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In-plane magnetoelectric response in bilayer graphene
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A graphene bilayer shows an unusual magnetoelectric response whose magnitude is controlled by the
valley-isospin density, making it possible to link magnetoelectric behavior to valleytronics. Complementary
to previous studies, we consider the effect of static homogeneous electric and magnetic fields that are oriented
parallel to the bilayer’s plane. Starting from a tight-binding description and using quasidegenerate perturbation
theory, the low-energy Hamiltonian is derived, including all relevant magnetoelectric terms whose prefactors are
expressed in terms of tight-binding parameters. We confirm the existence of an expected axion-type pseudoscalar
term, which turns out to have the same sign and about twice the magnitude of the previously obtained
out-of-plane counterpart. Additionally, small anisotropic corrections to the magnetoelectric tensor are found
that are fundamentally related to the skew interlayer hopping parameter γ4. We discuss possible ways to identify
magnetoelectric effects by distinctive features in the optical conductivity.
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I. INTRODUCTION

Although having been extensively studied for more than
half a century [1], the magnetoelectric (ME) effect has re-
cently returned to the spotlight. The renewed attention is moti-
vated by the discovery of new material systems. The tradition-
ally predominant focus on band insulators with intrinsically
broken space-inversion and time-reversal symmetries, known
as multiferroics [2–5], has expanded to topological insulators
[6–9], Weyl semimetals [10–13], and very recently to metals
[14–17]. The latest finding of bilayer graphene being a ME
medium further extends the list by adding an example from
the rapidly expanding class of two-dimensional materials that
have their own unique ME properties [18–21].

A particularly appealing feature of ME media is the possi-
bility to manipulate magnetic properties in a solid by electric
fields and vice versa. This enables us to engineer device
architectures with functionalities not achievable with other
materials [3–5]. It also establishes an inspiring connection
between ideas and methods from condensed-matter physics,
high-energy physics, and even cosmology [4,22]. In a nut-
shell, the ME effect becomes manifest in a mixing between
electric and magnetic fields, E and B, in the expansion of the
free energy F . In leading order, this coupling is linear in both
fields and described by the ME tensor α, whose components
are defined as [2,23]

αi j = − ∂F
∂Ei∂Bj

. (1)

It is common practice to decompose the ME tensor as [23,24]

αi j = αθ δi j + α̃i j , (2)
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with a pseudoscalar αθ and a traceless tensor α̃i j . The latter
can be further split into a traceless symmetric part α̃S

i j and
an antisymmetric part α̃A

i j . These three terms are associated
with the ME monopole, quadrupole, and toroidal moments,
respectively [17,23].

Of particular interest is the pseudoscalar part,

αθ = θ

2π

e2

h
, (3)

with e > 0 denoting the elementary charge, h the Planck con-
stant, and the dimensionless parameter θ that can be related
to the axion field from astroparticle physics [22]. It yields
an isotropic coupling of electric and magnetic fields and can
thus be interpreted as a condensed-matter realization of the
axion electrodynamics [25–27]. The latter is characterized
by modified Maxwell equations that emerge from adding the
term Lax = αθ E · B to Maxwell’s Lagrangian of classical
electromagnetism. The resulting modifications only lead to
physical effects if the axion field θ varies in space or time. A
spatial variation of θ arises naturally by the presence of inter-
faces of ME and non-ME materials where, as a consequence,
an anomalous Hall conductivity appears [6,7]. Also, the axion
field θ possesses two fundamental properties: (i) it is invari-
ant under the shift θ → θ + 2π and (ii) due to the distinct
transformation properties of E and B under time reversal and
spatial inversion, the axion field has to be odd with respect to
both symmetry operations. In traditional ME media [2–5], the
latter property is realized by the coexistence of an intrinsic fer-
romagnetic and ferroelectric order. In contrast, this precondi-
tion is circumvented in topological insulators without broken
time-reversal and inversion symmetries by the equivalence of
θ = ±π due to property (i). Yet, this constrains the axion field
to only appear in a quantized form, i.e., θ ∈ {0, π} [9].

It has recently been established that the ME effect
is also present in bilayer graphene and shows intriguing
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properties [19–21]. Here, the corresponding ME Lagrangian
is anisotropic and may be approximated as [19]

LME = −e nv(ξ‖ E‖ · B‖ + ξz E z · Bz ) δ(z), (4)

where the delta distribution δ(z) locates the bilayer to be in
the x-y plane. It involves the valley-isospin density nv, i.e., the
difference of electron densities in the two (K and K′) valleys.
On the one hand, a finite density imbalance is generated by
the axionlike ME coupling, as the latter induces a valley-
contrasting potential shift [28,29]. At the same time, this
density dependence makes the strength of the ME response
tunable and establishes a link to valleytronics [30–32], which
is not the case in other known ME media. On the other hand,
the special transformation properties of the valleys enable
the presence of the ME effect even though time reversal
and spatial inversion are symmetries of the crystal lattice.
Since this observation is general and applies to any multival-
ley system [33] with similar symmetries, this indicates that
there is another class of ME active materials with bilayer
graphene being the first of its kind to be discovered. Aside
from this, the strength of the axion field is determined by the
material-dependent parameters, where the two-dimensional
sheet geometry suggests that there should be generally distinct
in-plane (proportional to ξ‖) and out-of-plane (proportional to
ξz) contributions. The parameter ξz has been evaluated in Ref.
[20], but the value of ξ‖ has until now been unknown.

In this paper, we fill the knowledge gap about the ME
response of a Bernal-stacked graphene bilayer in the presence
of in-plane homogeneous electric and magnetic fields. Using
a tight-binding description and applying quasidegenerate per-
turbation theory (QPT), we analytically derive an effective
low-energy Hamiltonian that comprises all relevant in-plane
ME couplings and exhibits the ME equivalence [20]. This
allows us to express the prefactor ξ‖ in terms of tight-binding
parameters. Inserting numerical values, ξ‖ turns out to be
approximately twice as large as ξz and of the same sign. Addi-
tionally, small anisotropic ME terms induced by the electron-
hole-symmetry breaking hopping γ4 are found. To establish a
connection to experiment, we discuss the impact of the ME
couplings on features exhibited in the optical conductivity.
For this purpose, the given system configuration is particularly
suitable as, in presence of in-plane fields, the system remains
metallic and the axionic response can be more prominent
than for perpendicular fields. Also, complications arising from
Landau quantization [18] can be avoided if the magnetic field
is in-plane. We explicitly demonstrate that, due to the axionic
term, the minimum optical absorption frequencies become
valley dependent for a nonvanishing chemical potential. Apart
from this, the corrections arising from small anisotropic ME
couplings lead to a broadening of the absorption peak at zero
chemical potential. We treat the response of the graphene
bilayer to the static in-plane electric field by invoking the
drift-induced Fermi-sea displacement when calculating the
optical conductivity.

This paper is structured as follows. In the following sec-
tion, the general definitions concerning the crystal lattice
and tight-binding model of bilayer graphene are briefly re-
viewed. In Sec. III, we first derive a tight-binding Hamiltonian
describing our system of interest in the presence of an in-
plane magnetic field by taking into account the arising Peierls

TABLE I. Phenomenological parameters for bilayer graphene
employed for numerical calculations in this paper adopted from
Refs. [20,40].

intralayer nearest-neighbor hopping γ0 = 3.0 eV
intralayer second-nearest-neighbor hopping γ ′

0 = 0.22 eV
dimer-dimer hopping γ1 = 0.32 eV
non-dimer-dimer hopping γ3 = 0.25 eV
non-dimer-non-dimer hopping γ4 = 0.14 eV
interlayer distance d = 0.335 nm
lattice constant a = 0.245 nm

phases. Including in-plane electric fields, in the next step,
we compute an effective two-band Hamiltonian for the low-
energy regime that contains all relevant ME couplings. In
Sec. IV, we employ these results to study the impact on the
optical conductivity, which turns out to exhibit distinctive
features arising from the ME response. Electronic-structure
parameters used for numerical calculations in this work are
listed in Table I.

II. BASIC THEORY FOR THE ELECTRONIC STRUCTURE
OF BILAYER GRAPHENE

A. Crystal structure

The crystal lattice of a Bernal-stacked graphene bilayer is
defined in accordance with Ref. [20] as illustrated in Figs. 1
and 2. The bilayer is composed of two coupled graphene
monolayers which are characterized in real space by the
primitive lattice vectors

a1 = a (1, 0, 0)�, (5)

a2 = a

2
(1,

√
3, 0)�, (6)

with the lattice constant a. Note that the distance of two
adjacent carbon atoms within each layer is a/

√
3. Each of

x

y
a1

a2

FIG. 1. Top view on the crystal lattice of a Bernal-stacked
graphene bilayer. Open circles indicate sites on the dimer sublattices
A and A′, while the blue (light blue) closed circles are sites on the
nondimer sublattice B (B′).
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0

FIG. 2. Side view of the crystal lattice of a Bernal-stacked
graphene bilayer. The red (blue) spheres depict the atoms of the
sublattices A and A′ (B and B′). The yellow and green connecting
lines represent the intra- and interlayer couplings, respectively.

the coupled monolayers consists of two sublattices, which we
define as (A, B) for the top and (A′, B′) in the bottom layer,
forming a hexagonal lattice. In the Bernal-stacked form, the
atoms are arranged such that the sublattices A and A′ lie on
top of each other, i.e., they are connected by the vector

a3 = d (0, 0, 1)�, (7)

where d is the interlayer distance. In contrast, the other
sublattices (B, B′) are displaced such that the corresponding
atom is normal to the center of each hexagon of the other layer.
In other words, the top layer can be generated by shifting the
bottom layer by the vector a3 followed by a reflection at the
x-z plane. The point group of the bilayer graphene is D3d [34].
The atomic sites (A, A′) are referred to as dimer and the sites
(B, B′) as nondimer sites.

The intralayer nearest-neighbor and second-nearest-
neighbor vectors τ1 and τ2, with respect to, e.g., sublattice
A, can be written as

τ
( j)
1 = R(2π j/3) τ

(3)
1 , ( j ∈ {1, 2, 3}), (8)

τ
( j)
2 = R(2π j/6) a1, ( j ∈ {1, . . . , 6}). (9)

Here, τ
(3)
1 = aŷ/

√
3 and R(φ) denotes a rotation about the z

axis by the angle φ.
In k-space, the lattice retains its hexagonal shape but is

rotated by π/2 about the z axis. The according primitive
reciprocal lattice vectors read as

b1 = 2π√
3a

(
√

3,−1, 0)�, (10)

b2 = 4π√
3a

(0, 1, 0)�, (11)

b3 = 2π

d
(0, 0, 1)�. (12)

The two sublattices give rise to two kinds of inequivalent
corner points K and K′ ≡ −K, where

K = 4π

3a
(1, 0, 0)�. (13)

These corner points or valleys are of fundamental interest as
the band gap is minimal there or vanishes.

B. Tight-binding description

The tight-binding model has been used to study the elec-
tronic band structure for bilayer graphene in many different
contexts. For a comprehensive review, see, e.g., Refs. [34–36].

Within the tight-binding approach, the eigenfunctions are
linear combinations of the Bloch functions,

ψn,k(r) = 1√
N

N∑
l=1

eik·Rl ϕn(r − Rl ), (14)

where k denotes the (purely in-plane) wave vector of charge
carriers in bilayer graphene, ϕn(r − Rl ) is the nth atomic
orbital at the lattice site Rl , and N is the total number of lattice
sites [34]. Small corrections that arise from the nonorthogo-
nality of the Bloch functions shall be neglected in the follow-
ing. As it is the antibonding π bonds derived from pz orbitals
that are relevant for the electronic transport, we consider one
pz orbital for each of the four sites within the unit cell, i.e.,
n ∈ {A, B, A′, B′}. With this, we represent the tight-binding
Hamiltonian H in the basis {|ψA〉 , |ψB〉 , |ψA′ 〉 , |ψB′ 〉}, where
we use this very ordering. Including a magnetic field B =
∇ × A(r) with the vector potential A(r), the Bloch function
picks up a Peierls phase [37,38]. A general matrix element
thus becomes

〈ψm|H|ψn〉 ≈ 1

N

∑
l, j

exp

[
ik · (Rl − R j ) − ie

h̄

∫ R j

Rl

dr · A(r)

]

×
∫
R3

dr3ϕ∗
m(r − R j )H ϕn(r − Rl ), (15)

where the vector potential yields a phase given by a line
integral between the different lattice sites. The on-site energies
are defined as εn = 〈ψn|H|ψn〉, where we assume for simplic-
ity εA = εA′ = εB = εB′ , i.e., energy differences between the
distinct sublattices as well as dimer and nondimer sites are
neglected. In this paper, we account for the couplings between
nearest and second-nearest neighbors that are characterized by
the hopping integrals γ0, γ ′

0, γ1, γ3, and γ4, as schematically
illustrated in Fig. 2. A more detailed definition is given in
Appendix A, and numerical values of all parameters are listed
in Table I. Typically, the nearest-neighbor hopping parameter
γ0 (intralayer) and γ1 (interlayer) constitute the dominant
couplings. The γ3 hopping leads to a trigonal warping of
the band structure, and the parameters γ4 and γ ′

0 break the
electron-hole symmetry.

For vanishing magnetic fields, the Hamiltonian takes the
form [20]

H =

⎛
⎜⎜⎝

γ ′
0 f2 −γ0 f1 γ1 γ4 f ∗

1

−γ0 f ∗
1 γ ′

0 f2 γ4 f ∗
1 −γ3 f1

γ1 γ4 f1 γ ′
0 f2 −γ0 f ∗

1

γ4 f1 −γ3 f ∗
1 −γ0 f1 γ ′

0 f2

⎞
⎟⎟⎠, (16)
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where

f1(k) = eikya/
√

3 + 2e−ikya/(2
√

3) cos(kxa/2) (17)

and f2(k) = | f1(k)|2 − 3. Expanding f1 in the vicinity of
the high-symmetry points K and K′ ≡ −K, f1/2(k) 
→
f1/2(±K + k) ≡ f ±

1/2(k), gives

f ±
1 (k) = ∓

√
3

2
ak∓ + a2

8
k2
± + O(k3), (18)

f ±
2 (k) = −3 + 3

4
a2k2 + O(k3), (19)

where k± = kx ± iky and k =
√

k2
x + k2

y [39].

III. MAGNETOELECTRIC COUPLING OF IN-PLANE
ELECTROMAGNETIC FIELDS

Hereafter, we employ the definitions and notations of the
previous section and derive a model Hamiltonian that includes
the ME couplings due to in-plane electric and magnetic fields.

A. Incorporating in-plane magnetic fields
into the tight-binding Hamiltonian

The situation of an in-plane magnetic field has been
addressed recently by several authors [37,38,41–43]. In
Ref. [41], the magnetic field was semiclassically included
by adding Lorentz-force-induced momentum shifts, and only

vertical interlayer hopping γ1 was considered. This method
was extended in Refs. [42,43] by taking into account the effect
of trigonal warping. Here, we follow a more sophisticated
approach [37,38] that correctly accounts for the arising Peierls
phases in the tight-binding model.

A homogeneous in-plane magnetic field B = Bxx̂ + Byŷ
can be associated with a vector potential A = z(Byx̂ − Bxŷ).
Selecting this gauge, the translation symmetry is preserved
within each layer. Further assuming a symmetric arrangement
of the top and bottom layers at z = ±d/2, the Peierls phase
for the interlayer couplings vanishes. The strong dimer-dimer
coupling γ1 opens a gap for the (A, A′)-like states. For low
energies |E | < γ1, the bands of interest are described by the
(B, B′)-like states. Hence, it is common to project on the
(B, B′) subspace and perturbatively include the couplings to
the other bands. Following this approach, we incorporate the
effects of a small magnetic field in the Hamiltonian; that
is, we retain terms up to first (second) order in the field or
the wave vector on the off-diagonal (diagonal) part of the
Hamiltonian. Since the energy dispersion of bilayer graphene
turns out to be dominated by terms that are quadratic in
the wave vector, we allow, in addition, terms quadratic in
the wave vector off-diagonal in the (B, B′) sector as we
project on that subspace. Rearranging further the basis func-
tions as { 1√

2
(|ψA〉 + |ψA′ 〉), 1√

2
(|ψA〉 − |ψA′ 〉), |ψB〉 , |ψB′ 〉}

and neglecting the constant energy shift due to f2, we
obtain

H(±K + k) ≈

⎛
⎜⎜⎜⎝

γ1 + γ̃ ′
0|κ2|2 0 [γ̃0κ

∗
2 − γ̃4κ

∗
0 ]/

√
2 [γ̃0κ1 − γ̃4κ0]/

√
2

0 −γ1 + γ̃ ′
0|κ1|2 [γ̃0κ

∗
2 + γ̃4κ

∗
0 ]/

√
2 −[γ̃0κ1 + γ̃4κ0]/

√
2

[γ̃0κ2 − γ̃4κ0]/
√

2 [γ̃0κ2 + γ̃4κ0]/
√

2 γ̃ ′
0|κ2|2 −γ̃31κ

∗
0 + γ̃32κ

2
0

[γ̃0κ
∗
1 − γ̃4κ

∗
0 ]/

√
2 −[γ̃0κ

∗
1 + γ̃4κ

∗
0 ]/

√
2 −γ̃31κ0 + γ̃32(κ∗

0 )2 γ̃ ′
0|κ1|2

⎞
⎟⎟⎟⎠, (20)

with

κ0 = ±k±, (21)

κ1 = ±(k± ± ib±), (22)

κ2 = ±(k± ∓ ib±), (23)

b± = ed

2h̄
(Bx ± iBy), (24)

and

γ̃0 =
√

3a

2
γ0, (25)

γ̃ ′
0 = 3a2

4
γ ′

0 (26)

γ̃31 =
√

3a

2
γ3, (27)

γ̃32 = a2

8
γ3, (28)

γ̃4 =
√

3a

2
γ4. (29)

Disregarding the parabolic terms ∝γ̃ ′
0, γ̃32, this result coin-

cides with the Hamiltonian given in Ref. [37] apart from a

unitary transformation and the sign of the γ3-terms. With-
out magnetic field, this expression corresponds to the
Slonczewski-Weiss-McClure Hamiltonian [44,45].

The energy dispersion obtained for a finite in-plane mag-
netic field is displayed in Fig. 3. For better visualization,
we used an extraordinary high magnetic field of 1000 T. In
Refs. [41–43], it was found that a large in-plane magnetic
field produces a change in topology of the band structure
similar to the one appearing due to lateral strain [46–50].
More precisely, the parabolic low-energy dispersion splits
into two Dirac cones, cf. Figs. 3(a) and 3(b), where the new
Dirac points appear at wave vectors k = ±(ẑ × b). However,
our more detailed model includes additional hopping terms
that further reduce the symmetry and result in a gapped
spectrum [cf. Fig. 3(c)]. Due to the presence of trigonal
warping, the precise dispersion near the charge-neutrality
point is quite complex and depends sensitively on the system
configuration.

B. Effective low-energy Hamiltonian describing in-plane
magnetoelectric couplings

An effective Hamiltonian that describes the low-energy
excitations of bilayer graphene in absence of fields was first
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FIG. 3. Effect of an in-plane magnetic field B = B x̂ on the band structure of bilayer graphene. Results shown in panel (a) [(b), (c)] have
been obtained by diagonalizing the tight-binding Hamiltonian at the K valley, Eq. (20), for B = 0 [B = 1000 T and assuming γ3 = γ4 = γ ′

0 = 0,
B = 1000 T without any approximation]. Numerical values used for band-structure parameters are listed in Table I.

derived in Ref. [51]. The result was extended in Ref. [20]
to the situation where perpendicular, static, and homogenous
electric and magnetic fields are present.

In this paper, we consider both static homogeneous electric
and magnetic fields applied within the plane of the bilayer.
The magnetic field is already included in our tight-binding
model. To also account for an electric field E = Exx̂ + Eyŷ,

we add the scalar potential VE (r) = eE · r to the Hamiltonian
in Eq. (20). Using QPT [52,53], we project on the (B, B′)
subspace. For the partitioning of the Hamiltonian, we select
the diagonal terms proportional to the magnetic field and
all off-diagonal terms as a perturbation. To third order in
perturbation theory, this procedure yields the effective two-
band Hamiltonian Heff + VE (r), where

Heff =
{(

2γ̃0γ̃4

γ1
+ γ̃ ′

0

)
k2τ0 + eγ̃ 2

0

γ 2
1

E · b τz

}
⊗ σ0

+
{

γ̃ 2
0 − γ1γ̃32 + γ̃ 2

4

γ1

(
k2

y − k2
x

)
τ0 −

[
γ̃31kx + e

γ̃0γ̃4

γ 2
1

(Exbx − Eyby)

]
τz

}
⊗ σx

+
{[

−γ̃31ky + e
γ̃0γ̃4

γ 2
1

(Exby + Eybx )

]
τ0 + 2

γ̃ 2
0 − γ1γ̃32 + γ̃ 2

4

γ1
kxky τz

}
⊗ σy

+
{

2
γ̃0γ̃4 + γ̃ ′

0γ1

γ1
(bykx − bxky) τ0 + e

γ̃ 2
0 + γ̃ 2

4

γ 2
1

(Eykx − Exky) τz

}
⊗ σz. (30)

In this notation, the Pauli matrices σ0,x,y,z are associated with
the sublattice-related pseudospin degree of freedom. On the
other hand, τ0 and τz are Pauli matrices whose basis states
represent the different valleys in the order (K, K′). Notably,
the effective Hamiltonian at the K′ valley can be obtained
from the Hamiltonian at the K valley (and vice versa) by
a mirror reflection at the yz plane, i.e., the polar vectors
map as kx → −kx and Ex → −Ex and the axial (pseudo-
)vectors as By → −By. In the above expression for Heff, we
excluded terms that are of third order in the wave vector
or of second order in the magnetic field. (For completeness,
terms quadratic in the magnetic field are listed in Appendix B.
Additional ME couplings that appear in fourth-order QPT are
given in Appendix C. To make the connection with results
from Ref. [20], we discuss in Appendix D possible couplings
between in-plane magnetic and out-of-plane electric fields.)
The effective Hamiltonian Eq. (30) exhibits the ME equiva-
lence; i.e., it is form-invariant with respect to interchanging

corresponding Cartesian components of the electric and mag-
netic fields [20].

In absence of electric fields, the magnetic-field-dependent
terms in Eq. (30) appear only due to the small tunneling
amplitudes γ ′

0 and γ4 that break the electron-hole symmetry.
Hence, to observe the change of the band structure topology
[41–43] as shown in Fig. 3, we need to include correc-
tions that are quadratic in the magnetic field, Eq. (B1). This
implies that these terms should be taken into account for
large magnetic fields. On the other hand, realistic parameters
require extraordinary large magnetic fields to observe this
effect experimentally in bilayer graphene. For instance, the
characteristic energy splitting �B at the ±K points can be es-
timated to be �B = 3

8γ1
(adeγ0B/h̄)2, which yields a splitting

of �B = (1.64 × 10−7eV/T2) × B2 for bilayer graphene. A
comparison of the low-energy dispersions for a large mag-
netic field obtained within different models is provided in
Fig. 4. Ignoring the effect of trigonal warping, the electron
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−0.01 0 0.01
−0.05

0

0.05

− B/2

+ B/2

ky (||K|| )

E
(
1)

FIG. 4. Low-energy dispersion at the K valley computed for
E = 0 and B = B x̂ with B = 300 T using Eq. (20) (yellow), Eq. (30)
(red-dotted), and Eq. (30) including the parabolic terms from
Eq. (B1) (blue-dashed). Numerical values used for band-structure
parameters are listed in Table I.

and hole branches have generally two minima with a gap of
approximately 4(γ̃0γ̃4/γ1 + γ̃ ′

0) b2 [54]. If both electric and
magnetic fields are present, the ME and purely magnetic terms
are competing with each other. One consequence is that, above
a critical electric field strength, the electron and hole branches
can have one single extremum each. Assuming E ‖ B and
setting γ3 = γ4 = γ ′

0 = 0, we can estimate the transition to
occur at ‖E‖/‖B‖ ≈ γ1d/(

√
2h̄). Yet, we stress that the low-

energy band structure has much richer features due to the
trigonal warping and the gap is highly anisotropic. A more
detailed discussion thereof goes beyond the scope of this work
and shall be presented elsewhere.

Our main interest concerns the ME terms, which couple
the electric and magnetic fields and induce a breaking of the
valley degeneracy [19,20,28,29]. As the leading contribution,
we identify the axionic term

Hax = �ax τz ⊗ σ0, (31)

with �ax = e ξ‖ E · B involving the material parameter

ξ‖ = 3eda2

8h̄

γ 2
0

γ 2
1

. (32)

Using the values for tight-binding parameters given in Table I,
we estimate

ξ‖ ≈ 1.0 × 10−3 nm/T, (33)

which has the same sign and is about twice as large as the
prefactor for the axionic term involving perpendicular fields;
ξz ≈ 6.0 × 10−4 nm/T [19]. Axionic terms are of particular
interest as they constitute a condensed-matter realization of
axion electrodynamics. With the values for ξ‖ and ξz given
above, in conjunction with expressions from Eqs. (3a) and
(8) of Ref. [19], we find the magnitude of the axionic pseu-
doscalar in bilayer graphene as

θBLG ≡ 2πh

e

2ξ‖ + ξz

3d
nv ≈ 6.7 × 10−3 nv[1010cm−2]. (34)

For comparison, the maximum value of the axionic pseu-
doscalar measured in the archetypal ME [26] Cr2O3 is
θ

(max)
Cr2O3

≈ 0.13, while in topological insulators, a large pseu-
doscalar magnitude θTI = π is fixed by time-reversal symme-

try [9]. Furthermore, the axionic terms in bilayer graphene
generate an energy shift ±�ax of equal magnitude but
opposite sign for pseudospin eigenstates in the two val-
leys ±K. This leads to a finite valley-isospin density nv =
nK − n−K, that is, the difference of charge densities n±K
in the distinct valleys [19,20,28]. In the next section, we
will show how this feature manifests itself in a valley-
dependent minimal absorption frequency in the optical con-
ductivity spectrum when the chemical potential is not at the
charge-neutrality point.

Besides the axionic contributions, Eq. (30) contains other
ME-coupling terms corresponding to anisotropic contribu-
tions of the traceless tensor α̃i j in Eq. (2). They are smaller
than the uniaxial terms by a factor γ̃4/γ̃0 = γ4/γ0 ≈ 4.7 ×
10−2. In conjunction with the quadratic-in-magnetic-field cor-
rections, these terms lead to an energy gap,

�̃± = 2

(
γ̃0

γ1

)2

b ·
∥∥∥∥γ1b ± γ4

γ0
eE

∥∥∥∥, (35)

between the electron and hole branches in the two valleys
±K. The opposite sign of the purely ME contribution leads
to a gap difference between the valleys, i.e., |�̃+ − �̃−| ≈
4γ4|�ax|/γ0. As shown in the next section, this property turns
out to generate a steplike structure in the optical conductivity
when the chemical potential is at the charge-neutrality point.

IV. VISIBILITY OF MAGNETOELECTRIC COUPLING
IN THE OPTICAL CONDUCTIVITY

In the remainder of this paper, we explore the possibil-
ity to detect the above-discussed ME couplings in bilayer
graphene through a transport measurement. Concomitantly
with causing the ME effects that are our primary interest, the
presence of the static uniform in-plane electric field E will
also generate a stationary DC current that is associated with
a shifted Fermi sea of charge carriers in bilayer graphene. We
envision applying an additional small AC electric field δE (t ),
which results in an AC contribution δj(t ) to the current den-
sity. The tensor σμν (ω) of the frequency-dependent (optical)
conductivity relates the Fourier-transformed AC quantities
[current density δj(ω) and electric field δE (ω)] via the linear
relation δ jμ(ω) = σμν (ω) δEν (ω). Fundamental properties of
the electronic band structure can give rise to distinctive fea-
tures in the optical conductivity, making the latter a prime tool
for the study of unconventional materials including graphene.
It has been used to study various kinds of systems such as
single or multilayer graphene [55–58], bilayer graphene with
and without asymmetry gap [59], and recently even taking into
account a finite twist angle between the two layers [60,61]. In
our present case, the frequency dependence of σμν (ω) will not
only be affected by the ME-effect-related manipulation of the
band structure, but also by the nonequilibrium distribution of
charge carriers within this band structure. In the following, we
elucidate both effects in turn.

A. Kubo formalism to calculate the frequency-dependent
electric conductivity

We employ the Kubo formula to calculate the conductivity
tensor σμν (ω). The electric-field perturbation is considered
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to be spatially homogeneous, time-dependent, and parallel to
the bilayer plane, i.e., δE (t ) = δE (ω) exp[−i(ω + iη)t]. Here
we have included an infinitesimally small quantity η ∈ R+.
To avoid generating time-dependent contributions to �ax, the
oscillating electric field δE (t ) should be applied perpendicular
to the static in-plane magnetic field B. The conductivity
tensor can be expressed in terms of the set of single-particle
eigenstates {|n〉} in the frequency domain as [62,63]

σμν (ω) = ih̄

V
∑
n,l

〈n|Jμ|l〉 〈l|Jν |n〉
h̄ω + εn − εl + iη

f (εn) − f (εl )

εl − εn
, (36)

with the volume V , the current operator J = −e(∇kH)/h̄, and
the single-particle eigenenergies εi. Moreover, the function
f (εi ) = {1 + exp[β(εi − μ̃)]}−1, where β = 1/(kBT ), repre-
sents the Fermi-Dirac distribution with the Boltzmann con-
stant kB, the temperature T , and the chemical potential μ̃.

We are interested in the dissipative part which is given by
the real part of the conductivity tensor Re[σμν (ω)]. Here, we
can further distinguish two terms: (i) The intraband (n = l)
contribution, which determines the DC Drude conductivity
and (ii) the interband (n �= l) contribution, which determines
the optical absorption at finite frequencies.

To illustrate the emergence of features in the optical con-
ductivity associated with magnetoelectricity, we now focus
on the interband contribution to the optical conductivity for
bilayer graphene in the presence of in-plane ME couplings
in the clean limit. The low-energy band structure of this
system is determined by the single-particle Hamiltonian Heff

displayed in Eq. (30). Its eigenstates are of the form |n〉 =
|k〉 ⊗ |±〉 ⊗ |λ〉k, where k denotes the wave vector, ± the
valley index, and λ distinguishes the different electron and
hole branches. Since the Hamiltonian Heff is diagonal with
respect to |k〉 and |±〉, the interband optical conductivity of
charge carriers from the individual valleys ±K becomes [64]

Re[σ±
μν (ω)] = σ0

sinh(β h̄ω/2)

2h̄ω

∑
λ �=λ′

∫
dk2 〈λ|[∇kH±

eff (k)]μ|λ′〉 〈λ′|[∇kH±
eff (k)]ν |λ〉

cosh{β[ε±
λ (k) + ε±

λ′ (k) − 2μ̃]/2} + cosh(β h̄ω/2)
δ[h̄ω − ε±

λ′ (k) + ε±
λ (k)], (37)

where H±
eff = 〈±|Heff |±〉, σ0 = 2e2/h, and we introduced an

additional factor 2 to account for spin degeneracy. Here and
in the following, the k-integration is restricted to the domain
around the valleys as otherwise spurious solutions may occur
due to the small-wave-vector expansion of the Hamiltonian
Heff . The total optical conductivity of the system is the sum of
contributions from the individual valleys, i.e., Re[σμν (ω)] =∑

± Re[σ±
μν (ω)].

In contrast to the usual situation, the distribution of charge
carriers in the unperturbed state for our case of interest
is a uniformly shifted Fermi sea. See Appendix E for a
detailed discussion. Accounting for the stationary current-
carrying state generated by the static in-plane electric field
finally amounts to using a k-dependent chemical potential [cf.
Eq. (E3)]

μ̃(k) = μ̃ + 2eγ̃ 2
0

γ1

τtr

h̄
E · k (38)

in the expression Eq. (37) for the optical conductivity, where
τtr is the intravalley transport relaxation time.

To disentangle the nonequilibrium kinetic effect of the
in-plane electric field from features associated with ME cou-
plings, we present below results obtained for σμν (ω) both with
and without the k-dependent correction to μ̃ included in the
formula Eq. (37). For full consistency, life-time broadening
on the scale of τtr should also be included in the calculation
of σμν (ω), and the latter’s salient features need to be suffi-
ciently separated from the intraband (broadened-Drude-peak)
contribution to the optical conductivity to enable experimental
observation.

B. Ramification of in-plane magnetoelectric couplings
for the optical conductivity: Discussion

In Sec. III B, we identified two major physical implica-
tions arising from ME effects involving in-plane electric and

magnetic fields: the valley-asymmetric axionic energy shift
Eq. (31) and the valley-dependent field-tunable gap Eq. (35).
We now discuss the features in the optical conductivity asso-
ciated with each of these effects.

To start with, we consider the case where γ4 = γ ′
0 = 0

and, hence, the in-plane electric field causes only the axionic
shift. [The same holds for the in-plane magnetic field if the
parabolic terms Eq. (B1) are disregarded.] Neglecting the
k-dependent correction to the chemical potential for now,
the expression Eq. (37) for the conductivity tensor can be
factorized into two parts [65],

Re[σ±
μν (ω)] = σ0 χ (ω, β, μ̃±) �μν (ω), (39)

with valley-dependent chemical potentials μ̃± = μ̃ ∓ �ax ap-
pearing only in the function

χ (ω, β, μ̃±) = sinh(β h̄ω/2)

cosh(βμ̃±) + cosh(β h̄ω/2)
, (40)

and the part

�μν (ω) =
∑
λ �=λ′

∫
d2k

δ[h̄ω − ελ′ (k) + ελ(k)]

2h̄ω

× 〈λ|[∇kHeff (k)]μ|λ′〉 〈λ′|[∇kHeff (k)]ν |λ〉 (41)

being fully determined by the band structure and independent
of the valley index which is therefore suppressed. In Fig. 5,
it is illustrated that, depending on the value of the chemical
potential μ̃, the minimum transition frequencies ω± = 2|μ̃ ∓
�ax|/h̄ for interband transitions at a fixed wave vector are in
general valley dependent. For μ̃ = 0, i.e., with the chemical
potential at the charge-neutrality point, the minimal frequen-
cies are equally large and determined by the axionic shift.
For μ̃ �= 0, both peaks separate, and the difference |ω+ − ω−|
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FIG. 5. Illustration of the valley-dependent optical absorption for
different chemical potentials μ̃ due to the axionic energy shift �ax.
The minimum transition frequencies ω± are (a) identical for μ̃ = 0
and (b) distinct for μ̃ �= 0 (here μ̃ > 0).

becomes maximal as soon as the chemical potential exceeds
the axionic energy shift, i.e., |μ̃| � |�ax|. As this property
becomes manifest in the optical absorption spectrum, the
magnitude of the axionic term is, in principle, accessible in
experiment.

We now discuss the situation when the γ4-terms are
included. These result in a breaking of the electron-hole
symmetry and a valley-contrasting energy gap due to addi-
tional ME couplings (cf. Sec. III B). This leads to valley-
dependent corrections to the minimum transition frequen-
cies, which can be approximated (by neglecting γ3, γ ′

0,
as well as quadratic terms in the electric or magnetic
field) as ω± ≈ 2(1 + 2ζγ4/γ0)|μ̃ ∓ �ax|/h̄ where ζ = 1 if
±�ax > μ̃ and ζ = −1 otherwise. The effect becomes partic-
ularly pronounced for a vanishing chemical potential where
a broadening of the minimal-frequency absorption peak of
|ω+ − ω−| = 8γ4|�ax|/(γ0h̄) occurs.

The case where we neglect electron-hole asymmetry and
trigonal warping by setting γ3 = γ4 = γ ′

0 = 0 facilitates fur-
ther analytical treatment. Including the parabolic terms in the

magnetic field, Eq. (B1), the energy eigenvalues read as

εe/h(k) = ± γ̃ 2
0

γ 2
1

{
e2

2
E2k2 + γ 2

1 (b4 + k4)

+ k2

[
2γ 2

1 b2 cos(2(φb − φk ))

− e2

2
E2 cos(2(φE − φk ))

]}1/2

, (42)

where the upper and lower signs correspond to the electron (e)
and hole (h) branches, respectively. Here, we introduced φa
to indicate the polar angle that the in-plane vector a encloses
with the x axis, and we omitted the constant axionic shift
as this is absorbed into the valley-dependent chemical poten-
tials μ̃±. Focusing on the longitudinal conductivity correction
(selecting σxx without loss of generality), we can simplify
Eq. (41) to

�xx(ω) = 8γ̃ 8
0

(h̄ω)3

∫
d2k

δ[h̄ω − εe(k) + εh(k)]

(h̄ω)2γ 4
1 − 4γ̃ 4

0 e2E2k2 sin2(φE − φk )

×
{

(h̄ω)2k2[b2 sin(2φb − φk ) + k2 sin(φk )]2

+ γ̃ 4
0

γ 4
1

e2E2[b4 sin(φE ) − k4 sin(φE − 2φk )

+ 2b2k2 cos(2φb − φE − φk ) sin(φk )]2

}
. (43)

The distinctive features appearing in the optical conductiv-
ity due to the axionic shift are illustrated in Fig. 6, both for
the idealized case γ3 = γ4 = γ ′

0 = 0 and for the real system
at zero temperature. For comparison, the optical conductivity
spectrum without static electric and magnetic fields is shown
in Fig. 6(a). In Figs. 6(b) and 6(c), we assume Ex = 0, Bx = 0,
Ey = 0.05 V/nm, and By = 100 T. For this situation, the axion
shift is �ax = 5.0 meV, and the electron and hole branches
have a single extremum (cf. Sec. III B). Differently colored
curves represent results obtained for different chemical po-
tentials μ̃. The vertical red solid grid lines mark the minimum
transition frequency 2�ax/h̄ in the case of μ̃ = 0 and electron-
hole symmetry. In Fig. 6(b), the vertical red dashed grid lines
depict the small broadening of the minimum frequency transi-
tion peak of 8γ4|�ax|/(γ0h̄) ≈ 1.8 meV/h̄ due to the electron-
hole asymmetry and the ME couplings ∝γ4. For increasing
chemical potential, the minimum absorption peaks shift to
higher or lower frequencies depending on the valley index.
As soon as the chemical potential exceeds the axion shift,
both peaks move simultaneously to higher frequencies while
retaining the constant difference of approximately 2�ax/h̄
(cf. the orange curve for μ̃ = 20 × 10−3γ1). Notice also that
for both μ̃ = 13 × 10−3γ1 (light green curve) and μ̃ = 17 ×
10−3γ1 (yellow curve), the chemical potential lies within the
gap of one valley and therefore the respective absorption
peaks are identical. In Fig. 6(c), the conductivity spectrum
is enlarged for the lowest three chemical potentials. Dashed
curves show results obtained from the above-discussed sim-
plified theory where γ3 = γ4 = γ ′

0 = 0, yielding Eq. (43). In
this approximation, the minimum transition peaks are sharp
and occur precisely at ω± = 2|μ̃ ∓ �ax|/h̄ as emphasized
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FIG. 6. Low-energy optical conductivity spectrum in terms of σ0 = 2e2/h at zero temperature in (a) without static electric and magnetic
fields and in (b), (c) for parallel fields (here, E ‖ B ‖ ŷ with Ey = 0.05 V/nm and By = 100 T). The different colors correspond to different
magnitudes of the chemical potential μ̃ in units of 10−3γ1. The solid lines correspond to the exact numerical calculation. In (c), the plots for
the lowest three chemical potentials are enlarged and compared to the simplified model where γ3 = γ4 = γ ′

0 = 0 (dashed lines). Numerical
values used for band-structure parameters are listed in Table I.

FIG. 7. (a) Optical conductivity in units of σ0 = 2e2/h obtained
at zero temperature including the corrections due to the carrier drift
for different relaxation times τtr . The chemical potential at k = 0 is
selected as μ̃(0) = 0.1γ1. The fields are chosen analogously to Fig. 6,
i.e., E ‖ B ‖ ŷ with Ey = 0.05 V/nm and By = 100 T. The dashed
curve refers to the case without drift current. Panel (b) shows the
corresponding energy dispersion at the ±K valleys for kx = 0. The
linear plots with different slope illustrate the k-dependent chemical
potential μ̃(k), Eq. (38), for the different relaxation times. Numerical
values used for band-structure parameters are listed in Table I.

by the vertical gray grid lines. Lastly, we illustrate with the
horizontal gray grid lines in both plots, that asymptotically the
conductivity recovers the universal value of Re[σxx] = π

2 σ0

(or Re[σ±
xx] = π

4 σ0 for either valley), which is in agreement
with the established high-frequency limit without fields [59].

As discussed briefly above and in greater detail in
Appendix E, we can account for the corrections arising from
the carrier drift due to the static electric field E by consid-
ering an effectively k-dependent chemical potential μ̃(k), as
given in Eq. (38). The resulting modifications of the optical-
conductivity spectrum are displayed in Fig. 7(a) for various
relaxation times and μ̃(0) = 0.1γ1. The vertical grid lines
correspond to the the valley-dependent minimal absorption
frequencies for neglected drift current. In Fig. 7(b), we plot the
effective chemical potential μ̃(k) with respect to the energy
dispersion. It is chosen large enough that the Fermi energy lies
above the gap in both valleys and the difference of the valley-
dependent minimal transition frequencies is maximal. We see
that for an increasing drift, the associated energy window
obscures the ME features, albeit sharp features associated
with these remain. Further inclusion of lifetime broadening
into the expression Eq. (37) for the optical conductivity at
the assumed scale of τtr will likely be deleterious to any such
features. Yet, the issue of the drift current can be circumvented
if the magnetic field plays the dominant role in the valley-
contrasting energy shift �ax (cf. Appendix E).

While conclusive experimental detection of ME effects in
pristine bilayer graphene may be a challenge because of their
smallness, the presented illustration for their fingerprints in
the optical conductivity may serve as a useful guide to inform
experimental studies focused on other two-dimensional ma-
terials having larger ME couplings. Future work could also
explore the potential use of generally large proximity-induced
exchange fields [66] and strain-generated pseudomagnetic
fields [67] for boosting ME effects in two-dimensional
materials.

V. CONCLUSION AND OUTLOOK

We have investigated the in-plane ME couplings in bilayer
graphene and how their properties give rise to distinctive
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features in the optical conductivity. We developed a tight-
binding description that correctly accounts for the Peierls
phases induced by a magnetic field parallel to the bilayer
plane. Taking into account second-nearest-neighbor hoppings,
in particular, the electron-hole symmetry breaking contribu-
tions, it is shown that the spectrum is generally gapped, which
was not observed within the simplified models that were em-
ployed previously [41–43]. In the next step, we included the
effect of an in-plane electric field and derived an effective two-
band Hamiltonian that comprises all relevant ME couplings
and expresses them in terms of tight-binding parameters. We
identify an axionlike pseudoscalar contribution to the ME
tensor which has the same sign and about twice the magnitude
of the previously determined out-of-plane contribution. In
addition, small corrections due to the small skew hopping am-
plitude γ4 are found, which correspond to the ME quadrupole
and toroidal moment. The Hamiltonian also exhibits the
equivalence of the electric and magnetic fields that was previ-
ously predicted by means of group-theoretical methods [20].
A more realistic calculation should also involve Coulomb-
interaction effects. For instance, Refs. [68,69] showed how
dielectric screening causes band-structure renormalizations
that can also be expected to influence ME couplings.

Lastly, we use the effective two-band Hamiltonian to study
the impact of the ME terms on the low-energy optical conduc-
tivity. Although, in an ideal situation, each of the ME contribu-
tions yields clear features in the frequency dependence of the
conductivity, the results are obscured in bilayer graphene. This
is a consequence of the displaced Fermi contour due to a finite
drift current and the small magnitude of the axionic ME cou-
pling in this material. Nonetheless, these observations remain
pertinent for systems with similar symmetries yet more pro-
nounced ME couplings or in the presence of large magnetic
fields that allow to reduce the drift-current-inducing electric
fields while maintaining a significant axionic energy shift.
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APPENDIX A: TIGHT-BINDING PARAMETERS

In this paper, we take into account the (intralayer as well
as interlayer) tunneling from each lattice site to its nearest and
second-nearest neighbor as schematically depicted in Fig. 2.
These couplings are characterized by the hopping integrals

γ0 = −〈ϕA|H|ϕB〉 = − 〈ϕA′ |H|ϕB′ 〉 , (A1)

γ1 = 〈ϕA′ |H|ϕA〉 , (A2)

γ3 = 〈ϕB|H|ϕB′ 〉 , (A3)

γ4 = 〈ϕB|H|ϕA′ 〉 = 〈ϕA|H|ϕB′ 〉 , (A4)

and the second-nearest-neighbor intralayer coupling γ ′
0 =

〈ϕA|H|ϕA〉 = 〈ϕB|H|ϕB〉 = 〈ϕA′ |H|ϕA′ 〉 = 〈ϕB′ |H|ϕB′ 〉. In lit-
erature, there appear various definitions for the hopping pa-
rameters with respect to their signs. We selected our employed

definitions consistent with Ref. [20]. Numerical values for the
hopping integrals as well as other system parameters that are
used in this work are listed in Table I.

APPENDIX B: PARABOLIC CORRECTION
IN THE MAGNETIC FIELD

For large magnetic fields, the terms that are of second
order in the magnetic field may become important as they can
lead to a change of the band-structure topology (cf. Sec. III).
Neglecting wave-vector dependent terms, the leading-order
contribution reads as

HB
eff ≈ γ̃ 2

0

γ1

[(
b2

y − b2
x

)
τ0 ⊗ σx + 2bxbyτz ⊗ σy

]
, (B1)

where we dropped a global shift ∝τ0 ⊗ σ0. Notably, these
terms are already obtained in second-order QPT.

APPENDIX C: HIGHER-ORDER
MAGNETOELECTRIC COUPLINGS

In fourth-order QPT, we obtain higher order ME couplings
due to trigonal warping (γ3) which are linear in the electric but
parabolic in the magnetic field,

δH(1)
ax = eγ̃ 2

0 γ̃31

γ 3
1

[
Ey

(
b2

x − b2
y

) + 2Exbxby
]
τ0 ⊗ σz, (C1)

or linear in both fields and the wave vector

δH(2)
ax = 2eγ̃ 2

0 γ̃31

γ 3
1

[(Eyby − Exbx )kx

+ (Exby + Eybx )ky]τ0 ⊗ σ0, (C2)

where we neglected in the latter equation subordinate terms
∝γ3γ4.

APPENDIX D: LEADING MAGNETOELECTRIC
COUPLINGS IN PRESENCE OF PERPENDICULAR

ELECTRIC FIELDS

To additionally account for perpendicular electric fields
which open up a pseudospin gap [70–72], we may include in
Eq. (20) the potential [20,40]

V ⊥
E = Ez

⎛
⎜⎝

0 ε12 0 0
ε12 0 0 0
0 0 ε33 0
0 0 0 −ε33

⎞
⎟⎠, (D1)

where the ab initio calculations in Ref. [40] yield ε12 =
ε33 = 0.048e nm. From symmetry considerations, this poten-
tial should give rise to ME couplings ∝(EzByσx − EzBxσy)
[20]. Within our model, however, these terms do not appear,
meaning that their prefactor vanishes exactly. Instead, the
first nonvanishing terms are obtained in third-order QPT and
correspond to higher ME couplings analogously to the in-
plane couplings in Appendix C. These terms read as

δH⊥
ax = 2γ̃ 2

0 (ε12 + ε33)

γ 2
1

Ez(kybx − kxby)τ0 ⊗ σ0

+ 2γ̃0γ̃4ε12

γ 2
1

Ez[(kxby + kybx )τ0 ⊗ σx
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+ (kxbx − kyby)τz ⊗ σy]

− γ̃ 2
0 (ε12 + ε33)

γ 2
1

Ezb
2τ0 ⊗ σz. (D2)

Hence, the mixing of electric and magnetic fields perpendicu-
lar to each other causes only small corrections to the axionic
terms.

APPENDIX E: PRECONDITIONS FOR
THE LINEAR RESPONSE MODEL

In this section, we specify the requirements that ensure the
validity of the linear response model for the optical conduc-
tivity in Sec. IV.

First, the static electric field E induces a finite parallel drift
of the carriers and the system is out of equilibrium. This yields
a modification of the Fermi-Dirac distribution as [73]

f [εe/h(k), μ̃] → f [εe/h(k ∓ eEτtr/h̄), μ̃], (E1)

where τtr denotes the intravalley transport relaxation time
of the carriers and the upper and lower sign corresponds
to the electron (e) and hole (h) branches, respectively. Us-
ing a parabolic approximation for the spectrum εe/h(k) ≈
±(γ̃ 2

0 /γ1)k2 + const, we find

εe/h(k ∓ eEτtr/h̄) ≈ εe/h(k) − 2eγ̃ 2
0

γ1

τtr

h̄
E · k. (E2)

Hence, we may interpret this alteration as a correction to the
chemical potential and replace for convenience in Sec. IV
f [εe/h(k), μ̃] → f [εe/h(k), μ̃(k)], where we substituted

μ̃ →μ̃(k) = μ̃ + 2eγ̃ 2
0

γ1

τtr

h̄
E · k. (E3)

Apparently, the displacement of the Fermi contours affects the
sharpness of the absorption peaks. To resolve the splitting of
the valley-dependent absorption peaks, it is required that

�ax � 2eγ̃ 2
0

γ1

τtr

h̄
|E · k|, (E4)

where the relevant wave vectors are to be evaluated at
the Fermi energy, i.e., |E · k| � EkF . It is particularly

illuminating to relate the above condition to the transport
mean-free path ltr = vF τtr with the Fermi velocity vF =
2γ̃ 2

0 kF /(γ1h̄) as it simplifies to

�ax � eE ltr. (E5)

As at the same time, �ax is proportional E , the condition
is independent of the magnitude of the static electric field.
Selecting B ‖ E and inserting the numerical value of ξ‖ for
bilayer graphene, Eq. (33), we may further estimate

B � ltr/ξ‖ ≈ (103 T) ×
(

ltr
nm

)
. (E6)

Obviously, due to the smallness of ξ‖ in bilayer graphene, this
condition is hardly fulfilled for realistic values of the magnetic
field and the mean free path.

Second, it should be noted that for low chemical potentials,
the Fermi energy may lie very close to the charge neutrality
point where the role of disorder is generally more delicate
[74]. In the context of optical conductivity, one should account
for the broadening ∼h̄/τtr of the Drude peak at ω = 0. Hence,
the minimum absorption peaks should occur at |ω±| � 1/τtr ,
which may be controlled by choosing an appropriate chemical
potential and the strength of the axion shift.

Third, to apply the linear response theory, the oscilla-
tory external electric field δE (t ) with amplitude δE should
yield a small perturbation to the kinetic energy. In other
words, the changes of the Fermi wave vector δkF due to the
minimal coupling to the electric field δkF = eδA/h̄, where
δE = −∂t (δA) yields δA = −δE/ω, should be small, i.e.,
δkF /kF � 1. Therefore, we obtain the condition

δE � h̄ω

e
kF . (E7)

Using again a parabolic approximation and disregarding the
drift corrections due to the static field E , the Fermi wave vec-
tor kF obeys the relation kF ≈ √

γ1|μ̃ ∓ �ax|/γ̃0 in the valley
±K. Thus, the magnitude of the oscillatory external electric
field δE (t ) should be chosen according to this condition. For
larger fields, higher-order terms in the Kubo formula should
be taken into account.
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