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Theory of phonon-assisted adsorption in graphene: Many-body infrared dynamics
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We devise a theory of adsorption of low-energy atoms on suspended graphene membranes maintained at
low temperature based on a model of atom-acoustic phonon interactions. Our primary technique includes a
nonperturbative method which treats the dynamics of the multiple phonons in an exact manner within the purview
of the independent boson model. We present a study on the effects of the phonons assisting the renormalization as
well as decay of the incident atom propagator and discuss results for the many-body adsorption rates for atomic
hydrogen on graphene micromembranes. Additionally, we report similarities of this model with other branches
of quantum field theories that include long-range interactions like quantum electrodynamics and perturbative
gravity.
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I. INTRODUCTION

How does an atom adsorb to a surface? From the viewpoint
of quantum field theory, can we understand this phenomenon
by including the effects of the surface phonons? Over the
years, theoretical predictions as well as experimental endeav-
ors have elucidated a significant role played by the surface
phonons in mediating the process of adsorption [1–6]. While
most of the previous work has been conducted on conven-
tional three-dimensional materials, the discovery of graphene
has led to a recent effort to understand this phenomenon
with special focus on phonon dispersion, tunability of the
atom-phonon interaction, and possible applications [7–11].
This brings us to the topic of this work.

In this paper, we will devise a theory of adsorption based
on a simple model of atom-phonon interaction. Using the tools
of quantum field theory, we predict adsorption rates for these
suspended graphene membranes that are maintained at low
temperature. Let us also mention that our naive model shows
an interesting similarity with other branches of quantum field
theory. Theories with long-range interactions like quantum
electrodynamics (QED) and perturbative gravity are seen to
exhibit severe infrared (IR) divergences in their scattering
rates due to the emission of infinitely many soft quanta
(soft meaning vibrations with energy ε → 0) [12–15]. Quite
remarkably, our nonrelativistic model is also plagued with
severe IR divergences in the adsorption rate that appear as
a result of emission of infinitely many soft phonons orig-
inating from the long-range tail of van der Waals (vdW)
interactions [10,11,16]. Since physically measurable entities
can never be infinity, this IR-divergent adsorption rate poses a
serious concern for the application and validity of the theory.
However, thanks to the Kinoshita-Lee-Nauenberg theorem
[17,18], we realize that these infinities are in fact unreal, and
proper application of resummation procedures can lead us to
meaningful results.

Quite naturally, there is an ongoing attempt to devise
nonperturbative methods to tackle these IR divergences
[10,11,19,20]. As a matter of fact, these resummation methods

implemented in these condensed matter systems are similar in
essence to the corresponding QED counterparts. To illustrate
this point, let us briefly mention the main idea behind each
of them. (i) Bloch-Nordsieck scheme: This method tackles
the IR divergence by allowing for the inclusion of emis-
sion of infinitely many soft quanta and summing over them
[10–12,21–25]. (ii) Faddeev-Kulish mechanism: This method
proposes a dressing of asymptotic states by a cloud of soft
quanta using a coherent state formalism [19,26–29] and (iii)
imposing a IR cutoff [30,31]. While all three methods give
comparable and reasonable answers for zero-temperature ad-
sorption rates in graphene micromembranes [11], the low-
temperature result seems contentious with the core of the
debate surrounding the effect of the IR cutoff, i.e., the effect
of low-energy phonons.

In one numerical study performed for low-temperature
membranes (T = 10 K) [30,31] authors considered adsorp-
tion as a fast process mediated by a single phonon and derived
finite, enhanced adsorption rates. To keep their computations
tractable, they imposed an IR cutoff. Reference [20] used a
coherent-state phonon basis formalism (dressing the asymp-
totic states by a cloud of soft phonons), claimed to cure and
remedy the IR problem at finite temperature and predicted
adsorption rates that tend to zero. However, this method
sparks some serious questions. (i) In the derivation of the final
adsorption rate � (obtained by summing over partial rates
�n), Ref. [20] has considered emission of soft phonons with
energy ε ∼ ωc where ωc = 0.183 meV. Since the definition of
IR problem corresponds to ε → 0, it is not clear to us how
the IR problem is remedied in this case. (ii) The partial rates
corresponding to n phonon processes were derived under the
assumption ωc � g2

b with g2
b as the atom-phonon coupling

strength in the membrane. By previous line of thought, this
implies ε � g2

b. We are not certain if this is the right energy
scale for the problem at hand (presumably, the IR scale should
be the lowest-energy scale in the formalism).

In light of these recent developments and questions, we
are motivated to reconsider this problem in terms of a partial
resummation technique that has been previously used for
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graphene membranes maintained at zero and high tempera-
tures (by high, we mean a temperature scale which is compa-
rable to the Debye frequency of the phonons). This technique
is based on the Bloch-Nordsieck scheme of resummations and
uses the independent boson model (IBM) to account for the
dynamics of the phonons. While in the zero-temperature case
the technique cures the IR problem at ε → 0, for micromem-
branes it predicts an adsorption rate that is finite, nonzero, and
size independent and is within good approximation (1%) of
the zero-temperature golden rule result [11]. However, in the
high-temperature regime, the technique retains some residues
of the log singularity because of the temperature effects of
the Bose distribution. As a consequence, the method predicts
adsorption rates that increase with increasing temperature and
membrane sizes. The rate is also enhanced with respect to the
finite-temperature golden rule result [10].

For the low-temperature formalism, we will not claim to
cure the IR problem in this model, in fact, we will take a
modest approach pertinent to all condensed matter systems.
We remind ourselves that the natural IR cutoff is related
to the size of the system ε ∼ vs/L (vs is the velocity of
sound in the material and L is the size of the membrane,
we set h̄ = 1 all throughout the paper). We thus subject our
partial resummation technique to IR cutoffs as low as ε =
10−4 meV (the current lowest within all recent literature for
low-temperature formalism) and systematically increase it to
0.8 meV; naturally, these cutoffs correspond to membrane
sizes 10 μm to 5 nm, respectively. Our primary aim will be
to understand how the soft phonons i.e., the IR cutoff, affect
the adsorption process with clear focus on the renormalization
of the energy of the atom leading to the formation of an
acousticlike polaron and finally the decay of the atom. We will
investigate in detail the true dynamics of the phonon bath with
respect to the effects of time evolution, temperature, and atom-
phonon coupling. To the best of our knowledge, the properties
of the true dynamics of the phonon bath related to this model
have not been explored before. As we will see, a key result
of this investigation will lead us to a characteristic timescale
for the phonon dynamics. This characteristic timescale will
indeed serve as a crucial parameter for the prediction of the
adsorption rate.

We must also mention that in addition to the resumma-
tion technique within the IBM, there exists another non-
perturbative method, namely, the noncrossing approximation
(NCA), which deals with summing infinite numbers of rain-
bow diagrams (Feynman diagrams where phonon lines do
not cross). This resummation technique was previously found
to be successful in treating the IR problem of the model for
the zero-temperature case and predicted similar result for the
adsorption rate as the method of IBM [11]. However, for finite
temperatures, NCA fails to give tractable convergent results
with increasing membrane sizes (ε → 0). Hence, as a matter
of fact, for the low-temperature formalism we will not use the
method of NCA but explore the technique within the IBM.
The general structure of the paper is as follows: In Sec. II,
we introduce the model Hamiltonian, the physical features of
the model, and the methodology to calculate the resummed
many-body adsorption rates. Section III discusses the low-
temperature dressed propagator within the IBM, while con-
sequences of atom-phonon interaction on the renormalization

FIG. 1. Left: model of atom-membrane interaction [10,11,19].
Weak forces of van der Waals interaction hold together the atom and
the membrane that are now separated from each other by a minute
distance (z). The quantized vibrations of the membrane that appear
as ripples in the membrane start to interact with the incoming adatom
and mediate the process of adsorption [16,19]. Right: a quantum
mechanical description of the adsorption process. Transition of the
atom from the continuum Ek to the bound state Eb [supported in the
vdW potential V0(z) of the physisorption well] with the emission of
phonons. The Hamiltonian corresponding to the process is explained
in Eqs. (1)–(3) within Sec. II.

and decay of the atom propagator are discussed in Sec. IV.
Finally, in Sec. V, we derive the many-body adsorption rates
based on the partial resummation technique given in Sec. II
and discuss the results within the context of the phonon effects
explained in Sec. IV. After a summary of our results in
Sec. VI, we conclude with a few pertaining questions related
to this model and IR divergences in other field theories.

II. PRELIMINARIES AND METHODOLOGY

In this section, we provide an overview of the physical
features of the model and lay out the procedure to calculate
the adsorption rate for the atom.

We consider a continuum model for low-energy physisorp-
tion on a suspended graphene membrane. When a low-energy
incident atom impinges normally on the graphene membrane,
it excites the out-of-plane transverse acoustic mode (ZA)
[31–33] of the membrane thereby mediating interactions that
we refer as the atom-phonon coupling. Let us begin with a
description of the Hamiltonian of our model, H = H0 + Hi,
where H0 and Hi represent the unperturbed and interaction
Hamiltonians. For the unperturbed part H0, we can write

H0 = Ekc†
kck − Ebb†b +

∑
q

ωqa†
qaq, (1)

where Ek is the energy of the incident atom with the
corresponding operators: ck (c†

k ) annihilates (creates) a
particle in the continuum channel; b (b†) annihilates
(creates) a particle in the bound state |b〉 with energy Eb

in the static van der Waals potential V0(z) (see Fig. 1). For
graphene membranes, the physisorption well is Eb = 40 meV
[10,11,31]. The isotropic surface is modeled by a phonon
bath with energy ωq [10,11,19,34] and operators aq (a†

q) that
annihilate (create) a ZA phonon in the bath [10,11,19,34]. For
the graphene membrane under an out-of-plane tension γ , the
energy ωq is related via the dispersion relation ωq = vsq with

075429-2



THEORY OF PHONON-ASSISTED ADSORPTION … PHYSICAL REVIEW B 100, 075429 (2019)

vs = √
γ /σ = 6.64 × 103 m/s (velocity of sound in

graphene), σ = mass density of the membrane, and the
Debye frequency of graphene ωD = 65 meV [9,10,31,35].

Let us now describe the Hamiltonian representing the
atom-phonon interaction Hi = Hbi + Hki. The atom-phonon
interaction in the continuum is given by

Hki = −g̃kbξ (c†
kb + b†ck )

∑
q

(aq + a†
q) (2)

with g̃kb being the corresponding atom-phonon coupling in the
continuum channel, ξ is a frequency-independent parameter
that depends on the specific form of atom-excitation coupling
and is given as ξ = √

h̄/(4Lσvs) [9,10]. For the bound chan-
nel, we have

Hbi = −g̃bbξb†b
∑

q

(aq + a†
q ) (3)

with g̃bb as the atom-phonon coupling for an atom bound to
the membrane [9–11,19]. For a surface without corrugations,
a detailed procedure to calculate the atom-phonon couplings
g̃’s from the Hamiltonian of the atom-surface scattering is
given in Ref. [36]; this method is then suitably extended
for a graphene membrane-atom interaction in Ref. [9]. The
general idea behind the procedure is to calculate the coupling
constants through surface distortions/displacements, quanti-
tatively relating it to the matrix element of the first derivative
of the surface potential. The interaction between the atom
and surface is modeled via the vdW potential V0(z) which
is then Taylor expanded in small phonon displacements in
the target bath (a procedure valid for low energies and tem-
peratures) [9,36]. For the vdW potential V0(z), one considers
the asymptotic form of the long-range attractive interaction
between the static flat graphene membrane and the neutral
atom [equivalent to the Casimir-Polder potential between a
two-dimensional (2D) insulating solid and a neutral atom]
given by [9,37,38]

V0(z) = −πC6

2

{
1

z4
− 1

(z2 + L2)2

}
, (4)

where z is the distance between the particle and the mem-
brane. Parameters like the physisorption potential and atom-
phonon couplings for our model are then obtained by asymp-
totically treating the interaction potential leading to expres-
sions for g̃kb = 〈k|V ′

0 (z)|b〉 and g̃bb = 〈b|V ′
0 (z)|b〉, where |k〉

and |b〉 represent the asymptotic continuum and bound-state
wave functions for the neutral atom [9,36,39]. For sufficiently
low-energy incident atoms, the coupling g̃kb has a strong
dependence on the incident energy of the incoming atom,
such that g̃kb ∝ √

Ek [9]. However, g̃bb is independent of the
incident energy and is much larger in magnitude than g̃kb [9].

To derive the adsorption rate of the atom, we do the
following: we treat the atom-phonon coupling as perturbation
and derive adsorption rates within a self-energy formalism
using Green’s functions [10,11,16]. We find that the terms in
the perturbative expansion of atom self-energy are infrared
divergent due to the contribution from the emission of low-
energy phonons of the graphene membrane which we refer
as the soft-phonon contribution [10,11]. The problem of IR
divergence is more pronounced at finite temperature because

Resummation

=

FIG. 2. Top: Feynman diagrams corresponding to the exact
bound-state propagator G(IBM)

bb for the independent boson model
(IBM). As we see, G(IBM)

bb consists of a sum of Feynman diagrams
of all types (vertex and rainbow) to all orders in perturbation in
atom-phonon coupling g̃2

bbξ
2 (denoted by open dot in the self-energy

diagrams) for transitions in the bound state |b〉. Bottom: one-loop
atom self-energy corresponding to adsorption mediated by a one-
phonon process (wiggly line) for transition from |k〉 → |k〉 via the
bound state |b〉 (straight line denoting the bound-state propagator
G(0)

bb ). Under our resummation technique, we replace the bare G(0)
bb

by the IBM propagator G(IBM)
bb (denoted by double lines) which

represents the fully dressed propagator with perturbations to all
orders in atom-phonon coupling (g̃2

bbξ
2) in the bound.

of the enhanced emission of thermal phonons due to the
appearance of the Bose-Einstein function [10,40]. Therefore,
a crucial component for the derivation of adsorption rates is
to devise mathematical techniques to address these IR diver-
gences and provide a well-unified theory that describes the
role played by the emission of soft phonons in the adsorption
phenomenon.

We have devised such a method for addressing these IR
divergences and predict adsorption rates. Our method displays
a resummed atom self-energy 	kk which uses a fully dressed
bound-state propagator (see Fig. 2 for a general idea of
this method) based on the exact solution of the independent
boson model (IBM) [10,11]. A natural question at this point
would be as follows: Is it justified to use the IBM propa-
gator to describe the physics of adsorption in our model?
To the best of our knowledge, it seems it is imperative to
provide a nonperturbative treatment for the bound channel
compared to the continuum for the following reasons: (i)
when treated perturbatively, the inclusion of the effects from
the atom-phonon coupling in the bound state leads to severe
IR divergences in the higher-order self-energy terms [10,11];
(ii) vertex renormalization results indicate an increase in the
�bb vertex in the infrared limit [10]; and (iii) most importantly,
our model satisfies the condition g̃kb 
 g̃bb [9–11]. Armed
with this knowledge, let us now present the general procedure
for the derivation of the many-body adsorption rate �.

Invoking Feynman rules for our model [10,11] we will
write the one-loop atom self-energy 	kk as [10]

	kk (E ) = g2
kb

∑
q

[
(nq + 1)G(0)

bb (E − ωq)

+ nqG(0)
bb (E + ωq)

]
, (5)

where we introduced a label gkb = g̃kbξ . The phonon occupa-
tion number with Bose-Einstein distribution function is given
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as nq = 1/(eωq/T − 1). The bare bound-state propagator [11]
is written as G(0)

bb (E ) = 1/(E + Eb + iη), η → 0+. Next, we
calculate the resummed atom self-energy 	

(IBM)
kk by replacing

the bare bound-state propagator G(0)
bb by the fully dressed

G(IBM)
bb which is derived within the scheme of the independent

boson model (see Fig. 2) [10]

	
(IBM)
kk (E ) = g2

kb

∑
q

[
(nq + 1)G(IBM)

bb (E − ωq)

+ nqG(IBM)
bb (E + ωq)

]
. (6)

We will write in details the properties and various features
of the low temperature G(IBM)

bb in Sec. III. Finally, we derive
the many-body adsorption rate � using the imaginary part of
	

(IBM)
kk [10,11]:

� = −2Z (Ek )Im	
(IBM)
kk (Ek ), (7)

where Im 	
(IBM)
kk gives the imaginary part of 	

(IBM)
kk and Z

is the quasiparticle weight related to the real part of the self-
energy 	

(IBM)
kk :

Z (E ) =
[

1 −
(

∂ Re	kk (E )

∂E

)]−1

. (8)

Before we proceed to the next section, let us present the
result for the adsorption rate within the conventional first-
order perturbation theory, i.e., Fermi’s golden rule [10],

�0 = 2πg2
kbρ0

{
1

exp
(Ek+Eb

T

)− 1
+ 1

}
, (9)

where ρ0 is the constant density of axisymmetric vibrational
states [10,11,19]. Let us also introduce the label g2

k = g2
kbρ0.

For sufficiently low-energy atomic hydrogen impinging on
graphene membranes, g2

k is given by 0.7–1.5 μeV [9–11,19].
We notice �0 is independent of (i) atom-phonon coupling
strength g̃bb and (ii) soft-phonon contribution (ε). As a test
of our resummation technique and other comparative purposes
related to the adsorption rate, we will use the golden rule result
in Sec. V. In the following sections, our aim is to understand
the role played by the environment of thermal phonons toward
the incoming atom in the bound state by investigating in detail
the various features of the bound-state propagator within the
IBM.

III. LOW-TEMPERATURE BOUND-STATE PROPAGATOR
WITHIN THE INDEPENDENT BOSON MODEL (IBM)

In our model Hamiltonian [given by Eqs. (1)–(3)] if we
focus only on the interaction of the atom and phonons in
the bound state |b〉 and drop the terms that correspond to
the continuum |k〉, we end up with the Hamiltonian of the
independent boson model given by

HIBM = −Ebb†b +
∑

q

ωqa†
qaq − gbbb†b

∑
q

(aq + a†
q), (10)

where we have introduced the label gbb = g̃bbξ . Our aim in
this section would be to rewrite the exact solution of the IBM
Hamiltonian in a suitable manner to incorporate the physics
of the adsorption phenomenon.

With this aim in mind, let us begin with a canonical trans-
formation using an operator s = −gbbb†b

∑
q(a†

q − aq )/ωq

and apply it to each of the operators in Eq. (10). Using
the Baker-Hausdorff lemma [41] Ā = esAe−s = A + [s, A] +
(1/2!)[s, [s, A]] + · · · , we evaluate the new phonon operators:

āq = esaqe−s = aq + gbb

ωq
b†b, (11)

ā†
q = esa†

qe−s = a†
q + gbb

ωq
b†b. (12)

Here, we have used [s, aq] = (gbb/ωq)b†b. We see that under
the canonical transformation, the phonon operators aq and a†

q

are displaced by an amount (gbb/ωq)b†b to a new equilibrium
position around which they vibrate with the initial frequency
ωq [42]. Quite naturally, we ask the following: What is the
physical reason behind such a displacement of the phonon
fields? It seems that the presence of the adatom in the mem-
brane leads to the polarization of the surface of the membrane
which shifts the oscillators. This is quite similar to the case
of the charged oscillator under a uniform electric field. The
presence of the electric field causes the charge to displace to
a new equilibrium position, around which it fluctuates with
the same frequency as before [41]. Now, let us write the new
operator corresponding to the particle in the bound state:

b̄ = esbe−s = b

(
1 +

∑
q

gbb

ωq
(a†

q − aq) + · · ·
)

= bX, (13)

here, we have used [s, b] = ∑
q gbb(a†

q − aq)b/ωq and intro-
duced an operator X ,

X = exp

(∑
q

gbb

ωq
(a†

q − aq)

)
(14)

which we shall refer to as the coherent phonon bath displace-
ment operator [43–45]. Indeed, we will see that X is crucial
to explain the fluctuations of the phonons around the atom.
Finally, under this canonical transformation HIBM modifies to

H̄IBM = esHIBMe−s

= − Ebb̄†b̄ − gbbb†b
∑

q

(
aq + a†

q + 2gbb

ωq
b†b

)

+
∑

q

ωq

(
a†

q + gbb

ωq
b†b

)(
aq + gbb

ωq
b†b

)

= − (Eb + )b†b +
∑

q

ωqa†
qaq, (15)

where we have used [X, b] = 0 and X † = X −1 which implies
b̄†b̄ = b†b [41]. The factor  is defined as the acoustic po-
laron shift which appears as a result of the displacement of the
phonon fields due to the presence of the atom in the phonon
bath:

 =
∑

q

g2
bb

ωq
. (16)
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In the continuum limit
∑

q → ∫ ωD

ε
ρ0dω, the above equation

reduces to

 = g2
b

∫ ωD

ε

dω

ω
. (17)

Here, we have introduced the label g2
bbρ0 = g2

b and we stick to
this notation for the rest of the paper. For atomic hydrogen im-
pinging on graphene membranes, g2

b = 0.06 meV [9–11,19].
A solution to Eq. (15) is realized within the IBM [41]

and is written with modifications pertaining to our model of
adsorption as

G(IBM)
bb (t ) = −ie−it (−Eb−)e−φ̃(t ). (18)

We notice that the canonical transformation has led to a
propagator in which the contributions due to the atom and
phonon terms are well separated. Let us first look at the
phonon contribution which is related to the thermal average
over the phonon modes leading to the phonon bath correlator
[41,46–48]

〈X (t )X †(0)〉 = exp[−φ̃(t )] (19)

with the IBM phase factor [10,41]

φ̃(t ) =
∑

q

(
gbb

ωq

)2

[nq(1 − eiωqt ) + (nq + 1)(1 − e−iωqt )]

(20)
which can be further decomposed into

φ̃(t ) = φ(0) + φ(t ). (21)

Within the continuum limit, we define the above terms as

φ(0) =
∫ ωD

ε

g2
b

ω2
[2n + 1]dω, (22)

φ(t ) =
∫ ωD

ε

g2
b

ω2
[(n + 1)e−iωt + neiωt ]dω, (23)

where n = 1/(eω/T − 1). Plugging Eqs. (22) and (23) in
Eq. (18), we derive the fully dressed bound-state propagator
G(IBM)

bb (t ):

G(IBM)
bb (t ) = −i exp{it (Eb + �)} exp[−φ(0) + Re φ(t )].

(24)

Here, � renormalizes the energy of the bound atom and
includes the contribution from two terms: (i) the acoustic
polaron shift  and (ii) imaginary part of the phonon bath
correlator Imφ(t ) such that

� =  + Imφ(t )

t

= g2
b

∫ ωD

ε

dω

ω
− g2

b

∫ ωD

ε

sin(ωt )dω

ω2t
.

(25)

The decay of the propagator G(IBM)
bb (t ), on the other hand, is

given by

S = exp[−φ(0) + Reφ(t )] , (26)

which comprises the real part of φ(t ):

Reφ(t ) = g2
b

∫ ωD

ε

[
(2n + 1) cos(ωt )

ω2

]
dω (27)

and a shift exp[−φ(0)] linked to the Franck-Condon factor.
This in principle is related to the phonon contribution by the
relation 〈X 〉 = exp[−φ(0)/2] [41,43,47].

For all purposes related to the calculation of the many-body
adsorption rate, we require the Fourier transform of Eq. (24).
We write them as the following:

ReGbb(E + Eb) =
∫ ∞

0
dt sin{t (E + Eb + �)}

× exp[−φ(0) + Re φ(t )] (28)

and

|ImGbb(E + Eb)| =
∫ ∞

0
dt cos{t (E + Eb + �)}

× exp[−φ(0) + Reφ(t )]. (29)

Before we calculate the resummed atom self-energy 	kk

using Eqs. (28) and (29), let us study the effect of the phonon
bath on the renormalization and decay of the bound atom
with a special focus on the time evolution, temperature T ,
and coupling strength g2

b. We envision these effects to alter the
response of the phonons toward the adsorption phenomenon.
Our next section will be devoted to this.

IV. EFFECTS OF THE PHONON CORRELATOR ON THE
RENORMALIZATION AND DECAY OF THE

BOUND-STATE PROPAGATOR

We devote this section to investigate the effects of time,
temperature, and coupling on the phonon bath correlator and
also the renormalization parameter. It seems to us that the first
step to accomplish this would be to define an effective pa-
rameter which would accommodate the effects of temperature
T and coupling g2

b in it. In principle, we accomplish this by
setting up a transformation of variable which would naturally
give rise to such a parameter. Let us define the transformation
of variable

ω̃ = ω√
g2

bT
, (30)

which leads to the following dimensionless parameters for the
low-energy infrared scale ε and maximum Debye frequency
ωD:

ε → ε̃ = ε√
g2

bT
, ωD → ω̃D = ωD√

g2
bT

. (31)

Also, as result of the transformation, we derive a new charac-
teristic dimensionless timescale that comprises the effects of
time t :

τ = (√
g2

bT
)
t . (32)

As we see, the parameter ε̃ contains in it the soft-phonon
energy scale ε, length of the membrane L (since ε = vs/L),
coupling g2

b, and the effects of temperature T . Thus, we study
the time dependence of the decay and renormalization of the
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FIG. 3. For graphene membranes with coupling g2
b = 0.06 meV

[9–11,19] maintained at T = 10 K = 0.862 meV, we plot the effect
of the dimensionless infrared scale ε̃ on the decay factor S̃ as a
function of the dimensionless characteristic timescale τ = (

√
g2

bT )t .
The range of membrane sizes used is L = 5 nm, 20 nm, 100 nm,
1 μm, and 10 μm which correspond to ε̃ = 3.5, 1, 0.18, 0.018,
and 0.0018, respectively. While for smaller values of ε̃ (ε̃ < 1), we
notice a rapid loss of phonon coherence within τ < 1, higher values
of ε̃ (ε̃ > 1) retain their coherence and slowly saturate to nonzero
residual values for τ > 1. We relate this long-time residue to the
shift due to the Franck-Condon (FC) factor given by exp[−φ(0)].
The inset plot shows the corresponding variation of exp[−φ(0)]
with ε̃. For ε̃ 
 1, the shift due to FC is generally zero and shows
appreciable nonzero values only for ε̃ � 1.

bound-state propagator as a function of ε̃. We will perform
the study with respect to the dimensionless timescale τ . The
effectiveness of such a choice will be clear to us shortly. In the
following subsections we apply the transformations given by
Eqs. (30)–(32) to the decay and the renormalization factors.

A. Decay of the propagator as a function of ε̃

Under the chosen transformation of variables, the decay
term S given by Eq. (26) modifies to

S̃ = exp

⎡
⎣−

∫ ω̃D

ε̃

√
g2

b

T

1

ω̃2

⎧⎨
⎩ 2

exp
(
ω̃

√
g2

b/T
)− 1

+ 1

⎫⎬
⎭

×{1 − cos(ω̃τ )}dω̃

⎤
⎦, (33)

where we have used the transformed versions of Eqs. (22)
and (27). We solve the integral within the square brackets
numerically for various values of ε̃ as a function of the
characteristic dimensionless timescale τ and plot the decay
factor S̃ vs τ in Fig. 3.

As we have seen in the previous section, S̃ represents the
phonon bath correlator [given by Eq. (19)] and physically
corresponds to the dephasing of the phonons. The general
feature as seen in Fig. 3 is a loss of coherence of the
phonons following a power-law decay. However, we observe
two regimes: (i) for phonons corresponding to ε̃ < 1, there
is a rapid loss of coherence within τ < 1 and beyond τ = 1,

FIG. 4. Dependence of the decay factor S̃ on ε̃ for different
regimes of the dimensionless characteristic timescale τ = (

√
g2

bT )t .
Maximum phonon coherence is observed for the regime τ 
 1. With
increasing τ , phonon coherence is seen to decrease and beyond τ =
1, the shift due to Franck-Condon factor exp[−φ(0)] starts to emerge.
For phonons exhibiting short-time phonon dynamics (ε̃ < 0.5), an
absolute loss of phonon coherence beyond τ = 1 is observed. The
long-time (τ � 1) response of S̃ corresponds to the shift due to the
Franck-Condon factor.

phonons have completely lost their coherence such that S̃ ≈ 0
and (ii) for phonons corresponding to ε̃ > 1, there is a much
slower loss of coherence and in fact beyond τ = 1 they do
not show a complete decay but saturate to nonzero residual
values. Let us ask what controls the phonon bath correlator
function beyond τ = 1? While phonons lose their coherence
with the evolution of time, they finally saturate to residual
values that are represented by the time-independent Franck-
Condon factor (FC) given by exp[−φ(0)]. We indeed observe
a complete match of the long-time values of S̃ with the
FC factors calculated for the corresponding values of ε̃ (see
inset of Fig. 3). Therefore, for τ < 1, we observe short-time
phonon dynamics that correspond to ε̃ < 1 or more precisely
ε <

√
g2

bT , and for ε̃ > 1, i.e., ε >
√

g2
bT phonons exhibit

long-time dynamics in regime τ > 1.
Variation of the decay S̃ as a function of ε̃ for different

regimes of the dimensionless characteristic timescale τ =
(
√

g2
bT )t is shown in Fig. 4. We observe that the function is

within the bounds 0 � S̃ � 1. The shift due to the Franck-
Condon factor exp[−φ(0)] matches exactly with the long-
time (τ � 1) response of S̃ . For τ 
 1, phonon coherence
is maximum (also, see Fig. 3) and it is this time-dependent
contribution that completely cancels out the one arising from
the time-independent factor φ(0), hence, there is no appre-
ciable change in the decay function and S̃ ∼ 1. However,
with increasing τ , phonon coherence starts to decay and the
shift due to FC factor starts to emerge. For τ > 1 and τ � 1,
S̃ ≈ 0 for ε̃ < 0.5. We relate this to the absolute loss of
phonon coherence beyond τ = 1 for the phonons exhibiting
the short-time phonon dynamics (see Fig. 3). The regime
τ < 1 is interesting as it shows a logarithmic increase in S̃
with increasing ε̃. For ε̃ > 2, S̃ is finite and comparable for
all regimes of τ . We understand this behavior by relating this
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to the long-time phonon dynamics where the phonons in the
regime ε̃ > 1 retain their coherence for longer times.

We now ask if the renormalization factor � exhibits similar
dependence on τ and ε̃ just as the decay S̃ .

B. Renormalization of the bound-state energy as a function of ε̃

From Eq. (29), we define a function P which encloses the
renormalization factor �:

P = cos{t (E + Eb + �)}. (34)

Under the chosen transformation, we write

P̃ = cos

⎡
⎣τ

⎧⎨
⎩E + Eb√

g2
bT

+
√

g2
b

T

∫ ω̃D

ε̃

dω̃

ω̃

−
√

g2
b

T

∫ ω̃D

ε̃

sin(ω̃τ )

ω̃2τ
dω̃

⎫⎬
⎭
⎤
⎦ (35)

with the transformed renormalization term

�̃ =
⎡
⎣
√

g2
b

T

∫ ω̃D

ε̃

dω̃

ω̃
−
√

g2
b

T

∫ ω̃D

ε̃

sin(ω̃τ )

ω̃2τ
dω̃

⎤
⎦. (36)

As discussed before in Sec. III, there is a competition between
two physical effects that govern the renormalization �̃: (i) the
acoustic polaronic shift ̃ and (ii) the imaginary part of the
phonon bath correlator Ĩ [given by the first and second terms
of Eq. (36), respectively].

We plot the time dependence of the renormalization factor
τ�̃ for various values of the dimensionless IR cut-off ε̃ for
two regimes 0 < τ � 1 (top panel of Fig. 5) and τ � 1
(bottom panel of Fig. 5). For 0 < τ � 1 (top panel), we
observe comparable and small contributions (compared to
Eb) from the polaron (left inset) and the imaginary part of
phonon correlator (right inset) which thus results in an overall
small renormalization factor. We relate this to the fact that the
phonons in this regime are undergoing dephasing and have not
fully lost their coherence (as seen in the previous subsection).
As a result, while phonons dephase with time, the polaron
(τ̃) starts to grow and hence is negligibly small at the
onset of time. However, for the asymptotically large-τ regime
(bottom panel), we observe a huge contribution from the po-
laron (left inset) toward the renormalization compared to the
imaginary part of the phonon bath correlator which gradually
decays off (right inset). Once again, we relate this to the
complete transfer of coherence from the phonon bath toward
the formation of the polaron which now grows logarithmically
without any decay. Variation of the renormalization τ�̃ as
a function of ε̃ for various values of τ is shown in Fig. 6.
For small values of τ (τ 
 1, τ < 1), we observe negligible
variation of the renormalization τ�̃ with ε̃. The modest renor-
malization factors can be related to the comparable and tiny
contributions from the polaron and phonon bath correlator.
However, the general trend shows an increase in τ�̃ with
increasing τ and the effect is seen to be more pronounced
for ε̃ < 1. The total loss of phonon coherence beyond τ = 1
for phonons exhibiting short-time phonon dynamics (ε̃ < 1)
can be attributed to the large renormalization factor. See inset

FIG. 5. Variation of the renormalization factor τ�̃ corresponding
to two regimes of τ for various values of ε̃. Negligible renormaliza-
tion effects are observed in the short-time regime τ 
 1 (top panel)
with small contributions both from the polaron τ̃ (left inset) and
imaginary part of the phonon correlator Ĩ (right inset). In the long-
time regime τ � 1, massive renormalization effects are observed
with large contribution from the polaronic term.

plot of Fig. 6 for the effect in the asymptotically large times
(τ � 1).

In the next section, we will calculate the many-body ad-
sorption rates � following the procedure given in Sec. II and
see how the polaronic shifts and decay of the atom propagator
due to phonons affect the adsorption rates.

FIG. 6. For the short-time regime corresponding to τ < 1, a
small renormalization (τ�̃) effect without any significant depen-
dence on ε̃ is observed. With increasing τ , renormalization effect
is seen to increase for the phonons satisfying ε̃ < 1.
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V. MANY-BODY ADSORPTION RATE

In this section, we will begin our analysis for suspended
graphene membranes maintained at 10 K with sizes ranging
from 100 nm–10 μm which correspond to ε̃ = 0.18–0.0018
(for atom-phonon coupling in the bath g2

b = 0.06 meV). As
we have seen before in Sec. IV, there seems to be the existence
of two regimes corresponding to the characteristic timescale
τ . While in τ � 1 phonons exhibit observable dynamics, in
the other regime characterized by τ > 1, phonon dynamics
seem to completely die off with massive renormalization
effects. In Secs. V A and V B, we provide procedures which
separately evaluate the contribution of the time regimes 0 �
τ � 1 and 1 < τ � ∞ to the adsorption rate. Finally, in
Sec. V C, we provide the result for the total many-body
adsorption rate which is the sum of the contribution from
regimes 0 � τ � 1 and 1 < τ � ∞.

Let us begin with the expression for the imaginary part
of the atom self-energy given by Eq. (6), rewritten under the
transformation of variables [given by Eqs. (30)–(32)],

Im	
(IBM)
kk = g2

k

⎡
⎣∫ ω̃D

ε̃

dω̃

⎧⎨
⎩ 1

exp
[
ω̃

√(
g2

b/T
)]− 1

+ 1

⎫⎬
⎭

× ImG̃bb(Ẽs − ω̃)

⎤
⎦

+ g2
k

⎡
⎣∫ ω̃D

ε̃

dω̃

⎧⎨
⎩ 1

exp
[
ω̃

√(
g2

b/T
)]− 1

⎫⎬
⎭

× ImG̃bb(Ẽs + ω̃)

⎤
⎦. (37)

Here, we have introduced the labels Ẽs ≡ (E + Eb)/
√

g2
bT .

The above equation can also be written as

Im	
(IBM)
kk = g2

k

∫ ω̃D

ε̃

dω̃F = g2
k

∫ ω̃D

ε̃

dω̃[F (em) + F (abs)],

(38)
where F (em) and F (abs) correspond to processes for emission
and absorption of phonons, respectively. We write these as

F (em) =
⎡
⎣
⎧⎨
⎩ 1

exp
[
ω̃

√(
g2

b/T
)]− 1

+ 1

⎫⎬
⎭ImG̃bb(Ẽs − ω̃)

⎤
⎦
(39)

and

F (abs) =
⎡
⎣
⎧⎨
⎩ 1

exp
[
ω̃

√(
g2

b/T
)]− 1

⎫⎬
⎭ImG̃bb(Ẽs + ω̃)

⎤
⎦. (40)

As a matter of fact, a careful inspection of Eqs. (37), (39),
and (40) reveals that we can relate the functions F (em) and
F (abs) to the spectral weights associated with the processes
of emission and absorption of phonons since they are related
to the imaginary part of the bound-state propagator. With the
above equations, let us now look at the contribution from the
two different regimes of τ . We begin with 0 � τ � 1.

FIG. 7. Variation of the spectral weight F (em) as a function of ω̃

for various values of ε̃ in the regime τ � 1. Phonon-broadened peaks
are observed around the vertical black dashed line which corresponds
to phonon frequency for the bound-state energy ω̃ = Ẽs = 184.68.
This broadening is a signature of inclusion of emission of multiple
phonons, referred to as acoustic phonon broadening [11,22–25,49].
The peak of the Lorentzian shows significant shift related to the
effects of the acoustic polaron leading to renormalization of the
bound-state energy. With decreasing ε̃, we also observe enhanced
broadening of the peak which is a result of increased damping related
to the decay of phonon coherence.

A. Contribution from regime 0 � τ � 1

In this section we will calculate the contribution to � from
the regime 0 � τ � 1 by using Eqs. (37), (39), and (40). We
will plug the bound-state propagator given by Eq. (29) with
respective transformation of variables and integrated for 0 �
τ � 1. We start with a study on the dependence of the function
F (em) on the entire phonon frequency scale (ω̃) for our chosen
values of ε̃.

We calculate the respective integrals numerically and plot
the variation of F (em) as a function of ω̃ for the different values
of ε̃ in Fig. 7. For all three values of ε̃, we notice a broad peak
around the nonrenormalized bound-state energy ω̃ = Ẽs =
Es/

√
g2

bT = 184.68 (denoted by vertical black dashed line).
The salient features associated with these Lorentzian curves
are as follows: (i) the peaks do not appear exactly at ω̃ = Ẽs

but are shifted and we relate this shift to the polaronic effects
associated with the renormalization of the bound-state energy.
Also, the respective values of the shift due to different ε̃ are
negligible compared to each other, as expected (see Fig. 6,
where the renormalization effects show almost no variation
with ε̃ for 0 � τ � 1). (ii) We observe damping of the curves
and relate this to the effect of the decay of the bound-state
propagator which represents the dephasing of the phonons.
We observe an enhanced broadening due to increased damp-
ing with decrease in ε̃ which can be understood from the rapid
loss of coherence of the phonons with decreasing ε̃ (see the
dependence of S̃ on ε̃ for τ < 1 in Fig. 4). The broadening
of the function F (em) is a signature of the effect of inclusion
of emission of multiple phonons and is also observed in other
branches of quantum field theories which use resummations
involving multiple quasiparticles [21–25].

While we observe an accumulation of spectral weight
around ω̃ = Ẽs, there is also a loss in the magnitude of the
weight with decreasing ε̃. Naturally, we ask if this loss in
spectral weight around ω̃ ≈ Ẽs reappears at a different phonon
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FIG. 8. Spectral weight distribution for the emission F (em) and
absorption processes F (abs) (gray line) for the two time regimes
0 � τ � 1 (red dots) and 1 � τ � ∞ (blue crosses) for a 10-μm
membrane (ε̃ = 0.0018). Loss of phonon dynamics in the regime
1 � τ � ∞ leads to a complete disappearance of the spectral weight
F around ω̃ = Ẽs which otherwise is present in the short-time regime
0 � τ � 1 (F (em) red dots). While a vanishingly small contribution
to the adsorption rate �(τ > 1) is observed in the asymptotically
long-time regimes (inset plot blue crosses), the short-time contribu-
tion �(τ � 1) (red line) matches with the golden rule result (orange
line). The overall many-body adsorption rate � which is a sum of
contributions from both the time regimes matches with the golden
rule result validating the Bloch-Nordsieck sum rule.

frequency? To answer this, we look at the total emission and
absorption spectra for ε̃ = 0.0018 corresponding to the entire
phonon frequency scale (see Fig. 8). Quite interestingly, we
observe in addition to the spectral weight around ω̃ ≈ Ẽs

for F (em), there appears an accumulation of weight around
ω̃ = ε̃. For higher values of ε̃, we have checked that the
spectral weights around ω̃ = ε̃ are negligible and increase
with decreasing ε̃ and even for the lowest value of ε̃ = 0.0018
(L = 10 μm) this is still less in magnitude compared to the
spectral weight around ω̃ ≈ Ẽs. For the absorption spectra
given by F (abs), there is no appearance of spectral weight
around ω̃ ≈ Ẽs but only around ω̃ = ε̃. This suggests that the
adsorption phenomenon is indeed mediated by the emission
of phonons of two definite frequencies: a hard phonon cor-
responding to ω̃ ∼ Ẽs and a soft phonon ω̃ ∼ ε̃, additionally
the renormalization of bound-state energy and decay of the
propagator is totally controlled by the emitted phonons. Let
us now look at the contribution from the other regime 1 <

τ � ∞.

B. Contribution from regime 1 < τ � ∞
We follow the same procedure as before but subject

Eqs. (29), (37), (39), and (40) to condition 1 < τ � ∞ [i.e.,
integrate the transformed Eq. (29) for regime 1 � τ � ∞].
Let us begin by looking at the variation of F = F (em) + F (abs)

as a function of ω̃. As we noticed from the previous subsec-
tion, the contribution from the soft-phonon emission is visible
only for ε̃ = 0.0018, hence, we show our calculations in this
regime for this lowest value. We find the contribution from
F (abs) to F to be negligible (similar to regime 0 � τ � 1),

however, we observed a surprising feature in the contribution
from F (em). In Fig. 8, we note a complete disappearance of the
spectral weight around ω̃ ≈ Ẽs. To understand this feature, we
recall this regime is characterized by massive renormalization
effects with complete loss of phonon coherence. In fact, it is
the vanishing of the decay factor S̃ represented by the shift
due to the Franck-Condon effect that results in the complete
absence of the spectral weight at ω̃ ≈ Ẽs (see the dependence
of S̃ on ε̃ for τ > 1 corresponding to ε̃ < 0.5 in Fig. 4).
Quite naturally, the contribution from F (em) and F (abs) to
F is negligibly small in this regime and tends to 0 without
any appreciable accumulation of spectral weight at ω̃ ∼ ε̃ or
ω̃ ∼ Ẽs (see Fig. 8).

Let us now calculate the final many-body adsorption rate
for the full time regime 0 � τ � ∞ which comprises the
contribution from the regimes 0 � τ � 1 and 1 < τ � ∞.

C. Final adsorption rate for the full time regime 0 � τ � ∞
In this section, we discuss the final adsorption rate which

is a sum of the contribution from the regimes 0 � τ � 1 and
1 < τ � ∞:

�(0 � τ � ∞) = �(τ � 1) + �(τ > 1). (41)

We calculate � following Eq. (7) using Eqs. (29), (37), (39),
and (40) for both the regimes τ � 1 and τ > 1. For compara-
tive purposes, we normalize the final rate � with respect to the
golden rule result �0 given by Eq. (9) and show the variation
of �/�0 with respect to the dimensionless IR cutoff ε̃ in the
inset of Fig. 8. For a discussion on the quasiparticle weight Z
that appears in the calculation of � (see Appendix).

For membrane sizes 10 μm � L � 100 nm (correspond-
ing to IR cutoff 0.0018 � ε̃ < 0.2) and maintained at T =
10 K, we plot the contribution from the regime τ � 1 shown
in the inset by �(τ � 1) (red dashed lines) and find it to
match the conventional golden rule result �0. However, for the
same membrane parameters, the contribution from �(τ > 1)
corresponding to regime τ > 1 is found to be 0 (blue crosses
in the inset of Fig. 8). Thus, the total many-body adsorption
rate is seen to be dominated by the contribution from the
regime 0 � τ � 1 and can be written as

�(0 � τ � ∞) ≈ �(τ � 1) ≈ �0. (42)

We understand this result by recalling the variation of the
spectral weight F (ω̃) for all frequencies ω̃ for both the emis-
sion and absorption processes. In fact, the total adsorption
rate is equivalent to summing the spectral weights over all
frequencies [see Eqs. (37)–(40).] Since in regime τ > 1, there
is a complete absence of spectral weight around ω̃ ∼ Ẽs due
to the complete loss of phonon coherence which leads to the
emergence of the Franck-Condon shift, the contribution to �

from �(τ > 1) is naturally 0. However, for the regime τ � 1,
the renormalization effect from the emitted thermal phonons
leads to a broadened density of state around ω̃ ∼ Ẽs with a
small contribution from the soft phonons at ω̃ ∼ ε̃, hence,
when summed over all frequencies, this regime contributes to
the adsorption rate. As a matter of fact, the total adsorption
rate is seen to be dominated by the effects from the contribu-
tions from the regime τ � 1.
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From Eq. (42), we see that the final many-body adsorption
rate after the resummation procedure has resulted in a rate
that is equal to the golden rule result �0 which indicates that
the rate is indeed independent of the contribution from soft
phonons ε and atom-phonon coupling in the bound g2

b (see
inset of Fig. 8 where the red dashed lines indicate the final
many-body adsorption rate). This result, although surprising
(since we have summed over multiple contributions from soft
phonons ε and included interactions in all orders of g2

b in
the bound-state propagator), represents the essence of the
Bloch-Nordsieck resummation technique. According to the
Bloch-Nordsieck sum rule (theorem), the final scattering rate
after summing over all soft quanta is found to be identical to
the cross section of scattering in absence of any interaction
with the radiation field [12,50–52]. Hence, Eq. (42) validates
the Bloch-Nordsieck sum rule for our model. Our previous
result for zero temperature [11] was also seen to satisfy
the sum rule. Nevertheless, also as a check of our result
for the many-body adsorption rate, we verified the sum rule
that the bound-state propagators must obey [41]

1 = − 1

π

∫ ω̃D

ε̃

{ImG̃bb(Ẽs − ω̃)}dω̃. (43)

For the full time regime given by 0 � τ � ∞, the numeri-
cally calculated propagator corresponding to the transformed
version of Eq. (29) was found to obey the above-defined sum
rule [Eq. (43)].

VI. CONCLUSION

In summary, we have modeled the phenomenon of adsorp-
tion on suspended graphene membranes based on an exactly
solvable Hamiltonian in many-body physics, the independent
boson model (IBM). The success of IBM traces back to
the exact treatment of phonon dynamics which allows us
to investigate in detail the role played by the multiphonon
emission and absorption in assisting the adsorption of an atom
to a membrane.

While our simple model of adsorption based on the IBM
helps us to understand the renormalization of the physisorp-
tion well, relating it to the formation of a phonon-dressed
atom which we refer to as the acoustic polaron, it also sheds
some light on the decay of the atom in terms of the time
evolution of the phonon bath correlator. This, in particular,
turns out to be important. Our study finds the decay of
the bound atom propagator is strongly dependent on the
time evolution of the phonon bath correlations with surpris-
ingly contrasting results corresponding to different regimes
of a dimensionless characteristic timescale τ , defined as τ =
(
√

g2
bT )t = 1 with t , g2

b, and T as the time, atom-phonon
interactions, and membrane temperature, respectively. With
an aim to understand this dependence, we constructed a new
dimensionless IR scale ε̃ = ε/

√
g2

bT which comprises the
effects of temperature, soft-phonon (ε) contribution (equiva-
lent to the effect of finite-sized membranes), and the atom-
phonon interactions. Corresponding to various values of ε̃,
we indeed find phonons to exhibit different dynamics in

the regimes τ < 1 and τ > 1. While for micromembranes,
phonons exhibit a short-time dynamics with rapid loss of
coherence in the regime τ < 1, for membranes with sizes
<100 nm, phonons exhibit long-time dynamics with negli-
gible loss of coherence. We also understand the long-time
result (τ > 1) as an indication of the emergence of the shift
in the phonon bath correlator due to the time-independent
Franck-Condon factor. Thus, our study reveals well-defined
timescales for infrared phonon dynamics which in principle
can be controlled by the atom-phonon interaction strength and
membrane-temperature.

For micromembranes we computed the adsorption rates
based on a resummation technique that uses the exact solution
of the IBM as the dressed propagator for the atom self-energy.
The contributions from the different regimes of τ toward the
many-body adsorption rate � were found to be completely
contrasting. For 0 � τ � 1 i.e., 0 � t � (g2

bT )−1/2 and, as
a matter of fact, for the full time regime 0 � t � ∞, we
derived adsorption rates that are finite, approximately equal
to the golden rule result and shows negligible dependence
on the IR cutoff (or the soft-phonon emission). This is in
agreement with the Bloch-Nordsieck sum rule which predicts
that the resummed scattering rate including the summation
of contribution of emission of infinitely many soft quanta
is identical to the scattering rate calculated in the absence
of any interaction with the radiation field [12,50,52]. While
the main contribution to the many-body adsorption rate came
from regime 0 � t � (g2

bT )−1/2, the contribution from 1 <

τ � ∞ or (g2
bT )−1/2 � t � ∞ was found to be zero due to

the complete loss of phonon coherence leading to the Franck-
Condon shift.

We thus conclude that for suspended graphene micromem-
branes maintained at 10 K or sufficiently low temperature
(temperature much less than the physisorption well energy
but greater than the atom-phonon coupling and IR scale), the
many-body adsorption rate will be finite, equivalent to the
golden rule result and independent of the size of the mem-
brane which implies that the effect of low-energy phonons
to the adsorption rate is negligible [see Eq. (42) and inset of
Fig. 8]. Our results are thus in agreement with Refs. [30,31]
and disagree with Ref. [20]. In Ref. [20], it seems to us
that the many-body adsorption rate has been derived under
an approximation that might have neglected the contribution
from the effects of emission of thermal phonons. As our
study indicates, it is in fact crucial to incorporate the effects
of the thermal phonon emission which, if neglected, would
give an adsorption rate that is zero (see Fig. 8) but would
violate the sum rule [defined by Eq. (43)]. Thus, it would
be interesting to see if the result for the adsorption rate in
Ref. [20] would change with the inclusion of the effects of
the thermal phonons. We must also mention a difference in
the “trapping mechanism” between our work and Ref. [31],
where the authors have considered a “diffraction-mediated
selective adsorption resonance” which allows the hydrogen
atom more time to exchange low-frequency phonons with
the surface before getting stuck. This mechanism gives rise
to an additional enhancement in sticking probabilities for
incident energies 7–15 meV. Since our current work does not
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include this mechanism, we do not observe this additional
enhancement. We leave this investigation for future work. We
envision our methodology and results to apply to other 2D
materials with sufficiently weak atom-phonon coupling, thus
opening up the possibility of application of these materials as
nanomechanical devices used as mass sensors [31,53].

While we started this paper with a question, let us also
end with an analogy and a few pertinent questions related
to the IR divergence in other field theories. As mentioned
before in the Introduction (Sec. I), within the theories of
QED and perturbative gravity, the massless nature of photons
and gravitons leads to straightforward divergences in the
perturbation series for scattering rates due to the emission
of low-energy virtual bosons [12,14]. The solution to this
IR catastrophe is then realized within resummation schemes
using formalisms that were first developed in the field of
electrodynamics by Bloch-Nordsieck [12] and in gravity by
Weinberg [14]. The results of these resummations in QED
and perturbative gravity led to the emergence of soft the-
orems which relate the matrix elements of a Feynman di-
agram with an external soft quanta insertion to that of the
same diagram without an external soft quanta [15]. In recent
years, there has been a renewed interest to understand the
IR structure of these theories with a motivation to decipher
the connections between the vividly disparate fields of soft
theorems and the information-theoretic properties of the soft
radiations [54–57]. It is in fact believed that for every massless
quanta there exists a connection between the soft theorems
(IR catastrophe), memory effects, and asymptotic symmetries
[57]. In our simple model of a low-energy atom interacting
with a suspended graphene membrane, we encounter similar
IR-divergent adsorption rates due to the emission of infinitely
many soft phonons. We employ the Bloch-Nordsieck scheme
of resummation formalism employed in QED and perturbative
gravity [12,14] which amounts to including the emissions of
infinitely many soft phonons and derive a nonperturbative
result for the many-body adsorption rate which is finite and
independent of the soft-phonon contribution, thereby validat-
ing the Bloch-Nordsieck theorem [12]. Thus, there is a subtle
similarity between the theories of QED, perturbative gravity
and our model in terms of the IR problem, the technique to
address the IR problem and finally the nature of the solution
to the problem. Thus, motivated by these similarities we ask,
would the soft-phonon radiation encode information?
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FIG. 9. The real part of the atom self-energy is plotted as a
function of various values of the dimensionless IR cutoff ε̃. Inset
shows the variation of the quasiparticle weight Z . We note Z � 1
for the chosen values of ε̃ < 0.2.

APPENDIX: REAL-ATOM SELF-ENERGY WITHIN IBM
AND QUASIPARTICLE WEIGHT Z

Using our method of resummation as given in Sec. II, we
write the real part of the atom self-energy as

Re	(IBM)
kk = g2

k

⎡
⎣∫ ω̃D

ε̃

dω̃

⎧⎨
⎩ 1

exp
[
ω̃

√(
g2

b/T
)]− 1

+ 1

⎫⎬
⎭

× ReG̃bb(Ẽs − ω̃)

⎤
⎦

+ g2
k

⎡
⎣∫ ω̃D

ε̃

dω̃

⎧⎨
⎩ 1

exp
[
ω̃

√(
g2

b/T
)]− 1

⎫⎬
⎭

× ReG̃bb(Ẽs + ω̃)

⎤
⎦, (A1)

where we have used the transformations defined by Eqs. (30)–
(32) given in Sec. IV. Our aim in this section would be to
calculate the real part of 	

(IBM)
kk and derive the respective

values of the quasiparticle weight Z [given by Eq. (8)] for
membrane sizes 100 nm to 10 μm maintained at 10 K.

We accomplish this by numerically integrating Eq. (A1)
using the expression of the real part of the bound-state prop-
agator ReGbb given by Eq. (28) (transformed accordingly) for
ε̃ = 0.0018, 0.018, and 0.18. In Fig. 9, we plot the variation
of the Re	kk (Ẽ ) vs Ẽ . We have numerically checked that the
real part of 	

(IBM)
kk (Ẽ ) vanishes approximately at the energy

corresponding to the peak in the Im	kk (Ẽ ). The function is
well behaved for the chosen values of ε̃ and the corresponding
value of the quasiparticle weight was evaluated numerically
and found as Z � 1 without any significant dependence on ε̃

(see inset of Fig. 9).
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