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Refraction enhancement in plasmonics by coherent control of plasmon resonances
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Optical materials exhibit significant losses over the resonance frequency of their constituent atoms and so
they are practically implemented at frequencies far from resonances. Electromagnetically induced transparency
(EIT) provides a method for effective suppression of optical loss in a narrow window over the resonance,
where the medium exhibits significant dispersion but at the expense of zero susceptibility. The classical or
plasmonic analogs of the EIT effect are introduced and widely used in the context of electromagnetic or
optical metamaterials (MMs). In another interesting phenomenon in quantum optics known as enhancement
of index of refraction (EIR), the optical loss of the medium can be zero or even negative at the region of
maximal susceptibility and negligible dispersion. This condition is interesting for applications where a strong
electromagnetic response of the medium with negligible loss is required, such as zero- or negative-index
metamaterials (MMs). Here we introduce a plasmonic analog of the EIR which allows for coherent control
over the polarizability and absorption of plasmonic nanoantennas. It can open up the way for loss-compensated
propagation of optical waves in zero-index to high-refractive-index plasmonic MMs. The scheme also offers an
approach to all-optical switching and coherent control of transmission, diffraction, and polarization conversion
properties of plasmonic nanostructures, as well as propagation properties of surface plasmon polaritons on
metasurfaces.
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The optical response of surface plasmons is mostly gov-
erned by metal and ambient medium parameters, geometry
of structures, and also by plasmon hybridization, which can
result in novel resonance line shapes, enabling the plasmonic
systems to mimic some quantum optical effects such as Fano
interference and electromagnetically induced transparency
(EIT) [1–5]. The functionality of the plasmonic nanostruc-
tures is significantly improved through active plasmonics and
specifically, by all-optical and ultrafast control of the surface
plasmon on the nanoscale, which has been realized by ex-
ploiting the phase and polarization degrees of freedom of the
exciting waves [6–10].

All-optical coherent control of surface plasmons in sin-
gle or coupled nanoantennas is of fundamental importance,
since they can be viewed as building blocks of plasmonic
MMs, metasurfaces, and optical components such as sensors,
switches, transistors, and light sources. Coherent control over
the linear [6,10], nonlinear [11], and spatially nonlocal [12]
responses of plasmonic nanoantennas has been reported, as
well as controlling the directionality of emission, scattering
patterns, and absorption in nanoparticles (NPs) involving
nonlinear processes [13–15]. Moreover, coherent control of
modal excitations in plasmonic metamolecules is investigated
through adjusting the position of an exciting high-energy elec-
tron beam over a Dolmen-style resonator [16] or by changing
the relative phase of two orthogonally polarized light fields,
exciting a triple nanorod structure [17]. Nevertheless, con-
trolling a resonant plasmonic nanoantenna to exhibit strong
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polarizability and at the same time zero or negative absorption
without involving materials with gain or nonlinear processes
has not been reported so far.

Here, we propose a method for coherent control and
manipulation of absorption and dispersion of a plasmonic
nanoantenna using only the phase and polarization degrees
of freedom of light. The approach is based on a classical
analog of the quantum optics effect known as enhancement
of the index of refraction (EIR), which occurs in atomic (or
quantum dot) systems based on atomic coherence and quan-
tum interference of different excitation pathways in variety of
energy-level schemes [18–21].

To see how the usual resonant dispersion is altered in EIR
and how it differs from EIT, the corresponding dispersion
curves are shown in Fig. 1. The optical response of a two-level
atomic system, represented by the complex susceptibility χ ,
is typically of the form shown in Fig. 1(a). Here, refraction
[Re(χ )] is maximum at point A, where absorption [Im(χ )] is
also very large. In contrast, the EIT, usually occurring in three-
level systems, modifies the dispersion profile to the typical
form shown in Fig. 1(b). Here, absorption is minimal at point
B corresponding to highest dispersion and zero susceptibility.
While EIT is ideal for slow light applications and enhance-
ment of nonlinear interactions, it is not so promising when
strong electromagnetic response (large linear susceptibility) is
required. Such a strong response accompanied with vanishing
absorption arises in EIR, where the dispersion is modified to
the form shown in Fig. 1(c).

According to this figure, susceptibility (depicted as a func-
tion of the normalized probe detuning from the transition
frequency of the excited level) is large at point C, where
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FIG. 1. Real and imaginary parts of susceptibility in an (a) two-
level system with standard dispersion curves, (b) coherent system
showing EIT, and (c) coherent system with enhanced refraction
through the EIR effect.

absorption totally vanishes (point C´). This results in huge
lossless refractive indices in quantum coherent systems [21].
Additionally, susceptibility is negative at point D, where
absorption is again zero (point D´). This spectral region is
interesting for development of lossless negative- or zero-
permittivity [Re (χ ) = −1] media through proper tuning of
the system parameters. Such implications are equally desir-
able in classical systems and can result in a variety of novel
applications in optics and nanophotonics, and specifically in
plasmonics, where conventional methods of loss compensa-
tion are still challenging [22–24].

Here, to introduce a simple toy model as a classical analog
of the EIR we study a mass-spring system consisting of two
linearly coupled one-dimensional oscillators (Fig. 2) with
coupling constant C and damping factors γ1 and γ2.

The complex amplitudes of the harmonic oscillators
x j (t ) = x j exp(−iω t ) and driving forces Fj (t ) =
Fj exp(−iω t ) are connected through

(
x1

x2

)
=

(
δ1 −C

−C δ2

)−1(
F1/m
F2/m

)
, (1)

where δ j = ω2
0 − ω2 − iγ jω and j = 1, 2. Assuming F1 =

F01, F2 = βF02, x1 = x01, and x2 = βx02, where F01 and F02

are real numbers and β = exp(−iθ ) is a complex parameter
depending on the phase difference θ between the forces, we

FIG. 2. Mass-spring analog of the EIR consisting of two linearly
coupled one-dimensional oscillators.
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FIG. 3. Real and imaginary parts of x01 and x02 vs normal-
ized frequency for F01 � F02 (a), (b) and for F01 � F02 (c), (d),
correspondingly.

obtain (star sign denotes the complex conjugate)

x01 = 1

m

(
δ2F01 + βCF02

δ1δ2 − C2

)
, x02 = 1

m

(
δ1F02 + β∗CF01

δ1δ2 − C2

)
,

(2)

and time-averaged power absorbed by each oscillator is given
by Wj = 〈Re[Fj (t )] × Re[ẋ j (t )]〉t = F0 jω

2 Im(x0 j ).
The EIT effect can be reproduced in this system by adopt-

ing β = 0, which means that only the first oscillator is coupled
to the external force, and the second one is exclusively driven
by virtue of coupling C. However, when both of the oscillators
are driven by forces having some phase difference θ , the
system exhibits other interesting features. We assume the
parameters F01/m ω2

0 = 0.01, F02/m ω2
0 = 1, C/ω2

0 = 0.06,
γ1 = γ2 = 0.05 ω0, and θ = π/2 in (2) and plot the real and
imaginary parts of the complex amplitudes x01 and x02 in
Figs. 3(a) and 3(b), respectively. By interchanging the values
of the driving forces (F01/m ω2

0 = 1 and F02/m ω2
0 = 0.01)

and other parameters as before, the complex amplitudes x01

and x02 are changed to the forms in Figs. 3(c) and 3(d).
Interestingly, the curves in Figs. 3(a) and 3(d) resemble
the dispersion curves of a medium with enhanced index
of refraction [Fig. 1(c)]. Similar results would be obtained
if we used the phase difference θ = −π/2. The only dif-
ference would be the interchange of curves in Figs. 3(a)
and 3(d).

The amplitude curves are not very sensitive to small devi-
ations from θ = ±π/2. However, for large deviations of the
phase difference from θ = ±π/2 and especially getting closer
to θ = 0 or θ = ±π , the amplitude curves gradually convert
to those of uncoupled oscillators.

According to Fig. 3, the complex amplitudes show neg-
ative absorption in specific spectral ranges around the res-
onance. However, using relations (2) it can be shown
that the total power absorbed by both oscillators to-
gether W = (ω/2)[F01Im (x01) + F02Im (x02)] is positive at all
frequencies.

The complex amplitude curves in Figs. 3(a) and 3(d)
inspire the application of microscopic coupled dipole oscil-
lators with similar responses as the constitutive elements of
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FIG. 4. A plasmonic molecule consisting of two perpendicular
silver spheroidal nanoparticles excited by two orthogonal polariza-
tions having a phase difference θ .

a medium demonstrating the classical EIR. Metallic cou-
pled nanoantennas as subwavelength constituent elements
of plasmonic MMs can be an interesting platform, because
the zero-absorption feature in the EIR phenomenon can be
exploited as a loss compensation mechanism in notoriously
lossy plasmonic nanostructures.

To this end, we consider a specific metamolecule consist-
ing of two coupled plasmonic nanoantennas which can be
metal strips or nanorods. To simplify the analytical calcula-
tions, we consider two perpendicular prolate (cigar-shaped)
spheroidal NPs shown in Fig. 4. They are excited by two
plane waves with electric fields E1 = E01 e−i ω t and E2 =
E02 e−i(ωt+θ ), having perpendicular polarizations in the x and
y directions, and frequency ω close to the localized surface
plasmon resonance of the NPs along their longer semiaxes.
The direction of propagation of the x(y)-polarized wave can
be in any direction in a plane orthogonal to the x(y) axis.
For E01 � E02 or E01 � E02, and θ = π/2, the curves for
complex polarizability of the NPs are quite similar to the plots
in Fig. 3, corresponding to the conditions of F01 � F02 and
F01 � F02. To study EIR in the condition of comparable pump
and probe fields, we assume exciting fields with equal ampli-
tudes. By taking θ = π/2, the exciting fields with the same
direction of propagation (Fig. 4) are actually the components
of a circularly polarized wave.

The polarizability of a spheroidal NP of volume v in the
electrostatic limit is given by α = v(ε − εh)/[εh + L(ε − εh)]
[25], where ε and εh are dielectric functions of the NP and
host medium, respectively, and L = 1−e2

e2 (−1 + 1
2e ln 1+e

1−e ) is a
geometrical factor in terms of eccentricity (e2 = 1 − b2/a2) of
the NPs [25]. We assume the nanoantennas to be silver NPs in
vacuum (εh = 1) with the dielectric function of Johnson and
Christy [26]. The size and separation of the NPs are assumed
much smaller than the wavelength so that they can be approx-
imated as point dipoles with electrostatic approximation for
their electric field.
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FIG. 5. Real and imaginary components of the polarizabilities
(a) α′

2 and (b) α′
1 (of the coupled NPs in Fig. 4) as functions of

wavelength, and (c) the individual and total ECSs of the same NPs.

The induced dipole moment along the longer semiaxis
of each NP is affected by the superposition of the incident
electric field and field induced by the dipole moment of the
other NP. The projection of the latter on the longer semiaxis is
proportional to dipole moment p with coefficient C depending
on the NP’s separation and its orientation. Therefore, the
polarizabilities of the coupled NPs (in terms of α and β =
e−iθ ) defined by the relations p1 = ε0α

′
1E0 and p2 = ε0α

′
2βE0

are obtained as α′
1 = α

1+βCα

1−C2α2 and α′
2 = α

1+β∗Cα

1−C2α2 .
Using the expression for the extinction cross section

(ECS) of a dipole, excited by an incident plane wave Cext. =
(k/ε0|E0|2)Im (E∗

inc · p) [27], the extinction of the linearly po-
larized components of the incident wave by the corresponding
NPs can be calculated from Cext. j = kIm(α′

j ), ( j = 1, 2).
We consider spheroidal NPs with the semiaxis dimensions
b = c = 10 nm and a = 30 nm in the configuration of Fig. 4.
The real and imaginary components of the polarizabilities α′

1
and α′

2 (along the longer semiaxis of the NPs) as functions
of wavelength for parameters r = 50 nm and θ = π/2 are
plotted in Fig. 5.

We see that in the case of equal amplitude exciting fields,
both of the NPs show negative extinction in different spectral
ranges and exhibit zero absorption near the positive and
negative peak values of their real polarizability. The individual
and total ECSs of the NPs are represented in Fig. 5(c). The
ECS of each NP is negative in specific spectral ranges, but the
total ECS is positive at all wavelengths as expected.

The polarizability values in Figs. 5(a) and 5(b) show that a
three-dimensional (3D) array of such metamolecules with the
unit-cell dimension of 100 nm (density 1021 m−3) can exhibit
zero or negative permittivity at the lossless portion of the
spectrum.

To support the analytical results, interaction of the incident
circularly polarized wave with the NPs in Fig. 4 is simulated
in the frequency domain based on the finite-element method.
The computational region is limited to the interior region
of a perfect electric conductor (PEC) cylinder of diameter
D = 400 nm as a circular waveguide with input and output
ports. The circularly polarized wave is approximated by a
combination of two orthogonal TE11 modes with a π/2 phase
difference. The waveguide contains the coupled spheroidal
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FIG. 6. Real and imaginary parts of (a) x and (b) y components
of the electric field near the NPs oriented in the respective x and y
directions when the x-polarized field precedes the y-polarized field
by θ = π/2 inside the waveguide.

NPs with the same geometrical dimensions as before and with
the dielectric function model of Johnson and Christy [26].
The real and imaginary parts of the x (y) component of the
electric field near the NP oriented in x (y) direction excited by
the mode preceded (delayed) by θ = π/2 in the waveguide is
plotted in Fig. 6(a) [6(b)]. The electric field is a sum of the
contributions from the incident field and the dipole response
of the coupled NPs. Therefore, the field near each NP can give
insight into the effective polarizability of the particle.

The curves in Fig. 6 are quite similar to those in Figs. 5(a)
and 5(b), except for the spectral separations between the
resonances, which are closer to each other in Fig. 5. The
discrepancies between the simulation and analytical results
can be attributed to the introduction of higher-order (beyond
the dipolar) interactions due to the close proximity of the
NPs in simulation, which also results in stronger coupling of
the NPs compared to the conditions of analytical calculations
where the NPs are approximated by point dipoles.

The canalization of energy from one polarization to another
through coupled NPs can be illustrated by tracing the stream-
lines of the power flow from the input to output ports of the
circular waveguide. Figure 7(a) [7(b)] shows the power flow
streamlines around the NPs, corresponding to a wavelength of
λ = 500 nm (λ = 440 nm), at which there is canalization of
energy from y(x) to x(y)-polarized field components through
mutual coupling of the NPs.

As expected, according to Fig. 7(a), the majority of the
streamlines are headed for the horizontal absorptive NP and
then redirected toward the vertical NP and finally steered
toward the output port. Figure 7(c) shows a closer view of
the NPs, with a small number of streamlines to be traced with
more clarity. Similarly, in Figs. 7(b) and 7(d) (corresponding
to λ = 440 nm) streamlines are mainly directed to the vertical
NP with positive extinction and then redirected toward the
output port by the horizontal NP having negative extinction.
This property of power exchange between normal polariza-
tions may find applications in plasmonic polarization conver-
sion metasurfaces [28,29], with an augmented functionality of
all-optical control over the conversion efficiency.

This mode conversion or energy exchange between the
orthogonal polarizations can be verified by the time-domain
finite-element method. Simulation of the mode conversion in
time domain is challenging in a circular waveguide, because
simultaneous extinction of one polarization and growth of the
other cannot be distinguished at the output port. Therefore

FIG. 7. Power flow streamlines around the NPs in the circular
waveguide with the same parameters and geometrical dimensions as
before and at wavelengths (a, c) λ = 500 nm and (b, d) λ = 440 nm.

we use a configuration depicted in Fig. 8, where there are
two separate waveguides with orthogonal electric fields cor-
responding to each NP.

The waveguides consist of two pairs of perfect electric and
perfect magnetic conductor (PMC) sidewalls as well as input

FIG. 8. Two waveguides with orthogonal electric fields corre-
sponding to each NP of the metamolecule. The waveguides have two
perfect electric and two perfect magnetic conductor sidewalls as well
as input ports shown in the 3D picture with output ports in front of
them.
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FIG. 9. Normalized field intensity at the output ports of waveg-
uides no. 1 (green curve) and no. 2 (blue curve) in Fig. 8.

and output electromagnetic ports. The mutual coupling of the
NPs is enabled by two small holes in the waveguide walls.
Electromagnetic fields with equal amplitudes and θ = π/2
phase difference are fed into the waveguides from the input
ports, and the field intensity is calculated as a function of

time at the output ports. Field E1 fed into waveguide no. 1
is preceding field E2 in the other waveguide by θ = π/2.
Simulations with the NP parameters and dimensions as before
(λ = 500 nm) show (Fig. 9) that the output field intensities
deviated from those in the case θ = 0 with nearly 10% growth
for waveguide no.1 and nearly 10% attenuation for no.2,
revealing the power transfer between waveguides.

The circles in Fig. 9 correspond to the calculations at
different time steps, and the bars represent the calculation
errors due to the size of the mesh elements.

In summary, we introduced a classical mass-spring analog
and a plasmonic counterpart of the quantum optics effect
of enhancement of index of refraction. The analogy shows
that maximal polarizability of a plasmonic nanoantenna can
be achieved accompanied by zero absorption of the probe
field. Therefore, it offers the way for development of loss-
compensated plasmonic MMs and metasurfaces with tunable
permittivities ranging from zero to maximal values. The clas-
sical EIR does not involve any gain or nonlinear materials and
is based totally on polarizations and phases of electromagnetic
waves. It can also find applications in all-optical switching or
optically tunable polarization conversion metasurfaces.

A.V.L. acknowledges partial support from the Villum
Fonden “DarkSILD” project (No. 11116).
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