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Recently, there has been a great deal of interest in the possibility to exploit quantum-mechanical effects
to increase the performance of energy storage systems. Here, we introduce and solve a model of a quantum
supercapacitor. This consists of two chains, one containing electrons and the other one holes, hosted by arrays of
double quantum dots, the latter being a building block of experimental architectures for realizing charge and spin
qubits. The two chains are in close proximity and embedded in the same photonic cavity, which is responsible for
long-range coupling between all the qubits, in the spirit of the Dicke model. By employing a variational approach,
we find the phase diagram of the model, which displays ferromagnetic and antiferromagnetic phases for
suitable pseudospin degrees of freedom, together with phases characterized by collective superradiant behavior.
Importantly, we show that when transitioning from the ferromagnetic/antiferromagnetic to the superradiant
phase, the quantum capacitance of the model is enhanced. Our work offers opportunities for the experimental
realization of a novel class of quantum supercapacitors with an enhanced capacitance stemming from quantum-
mechanical effects.
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I. INTRODUCTION

One of the main challenges of today’s technology is repre-
sented by energy storage [1]. In this context, devices like bat-
teries [2,3] and supercapacitors [4,5] are currently employed
in a plethora of applications ranging from personal electronics
to the automotive sector. Supercapacitors, in particular, are
improved versions of conventional capacitors that exploit a
molecular-scale interface between the ions of an electrolyte
and the electrode to increase the energy density while display-
ing large power densities. These devices operate on the basis
of extremely robust electrical and electrochemical principles
developed during the 18th and 19th centuries [2]. However,
the progressively growing demand for storage capability and
power calls for the elaboration of new strategies. Although
a great deal of effort is currently focused on optimizing
materials [6,7], fundamental research in this field may lead,
in the long run, to a paradigmatic shift.

An intriguing possibility is to use quantum resources to
boost the charging power density of a battery or the stored
energy density of a supercapacitor. Quantum phenomena are
indeed predicted to enable superior performance of technolog-
ical devices of various sorts. In particular, in the spirit of quan-
tum computing [8] where quantum mechanics is employed to
achieve efficient manipulation and processing of information,
increasing theoretical and experimental research activity is
currently focused on applying quantum resources to improve
energy storage and transfer [9–15]. In particular, a number of
researchers have been recently working on quantum batteries
[16–31]. A solid-state implementation of a quantum battery

based on an array of N two-level systems coupled to a
common cavity photonic mode (known as the Dicke model
[32–34]) was introduced in Ref. [21].

Quantum effects, such as exchange and correlations in
low-dimensional electron systems with long-range Coulomb
interactions [35], constitute powerful tools that can be po-
tentially manipulated and engineered for energy storage ap-
plications. On general grounds, the electronic contribution
Ce to the capacitance of a mesoscopic device can be written
as C−1

e = C−1
g + C−1

q , where Cg is a classical contribution,
i.e., the conventional geometric capacitance, and Cq is a
quantum contribution, usually termed “quantum capacitance.”
The latter accounts for the variation of the Fermi energy due
to charge accumulation [35,36], i.e., Cq = Se2∂n/∂μ, where
S is the area of the device, −e is the elementary charge, μ is
the chemical potential, and n is the electron density. Usually,
Cq > 0, and the quantum contribution therefore has the net
effect of lowering the capacitance of the device, thereby
reducing the stored energy density with respect to the classical
case, as predicted [37,38] and observed in graphene [39–42],
for example.

However, situations where a negative exchange and cor-
relation contribution to the energy dominates over the posi-
tive kinetic energy do exist. In this case, the compressibility
K = n−2∂n/∂μ of the electron gas is negative [35,43–50],
leading to Cq < 0 and C > Cg. Such quantum-mechanical en-
hancement of the total capacitance compared to the classical
value has been observed in several systems, including two-
dimensional electron double layers formed in GaAs semicon-
ductor quantum wells [51], the interface between two oxides
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(LaAlO3/SrTiO3) [52], two-dimensional (2D) monolayers of
WSe2 [53], and graphene-MoS2 heterostructures [54].

Negative compressibility is ultimately due to charge rear-
rangement. In this work we investigate capacitance enhance-
ment effects stemming also from charge rearrangement but
this time due to light-matter interactions and ground-state
macroscopic quantum coherence. To this end, we focus on two
chains of double quantum dots (DQDs) [55], one filled with
electrons and the other filled with holes, which implement a
collection of charge qubits [56–59]. All DQDs are coupled to
a common photonic cavity mode as in, e.g., Refs. [60–64].
Each chain separately can be modeled via the Dicke-Ising
model [65]. The two chains, however, are coupled via an on-
site electron-hole attractive interaction, which brings in new
qualitative features. By employing an essentially analytical
variational approach, we first demonstrate that this system
displays a rich and intriguing ground-state phase diagram as
a function of intra- and interchain interactions and of the
coupling between the DQDs and radiation. We then show
that the capacitance of the model is enhanced by light-matter
interactions due to the charge rearrangement that occurs at the
superradiant phase transition [66–68]. Finally, we conclude
by mentioning that our quantum supercapacitor model is
amenable, at least in principle, to being quantum simulated
using solid-state architectures [69–71] comprising semicon-
ducting and metallic elements.

The present paper is organized as follows. In Sec. II we
introduce the model. Section III is devoted to the analysis
of its ground-state phases. The definition and evaluation of
the quantum capacitance are reported in Sec. IV, while a
few remarks on experimental feasibility are given in Sec. V.
Finally, the Appendix provides a detailed derivation of our
model starting from the conventional Hubbard model.

II. THE MODEL

Below we investigate arrays of DQDs [55], each one with
a voltage profile as sketched in Fig. 1(a). Each DQD can be
seen as a charge qubit where it is possible to identify a ground
state |g〉 and an excited state |e〉, which are separated by an
energy gap ε and also spatially [56–59].

We consider two coupled chains, each one containing N
DQDs. The chemical potential in the top chain (T) is tuned in
such a way that it hosts exactly one electron in each DQD,
while in the bottom one (B) each DQD is filled with one
hole [see Fig. 1(b)]. Such a charge configuration was chosen
in order to mimic the two oppositely charged plates of a
classical capacitor. In our toy model we assume that only
two (screened) Coulomb interaction terms are at play: (i)
an interchain attractive interaction of strength U between an
electron in state |g〉e on site i of the T chain and a hole in
state |g〉h on the corresponding site of the B chain and (ii)
an intrachain repulsive interaction of strength V between two
electrons (holes) in states |g〉e (|g〉h) or |e〉e (|e〉h) in the T (B)
chain, acting only between adjacent DQDs. Finally, in each
DQD, the transition between the ground state (excited state)
and the excited state (ground state) is induced by absorption
(emission) of photons from (into) the electromagnetic field of
a cavity. We model this interaction via a Dicke-type coupling
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FIG. 1. (a) Voltage profile of a double quantum dot occupied
by a single electron. The ground (|g〉e) and excited (|e〉e) states
are geometrically separated, and the energy gap between them is
ε. The |g〉e → |e〉e transition can be induced by the absorption of
photons (and vice versa the |e〉e → |g〉e transition occurs through
photon emission). (b) Schematic top view of the two-chain system.
Here, one has a top chain (red) and a bottom chain (light blue)
made up of double quantum dots. Each of them is singly occupied
with electrons (dark red) and holes (dark blue), respectively. Two
dominant contributions to the electrostatic interaction have been
analyzed in this work: (i) an interchain attractive interaction of
strength U (green arrow) between an electron and a hole in their
respective ground states and (ii) an intrachain repulsive interaction
of strength V (orange arrow) between electrons (holes) in either the
|g〉e − |g〉e (|g〉h − |g〉h) or |e〉e − |e〉e (|e〉h − |e〉h) configuration.

[32–34] between the cavity photonic mode and the DQDs,
effectively behaving as two-level systems.

In this framework, our model is described by the following
Hamiltonian (see the Appendix for further details):

Ĥ = Ĥ(T)
DI + Ĥ(B)

DI + Ĥ(TB) + Ĥ(R), (1)

where the first (second) term describes the T (B) chain of
DQDs and their interactions with the cavity mode,

Ĥ(T)
DI =

N∑
i=1

[
ε

2
τ̂ z

i + V
2

(
τ̂ z

i τ̂
z
i+1 + 1

) + h̄ωcλ(â† + â)τ̂ x
i

]
, (2)

the third term describes interchain local attractive interactions
(U > 0),

Ĥ(TB) = −U
4

N∑
i=1

(
1 − τ̂ z

i

)(
1 − σ̂ z

i

)
, (3)

and the fourth term describes the cavity radiation mode,

Ĥ(R) = h̄ωcâ†â. (4)

The B chain Hamiltonian Ĥ(B)
DI can be obtained from Ĥ(T)

DI
by replacing τ̂ α

i → σ̂ α
i , where τ̂ α

i (σ̂ α
i ), with α = x, z, are

pseudospin Pauli matrices acting on the 2D Hilbert space
associated with the ith DQD on the T (B) chain. In Eqs. (2)
and (4), â (â†) is the annihilation (creation) operator for a
cavity photon of frequency ωc, and λ is a dimensionless
parameter describing the strength of the coupling between
cavity photons and each DQD [32–34].
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It is worth noticing that the pseudospin part of the above
Hamiltonian is a multi-DQD generalization of the model dis-
cussed in Refs. [72–74], where controlled NOT (CNOT) gates
for two capacitively coupled charge qubits were investigated.
Moreover, Eq. (1) can be seen as two copies of the Dicke-
Ising (DI) model introduced in Ref. [65], one for the T chain
described by Ĥ(T)

DI and one for the B chain described by Ĥ(B)
DI ,

further coupled by means of the local attractive interaction
∝U . Since the DI model shows a nontrivial phase diagram
in the V-λ space, this is inherited by our model. However,
we expect more ground-state phases triggered by U > 0.
In particular, we expect a ferromagnetic arrangement with
electrons and holes all in the ground state for large values of U
and an antiferromagnetic ordering with electrons and holes al-
ternatively in the |g〉 and |e〉 states for large values of V . These
are expected to coexist with an overall normal/superradiant
phase transition [66–68] driven by λ. The interplay between
these competing phases leads to a rich phenomenology that
will be investigated in the following by means of a variational
technique consisting of classifying the stable phases of the
system’s ground state.

III. GROUND-STATE ENERGY AND QUANTUM
PHASE TRANSITIONS

We begin by writing down the following variational
ground-state wave function for the problem at hand:

|	〉 = |
√

Nα〉 ⊗
N∏

i=1

(
cos

( θ
(B)
i
2

)
eiχ (B)

i sin
( θ

(B)
i
2

)
)

⊗
N∏

k=1

(
cos

( θ
(T)
k
2

)
eiχ (T)

k sin
( θ

(T)
k
2

)
)

. (5)

Here, |√Nα〉 denotes a coherent state of the cavity with dis-
placement

√
Nα (assumed to be real for the sake of simplicity)

[68], and θ
(T/B)
i , χ

(T/B)
i are the angles characterizing the Bloch

state of the pseudospin associated with the ith DQD in the
T and B chains, respectively. Note that θ

(T/B)
i �= 0, π denotes

states which are coherent quantum superpositions of |g〉 and
|e〉. We consider periodic boundary conditions (N + 1 ≡ 1),
which is usually done in the study of Heisenberg spin chains
[75], which imply translational invariance of the completely
filled chains. Moreover, we exploit the T ↔ B exchange sym-
metry of the model, which allows us to set θ

(T)
i = θ

(B)
i = θi

and χ
(T)
i = χ

(B)
i = χi. Accordingly, the ground-state energy

E = 〈	|Ĥ|	〉 of the completely filled system is given by

E =
N∑

i=1

[(
ε + U

2

)
(cos θi ) + V (cos θi cos θi+1)

− U
4

(cos2 θi ) + 4h̄ωcλ
√

Nα(sin θi cos χi )

+ h̄ωcα
2 + V − U

4

]
. (6)

Assuming N is even and restricting the analysis to the case
in which the polar θi and azimuthal χi angles can change
between only even and odd sites [65], i.e., θ2i+1 = θo, θ2i = θe,

χ2i+1 = χo, χ2i = χe, we finally obtain

E = N

[(
ε

2
+ U

4

)
(cos θo + cos θe ) + V (cos θo cos θe )

− U
8

(cos2 θo + cos2 θe )

+ 2h̄ωcλ
√

Nα(sin θo cos χo + sin θe cos χe )

+ h̄ωcα
2 + V − U

4

]
. (7)

The function E = E (θo, θe, χo, χe, α) needs to be minimized
with respect to its five variables in order to identify the
ground-state energy of the system to characterize possible
stable phases and transitions between them. Minimizing with
respect to χo and χe, we get

∂E

∂χe
= −2h̄ωcλ

√
Nα(sin θe sin χe ) = 0, (8)

∂E

∂χo
= −2h̄ωcλ

√
Nα(sin θo sin χo) = 0, (9)

which, excluding α = 0 and sin θe = sin θo = 0, are solved
by χe = lπ and χo = mπ , with l, m being integers. Hence,
cos χo and cos χe in Eq. (7) reduce to an overall ± sign,
which can be seen as a redefinition of θo and θe. Therefore,
in the framework of our variational approach, we can fix
cos χo = cos χe = 1.

To further reduce the number of variables involved in the
problem, it is convenient to minimize first with respect to α,
i.e., ∂E/∂α = 0, which yields

α = −λ
√

N (sin θo + sin θe ), (10)

and place the latter result into Eq. (7). From the previous
equation we notice that, if superradiance occurs, i.e., if α �= 0,
then θo, θe �= 0, π , which, for the reasons stated above after
Eq. (5), implies that coherence occurs between |g〉e and |e〉e.
Superradiance is related to the emergence of macroscopic
coherence in the ground-state wave function [68].

This leads to the simplified ground-state energy function

Ẽ = N

[(
ε + U

2

)
s + V (s2 − m2)

− U
4

(s2 + m2) − h̄ωcA + V − U
4

]
, (11)

written in terms of the order parameters [65]

A = 〈â†â〉
N

= 2(sin θo + sin θe )2,

s =
〈
σ̂ z

1 + σ̂ z
2

〉
2

= 1

2
(cos θo + cos θe ), (12)

m =
〈
σ̂ z

1 − σ̂ z
2

〉
2

= 1

2
(cos θo − cos θe ).

The physical interpretation of these quantities is the following.
The first one, A, measures the average number of photons
in the cavity and is nonzero in the superradiant phase. The
second one, s, is the magnetization of a plaquette composed
of two neighboring sites. We stress that s2 �= 1 implies macro-
scopic coherence in the many-particle wave function. Finally,

075433-3



DARIO FERRARO et al. PHYSICAL REVIEW B 100, 075433 (2019)

FIG. 2. (a) At Ṽ = 0 the phase diagram shows a continuous phase transition between the ferromagnetic-normal (blue) and the
ferromagnetic-superradiant (red) ordering, occurring at 2 = (1 + Ũ )/8. The situation remains qualitatively analogous up to Ṽ � 0.5. By
further increasing Ṽ , Ṽ = 0.7 in (b) and Ṽ = 1.0 in (c), one observes the emergence of both an antiferromagnetic-normal (green) and a narrow
antiferromagnetic-superradiant (yellow) phase at the expense of the previously discussed ones. The ferromagnetic-normal/antiferromagnetic-
normal transition is first order and occurs at Ũ = 4Ṽ − 2. Notice that this phase diagram has been deduced from the global analysis of the
order parameters A, s, and m, introduced in Eqs. (12), which are reported in Fig. 3. The present phase diagram has been calculated for the
resonant condition ε = h̄ωc, where the coupling between DQDs and radiation is optimal [60].

m is the plaquette staggered magnetization. The quantity Ẽ
has been minimized numerically with respect to θo and θe as
a function of the dimensionless parameters Ũ ≡ U/h̄ωc and
2 ≡ λ2N and for different values of Ṽ ≡ V/(h̄ωc) in order to
identify all the possible stable phases of the model. Analytical
cross-checks have been carried out whenever possible.

While our theory is completely general so far, from now on
we focus on the resonant regime; that is, we set ε = h̄ωc. This
clearly enables optimal coupling between the DQDs and the
cavity radiation field [60]. In this case, we have identified four
distinct phases:

(i) The first is a ferromagnetic-normal (FN) phase, with
A = 0, s = −1, and m = 0. In the language of the original
charge degrees of freedom, in the FN phase electrons (holes)
occupy the ground state |g〉e (|g〉h) of each DQD in the top
(bottom) chain.

(ii) The second is a ferromagnetic-superradiant (FS) phase,
with A �= 0, s �= 0, and m = 0.

(iii) The third is an antiferromagnetic-normal (AFN) phase,
with A = 0, s = 0, and m = 1. In the language of the original
charge degrees of freedom, in the AFN phase electrons occupy
the ground state on even sites and the excited state on odd
sites, and holes in the bottom chain follow the same charge
profile.

(iv) The last one is an antiferromagnetic-superradiant
(AFS) phase, with A �= 0, s �= 0, and m �= 0.

The numerically calculated phase diagram is reported in
Fig. 2 for different values of Ṽ . At Ṽ = 0 [see Fig. 2(a)] we
observe a net separation between the FN (blue) and FS phases
(red), with a continuous transition occurring at

2 = 1
8 (1 + Ũ ). (13)

With increasing Ṽ [see Figs. 2(b) and 2(c)] the FN phase
shrinks, and the AFN phase (green) emerges and expands,
extending for small values of 2 up to

Ũ = 4Ṽ − 2, (14)

at which a first-order transition occurs. Moreover, at the
boundary between FS and AFN phases a very narrow AFS
region (yellow) appears.

Our numerical results for the order parameters A, s, and
m as functions of Ũ and 2 are reported in the density plots
of Fig. 3. We clearly see that knowledge of all three order
parameters is needed to properly reconstruct the complete
phase diagram.

IV. QUANTUM CAPACITANCE

We now consider the capacitance for our mesoscopic struc-
ture, defined as the inverse of the discrete derivative of the
chemical potential with respect to the number N of charges
[76,77], i.e.,

C = e2

μN − μN−1
, (15)

where μN = EN − EN−1. Here, Ek (k ∈ N) indicates the
ground-state energy of the system where only k sites of
the chains (out of a total of N sites per chain) are filled
with electrons and holes. The problem is thereby reduced to
evaluating the change in the ground-state energy of the system
when an electron and a hole are removed from the same ith
site while keeping fixed the total length of the two coupled
chains. This protocol allows us to locally preserve the charge
neutrality of the system but explicitly breaks its translational
invariance.

According to this, it is possible to consider the following
two-step protocol. One can first remove an electron-hole pair
from the completely filled two-chain system in an arbitrary
site (in the sublattice of odd sites, say). Considering the N � 1
limit, one has

μN ≈ ε cos(θo) − U
4

[1 − cos(θo)]2

+ 2V[cos(θo) cos(θe ) + 1] − 8h̄ωc
2 sin2(θo). (16)

The second electron-hole pair can be removed in one of the
nearest-neighbor sites (both obviously in the sublattice of even
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FIG. 3. Density plots of the order parameters A = 〈â†â〉/N , s = 〈(σ̂ z
1 + σ̂ z

2 )〉/2, and m = 〈(σ̂ z
1 − σ̂ z

2 )〉/2 as functions of Ũ and 2 for
(a)–(c) Ṽ = 0.7 and (d)–(f) Ṽ = 1.0. Notice that from the top row one can reconstruct the phase diagram of Fig. 2(b), while the bottom row
leads to Fig. 2(c). All data in this figure refer to the resonant condition ε = h̄ωc.

sites), leading to

μN−1 ≈ ε cos(θe) − U
4

[1 − cos(θe)]2

+V[cos(θo) cos(θe) + 1] − 8h̄ωc
2 sin2(θe). (17)

The above protocol reminds of what happens in atomic
physics, where an atom with a completely filled shell is
progressively ionized by removing the most loosely bound
electrons, with μN (μN−1) playing the role of first (second)
ionization energy [76].

Notice that corrections scaling as 1/N can be taken into
account but have a negligible effect in the behavior of the
capacitance.

The capacitance of the system can then be written, consid-
ering again the resonant condition ε = h̄ωc, as

C = C0

[(2 + Ũ )m − Ũms + Ṽ (1 + s2 − m2) + 322ms]
, (18)

with C0 ≡ e2/h̄ωc being a dimensional factor.
Considering the four physically relevant ground-state

phases discussed above, Eq. (18) shows that, in the ab-
sence of coupling with the cavity radiation (2 = 0), one
has CFN = C0/2Ṽ for the FN phase (s = −1, m = 0) and
CAFN = C0/(2 + Ũ ) (lower than CFN in the considered range
of parameters) for the AFN (s = 0, m = 1) phase. At finite
values of the light-matter coupling, in the FS (s �= 0, m = 0)
phase, the capacitance becomes CFS = C0/(1 + s2)Ṽ .

In this work we are interested in quantifying the enhance-
ment of the capacitance with respect to the one evaluated
in the absence of radiation, i.e., C evaluated at 2 = 0 and
indicated with C̄ in the following. To this end we introduce

the ratio

κ = C − C̄

C̄
. (19)

Density plots of this ratio as a function of Ũ and 2 for
different values of Ṽ are reported in Fig. 4. We note that the
ratio is positive and that an enhancement of the capacitance
(κ > 0) associated with the superradiant phase transition oc-
curs in the system. In particular, at the transition between the
FN (s = −1, m = 0) and FS (s �= 0, m = 0) phases, we have

κ = CFS

CFN
− 1 = 1 − s2

1 + s2
, (20)

as shown in Fig. 4(a). This quantity depends on only the
pseudospin order parameter s and saturates to κ = 1 (i.e., dou-
bling of the capacitance) deeply in the FS phase (where one
asymptotically approaches s = 0). Importantly, this quantity
depends on 1 − s2, which is nonzero only when the ground-
state wave function displays macroscopic quantum coher-
ence. In this case, the appearance of coherence, a genuinely
quantum effect, can enhance the capacitance. Differently,
at the transition between the AFN (s = 0, m = 1) and FS
(s �= 0, m = 0) phases and neglecting the small AFS phase,
we find

κ = CFS

CAFN
− 1 = 2 + Ũ

(1 + s2)Ṽ
− 1, (21)

which depends on both the pseudospin order parameter s and
the specific values of the interaction terms (i.e., geometry
of the device) and can exceed 250% (κ > 2.5), as shown in
Fig. 4(b). Again, this quantity is maximal when s = 0, which
corresponds to the fact that the ground-state wave function
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FIG. 4. Density plots of the ratio κ = C/C̄ − 1 (with C being the capacitance of the system and C̄ being its value at 2 = 0) as a function
of Ũ and 2. (a) Ṽ = 0, corresponding to the phase diagram in Fig. 2(a), where, in the ferromagnetic-superradiant phase, one has κ =
(1 − s2)/(1 + s2). This ratio asymptotically approaches κ = 1 (doubling of the capacitance) at high values of 2. (b) Ṽ = 1.0, corresponding
to the phase diagram in Fig. 2(c), where κ = (2 + Ũ )/(1 + s2)Ṽ − 1 crucially depends on the geometry of the device. Here, for the considered
values of the parameters, the ratio can exceed κ > 2.5 (red region), leading to a remarkable enhancement of the capacitance with respect to
the reference case in the absence of radiation.

is in an equal macroscopic superposition of |g〉 and |e〉. As
a matter of fact, radiation induces macroscopic coherence,
which, in turn, enhances the capacitance.

V. DISCUSSION AND CONCLUSIONS

Before concluding, we comment on the possibility of
realistic solid-state implementations of our quantum super-
capacitor model in terms of coupled charge qubits (DQDs)
embedded in a microwave cavity.

Recent investigations of two-qubit logic gates made up of
GaAs/AlGaAs and Si/SiGe DQDs [74] have reported capaci-
tive coupling between DQDs up to U/h ≈ 30 GHz. Assuming
level spacings and cavity frequencies ε/h ≈ ωc/2π in the
gigahertz range are typical of mesoscopic devices [61,62,78],
we conclude that it is possible, at least in principle, to explore
a quite wide interval of values of Ũ . Moreover, one can also
change this parameter by both acting on the distance d⊥
between the two chains and changing the dielectric constant ε

of the environment where the chains are embedded according
to the relation

U = e2

εd⊥
. (22)

An analogous discussion also holds for the intrachain cou-
pling,

V = e2

εd‖
, (23)

where d‖ is the distance between the DQDs along each chain.
Concerning the coupling between the DQDs and the cavity

radiation, experimental techniques allowing us to explore in-
teractions up to 2 ≈ 1, deep in the superradiant phase, can be
envisaged [61,62,79–81]. Despite this, the actual possibility
to explore the normal/superradiant phase transition in a real
solid-state device has been debated at length [82–88] due to
the presence of an additional term ∝(â† + â)2, not included in
the simple model Hamiltonian in Eq. (1), which emerges from

the minimal coupling between matter and cavity radiation.
However, according to recent calculations [89], superradiance
can occur in correlated materials embedded in photonic cavi-
ties.

As a final overall experimental requirement one needs to
consider devices with typical decoherence (τϕ) and relaxation
(τr) times long enough to be effectively operated [90,91]. This
condition is satisfied, for example, in the experiment discussed
in Ref. [64] and is a common constraint for all quantum
devices.

Accordingly, a realization of the proposed device with
supercapacitive properties is feasible, e.g., by means of circuit
QED devices, comprising two chains of charge qubits and a
resonator.

APPENDIX: MAPPING BETWEEN ELECTRONS AND
SPINS AND LINK BETWEEN ELECTRONS AND HOLES

We here derive the pseudospin model introduced in Eq. (1)
starting from a fermionic model of two coupled (top and
bottom) chains of electrons and holes. We denote by eg,i, e†

g,i

(ee,i, e†
e,i) the fermionic annihilation and creation ladder oper-

ators for an electron with on-site energy εg (εe) residing on
the ith site of a chain. It is useful to define the on-site energy
difference ε = εe − εg. The electronic Hamiltonian (for the
top chain) reads

Ĥ(T)
DI =

∑
i

[εge†
g,ieg,i + εee†

e,iee,i

+V (e†
g,ieg,ie

†
g,i+1eg,i+1 + e†

e,iee,ie
†
e,i+1ee,i+1)

+ λh̄ωc(a + a†)(e†
g,iee,i + e†

e,ieg,i )], (A1)

where λ, V , ωc, a, and a† were introduced in the main text.
In order to introduce the pseudospin representation, we write
the ladder operators in a natural basis. We denote by |k, l〉e,i
the state with k = 0, 1 (l = 0, 1) electrons in the local ground
(excited) state on the ith site. We assume we have one electron
per site. (All the interactions in the Hamiltonian preserve the
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local number of electrons n̂e,i = e†
g,ieg,i + e†

e,iee,i.) Hence, we
can expand Eq. (A1) in the basis { |0, 1〉e,i , |1, 0〉e,i }, which
means that local operators on the ith site admit a Hermitian
2×2 representation, which can be written in terms of Pauli
matrices. In this basis, the Hamiltonian in Eq. (A1) reads

Ĥ(T)
DI =

N∑
i=1

[
ε

2
τ̂ z

i + V
2

(
τ̂ z

i τ̂
z
i+1 + 1

) + h̄ωcλ(â† + â)τ̂ x
i

]
,

(A2)

which is exactly the form used in the main text.
We now move on to analyze the bottom chain, which

hosts holes. We start from the simple observation that hole
annihilation and creation ladder operators, h and h†, can
be obtained from those for electrons, e and e†, by using
a particle-hole transformation: e → h† and e† → h. Starting
from Eq. (A1) and carrying out this transformation, we can
write the Hamiltonian of the bottom chain as

Ĥ(B)
DI =

∑
i

[−εgh†
g,ihg,i − εeh†

e,ihe,i

+V (h†
g,ihg,ih

†
g,i+1hg,i+1 + h†

e,ihe,ih
†
e,i+1he,i+1)

+ λh̄ωc(a + a†)(h†
g,ihe,i + h†

e,ihg,i )], (A3)

where hg,i, h†
g,i (he,i, h†

e,i) are ladder operators for a hole with
on-site energy −εg (−εe) residing on the ith site.

It is useful to denote by |k, l〉h,i the state with k = 0, 1
(l = 0, 1) holes in the local ground (excited) state on the ith
site. Again we assume we have one hole per site since all the
interactions in the Hamiltonian preserve the local number of
holes. Expanding Eq. (A3) in the basis { |1, 0〉h,i , |0, 1〉h,i },
we get

Ĥ(B)
DI =

N∑
i=1

[
ε

2
σ̂ z

i + V
2

(
σ̂ z

i σ̂ z
i+1 + 1

) + h̄ωcλ(â† + â)σ̂ x
i

]
,

(A4)

which is exactly the form used in the main text. Finally, we
analyze the term [92]

Ĥ(TB) = −U
N∑

i=1

c†
g,icg,ih

†
e,ihe,i, (A5)

which represents a local attractive interaction between elec-
trons and holes in the two adjacent chains. Expanding this
Hamiltonian in the aforementioned basis, we immediately get
Eq. (3). We would finally like to make a connection with the
notation used in Fig. 1. In the latter, we defined |g〉 = |1, 0〉e,i
and |e〉 = |0, 1〉e,i for the top chain and |g〉 = |0, 1〉h,i and
|e〉 = |1, 0〉h,i for the bottom chain.
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