leads to energy dispersion of TESs, denoted by thin magenta lines.

if the localization length is larger than the ribbon width,
the destructive interference between TESs from both edges
occurs. Actually, this property of TESs demands that stronger
γ ′/γ is necessary to induce the topological phase transition if
the ribbon width gets narrower. Figure 6(b) shows the ribbon
width Nx dependence of (γ ′/γ )c, which is the critical value
for the topological phase transition. Although (γ ′/γ )c = 1
for a 2D SSH model, Figure 6(b) shows that narrower SSH
ribbons have (γ ′/γ )c larger than 1. Since (γ ′/γ )c slowly
decays with increasingNx owing to its power-law behav-
ior, the finite-size effect persists even for very large Nx.
Thus, the finite-size effect for the topological phase transition
in the 1D SSH model becomes crucial, especially for narrower
ribbons.

IV. SUMMARY

In summary, we have analytically derived eigensystems
of 2D SSH and 1D SSH ribbon models on a square lattice
by using the wave mechanics approach. In these models,
the modulation of electron hopping causes nontrivial charge
polarization even in the presence of inversion symmetry. As
for the 2D SSH model, it is known that the topological
phase transition occurs, accompanied by nontrivial charge
polarization if intercell hopping γ ′ is larger than intracell
hopping γ . Owing to the bulk-edge correspondence, TESs are

expected to appear in the nontrivial phase. However, this has
been confirmed only by numerical calculations so far. In this
paper, we have successfully derived the full energy spectrum
and corresponding wave functions for 1D SSH ribbons by
using the wave mechanics approach. Mathematical relations
between the complex transverse wave number (kx + iη) and
energy band structures of the 1D SSH ribbon were clarified.
Also, the parity of wave functions and localization length of
TESs were analytically identified.

It was also found that the critical value of the topological
phase transition (γ ′/γ )c strongly depends on the ribbon width
and deviates from 1, which is the limit of the 2D SSH model.
This information will be necessary when we try to fabricate
topological electronic, photonic devices in quasi-1D geometry
on the basis of the SSH model.

By using the wave function used in this paper, we can dis-
cuss further electronic states of the 2D SSH model subjected
to other perturbations. Our approach is useful for constructing
of Green’s functions by the decomposition of propagating and
evanescent modes, which is needed for atomistic calculations
of electronic transport properties [71]. It is also possible to
apply our approach to obtain the bound states of a finite 1D
SSH model [72]. Our results will serve to design 2D materials
which possess a nonzero Zak phase and edge states which are
necessary for robust electronic transport. Furthermore, it can
be applied to the theory of topological photonic crystals.
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FIG. 6. (a) Dependence of the localization length 1/η of TES on
γ ′/γ . The solid line is calculated from analytic wave functions of
Eq. (25). The dashed line is the fitting for the large coupling limit.
The fitting curve is 1/η = 1.327(γ ′/γ − 1)−0.481. (b) Ribbon width
Nx dependence of the critical value (γ ′/γ )c, where the topological
phase transition occurs. In the 2D limit of Nx → ∞, (γ ′/γ )c con-
verges to 1. Black circles are (γ ′/γ )c obtained from Eq. (24). The
dashed line is the fitting for the limit of large Nx . The fitting curve is
(γ ′/γ )c = 1.165(Nx − 1)−0.034.
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APPENDIX A: DERIVATION OF EQUATIONS (5) AND (6)

Here, we derive the relation between the Zak phase and the
winding phase of the eigenvectors given in Eqs. (5) and (6).
From the eigenvector in Eq. (4), we obtain

〈uj (k)| ∂

∂kl
|u j (k)〉 = i

2

dφl (kl )

dkl
. (A1)

Thus, Eq. (5) can be derived as

Zl = −i
occ.∑
j=1

∫ 2π

0
〈u j (k)| ∂

∂kl
|u j (k)〉 dkl

= Nocc.
1

2

∫ 2π

0
dkl

dφl (kl )

dkl

= Nocc.
1

2

∮
dφl (kl )

=: Nocc.
1

2
�φl (kl ), (A2)

where �φl (kl ) is the winding phase of the eigenvectors ac-
companied by the variation of kl from zero to 2π and Nocc. is
the number of occupied energy bands.

From ρl (kl ) = |ρl (kl )|eiφl (kl ), the total derivative of ρl (kl )
is obtained as

dρl (kl ) = eiφl (kl )d|ρl (kl )| + i|ρl (kl )|eiφl (kl )dφl (kl ). (A3)

Identically, we have

1

ρl (kl )
dρl (kl ) = 1

|ρl (kl )|d|ρl (kl )| + idφl (kl ). (A4)

By taking the contour integration for both sides, we obtain the
winding phase of the eigenvectors as

1

i

∮
1

ρl (kl )
dρl (kl ) = �φl (kl ), (A5)

where ρl (kl ) = γ ′/γ+ <ikl . We should note that the integrand
on the left-hand side has a singular point at the origin. The
path of the contour integration is a unit circle at the center
γ ′/γ in the complex plane, which is parameterized by kl .
Thus, we can evaluate the value of �φl using the residue
theorem.

In the trivial phase, i.e., γ ′/γ � 1, �φl = 0 because the
contour does not enclose the origin. In the nontrivial phase,
i.e., γ ′/γ > 1, however, �φl = 2π because the contour en-
closes the origin. Therefore, the Zak phase in the 2D SSH
model is given as Eq. (6).

APPENDIX B: DERIVATION OF EQUATIONS (8) AND (9)

The charge polarization can be related to the parity of the
wave functions. In order to show the relation, let us define
the sewing matrix ω, which is in the form of the space-
inversion operator � for the formulation of the Zak phase for a
multiband system. Here, � is an operator that inverts position
as �u(k) = u(−k). The sewing matrix ω is define as

ωi j (k) := 〈ui(−k)|�|u j (k)〉 , (B1)

where i, j are band indexes. In addition, we define the Berry
connection matrix as ai j (k) = −i 〈ui(k)|∇k|u j (k)〉. By using
this matrix, Eq. (7) can be rewritten as

Pl =
occ.∑
j=1

∫ π

−π

dkl

2π
a j j (kl ) = 1

2π

∫ π

−π

dkl Tr[ai j (kl )]. (B2)

In the presence of space-inversion symmetry, the integrand
of Eq. (B2) can be rewritten as [73,74]

Tr[ai j (k)] = Tr[ai j (−k)] + iTr[ω†
i j (k)∇kωi j (k)].

Therefore, charge polarization is expressed as

Pl = 1

2π

∫ π

−π

dkl

{
Tr[a(−k)] + iTr

[
ω†(k)

∂

∂kl
ω(k)

]}

= −Pl + q j
l .
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Here, q j
l is the right hand of the integral element. Using the

unitarity of ω(k), the integrand of q j
x can be rewritten as

Tr[ω†(k)∇kω(k)] = ∇k ln{det[ω(k)]}. Thus, we obtain

q j
x = − i

2π

∫ π

−π

dkl
dln{det[ω(kx, 0)]}

dkl

= − i

π
ln

{
det[ω(π, 0)]

det[ω(0, 0)]

}
. (B3)

Since the eigenvalue of the space-inversion operator � is ±1,
det[ω(k)] is given as

det[ω(k)] =
∏

j∈occ.

ζ j (k), (B4)

where ζ j (k) are the parities of the wave function in the jth
energy band at k. Substituting Eq. (B4) into Eq. (B3) leads to

ln(eiπq j
x ) = ln

⎧⎨
⎩

∏
j∈occ.

ζ j (π, 0)

ζ j (0, 0)

⎫⎬
⎭,

(−1)q j
x =

∏
j∈occ.

ζ j (X)

ζ j (�)
. (B5)

Similarly, the y component is also obtained by replacing X
with Y . Thus, q j

l is topologically invariant, which gives either
0 or 1.
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