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Novel lateral optical forces acting on dipoles near surfaces have been investigated in the past few years:
circularly polarized dipoles experience lateral optical forces when in proximity to a surface due to the recoil
of directionally excited modes. Recent work shows that even linearly polarized dipoles may experience lateral
forces when nonreciprocal substrates are used, due to the asymmetric propagation of modes in the surface. We
theoretically show that a linearly polarized particle emitting in close proximity to a magneto-optical substrate
may experience a lateral optical force even if the external magnetic field is normal to the surface plane. The
polarization conversion of the magneto-optic material introduces a gradient in the quasistatic fields reflected from
the surface, resulting in a lateral optical force, and also gives surface plasmons a hybrid polarization character,
which alters the surface plasmon directional excitation from the dipole, resulting in an optical recoil force. We
envisage potential applications in nanomechanical devices, since similar magnetoplasmonic architectures have
already been developed experimentally.
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I. INTRODUCTION

Since the confirmation that electromagnetic waves carry
momentum and angular momentum [1,2], the study of
light-matter interactions has resulted in important scientific
advances in laser cooling [3,4], optical manipulation of
atoms/small particles [5–10], and in optomechanical systems
[11]. Recently there has been enormous interest in optical
phenomena where spin-orbit interactions of light enable a
robust spin controlled unidirectional propagation of surface
or waveguide modes [12–15]. In particular, when a dipolar
particle is emitting circularly polarized light near a surface
supporting electromagnetic modes, spin-orbit coupling al-
lows unidirectional excitation of these modes which carry
electromagnetic momentum, and generate a recoil force that
pushes the particle back in the opposite direction [16–18].
Similar lateral forces can arise by the directional far-field
emission of chiral particles in evanescent fields [19]. All
these unusual lateral forces have significant consequences
in the optical manipulation of chiral [17,19] and nonchiral
nanoparticles [16,18], as well as playing an important role
in lateral Casimir forces [20]. These forces form a promising
path to the simultaneous movement, arrangement, and sorting
of particles on an isotropic substrate or waveguide in a simple
way without structured or focused illumination. In general,
such lateral optical forces cannot appear when the dipoles
are linearly polarized, since there is no mode directionality
in that case, as long as reciprocity of the surface is assumed.
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However, when the surface is nonreciprocal, for example in
magnetized plasma and photonic topological insulators, the
modes sustained at the interface may become unidirectional
[21–24] and therefore, lateral recoil forces on nearby dipoles
arise [25,26]. Previous works typically use a magnetic field
oriented parallel to the interface to break reciprocity, as this
naturally breaks rotational symmetry of the surface modes,
enabling their propagation in only one direction. In that case,
any dipolar source will necessarily excite light directionally,
providing a recoil force in a lateral direction determined only
by the direction of the magnetic field, and independent of
the dipole’s polarization. Another known method to achieve
dipolar directional scattering near a surface is to consider the
effect of combined electric and magnetic dipole contributions
[27–32], which may also produce lateral forces [33]. How-
ever, in this work we will focus on electric dipoles only, but
considering a magnetic bias in nearby surfaces.

In this paper we demonstrate that magneto-optical (MO)
surfaces allow the existence of a lateral force acting on a
linearly polarized dipolar particle, even in the case when the
magnetization is in the direction normal to the surface, see
Fig. 1. This is surprising because the modes supported by
the surface are identical in every direction due to symmetry.
The appearance of this force is a consequence of the polariza-
tion conversion on the surface reflection coefficients. We show
that this novel lateral force has different components. One
of the components of the lateral force arises because surface
plasmon modes acquire a hybrid polarization character in the
presence of the magnetization, changing from being purely p
polarized, to being a hybrid combination of p and s polariza-
tion. As we will show, this enables directionality of evanescent
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FIG. 1. (a) Re{Hz} emission of a linearly polarized dipole pxz

in the XZ plane over a magneto-optical surface. The conversion of
polarization introduces a directionality of emission in the y direction,
with a corresponding novel recoil optical force 〈Fy〉. (b)–(d) Dia-
grams depicting how the force switches direction when the degree
of diagonal polarization χ and the magnetization M are inverted:
(b) χ = +1, M ∝ −z. (c) χ = −1, M ∝ −z. (d) χ = +1, M ∝ +z.
(e) χ = −1, M ∝ +z.

excitation of the modes from the dipole, inducing a recoil
force on the particle. Magneto-optical (MO) surfaces could
provide tunability to a nanomanipulation system through the
modulation of the external magnetic field (and the correspond-
ing magnetization) [34–38]. Our results were obtained analyt-
ically via the exact Green’s function formalism of a dipole
over a surface; using the dipole angular spectrum approach
[33,39–42], together with the Fresnel reflection coefficients
of the surface, in which the contribution of the magneto-optics
has been included. Our results are confirmed with numerical
simulations.

II. THEORETICAL FRAMEWORK

We consider an electric dipole source p = (px, 0, pz ) lo-
cated in free space at r0 = (0, 0, h) (Fig. 1). The dipole is
radiating with an angular frequency ω above a semi-infinite
magneto-optical substrate, which spans the region z � 0. The
magnetization of this MO material is directed along the z axis,
thus, the dielectric permittivity tensor may be written as εxx =
εyy = εzz = ε2 for the diagonal elements, and εxy = −εyx for
the off-diagonal ones [35]. The time-averaged optical force
〈F〉 acting on the dipole can be deduced from the Lorentz
electromagnetic force acting on the oscillating charges of a
dipole due to the backscattered fields from the surface, and is

given by [41,43,44]

〈F〉 =
∑

i=x,y,z

1

2
Re{p∗

i ∇Ei}, (1)

where ∇ is the gradient with respect to r evaluated at r0, and
E = (Ex, Ey, Ez ) is the field reflected by the surface, acting
back on the dipole, which may be calculated following the
usual Green’s function approach (see Appendix A). Since the
aim of this work is to study the lateral forces (perpendicular
to the z axis) acting on the dipole, we will focus on the y com-
ponent of the force when the particle is diagonally polarized
on the xz plane. The most general case of arbitrary dipole
polarizations and force components is given in Appendix B,
but all novel physics can be distilled into the specific scenario
considered here. After substituting the reflected fields into
Eq. (1), we arrive at the following compact, exact results:

〈Fy〉 = − 3

4c0
Pxz

radχ

× Re

{∫ ∞

0
rppe4iπ( h

λ )
√

1−k2
tr k3

tr
�K√
1 − k2

tr

dktr

}
, (2)

where the integration is performed over the normalized trans-
verse wave vector ktr = kt

k0
. Pxz

rad = ω4(|px |2+|pz |2 )
12πε0c3

0
is the power

radiated by the x and z components of the dipole if it was
placed in free space, λ is the wavelength, and χ = 2 Re[p∗

x pz]
|px |2+|pz |2 is

a measure of the degree of diagonal polarization of the dipole;
it is equal to 0 when the dipole is circularly polarized, or is
horizontally or vertically polarized with respect to the surface,
and is equal to ±1 when the dipole is linearly polarized at
45 deg to the surface, where the ± sign accounts for a tilt
towards or away from the x axis. The term �K = rps/rpp is
the MO Kerr effect, where rpp, rss, and rps are the Fresnel
reflection coefficients for p polarization, s polarization, and s-
to-p polarization conversion, respectively, and they all depend
on the transverse wave-vector kt and angular frequency ω (see
Appendix C).

We may also obtain an approximate closed expression
for the force in the near-field quasistatic approximation (see
Appendix D), which applies when the dipole is very close to
the surface. In this case, the force is given approximately by

〈
F QS

y

〉 ≈
(

3

128 c0 π2

)
Pxz

rad χ Re

{
εxy

1 + ε2

}(
h

λ

)−2

. (3)

This expression provides clear insight into the behavior of
this force. It shows its dependence on the dipole polarization
χ , being maximum in magnitude for diagonally polarized
dipoles, and that the direction of the force (sign on χ ) can
be switched by changing the direction of the tilt of the linear
polarization [see Figs. 1(b)–1(e)]. Equation (3) also shows
the dependence on the off-diagonal permittivity εxy, whose
sign flips when changing the orientation of the substrate
magnetization, as shown in Figs. 1(b)–1(e). Finally, we see
the dependence of the force when the distance to the surface
is

(
h
λ

)−2
, which is an unusually long range for a quasistatic

scenario. For example, the known recoil forces from circularly
polarized dipoles decay as

(
h
λ

)−4
in the quasistatic approxima-

tion [16].
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The quasistatic approximation in Eq. (3) is one of the
terms into which Eq. (2) can be decomposed, and it always
dominates when h → 0. However, we can use the same argu-
ments used in Ref. [16] to decompose Eq. (2) into other terms,
each dominant at a different range of distances h between the
dipole and the surface (see Appendix E for an explicit form
of each term and their range of validity). When the dipole
height is in the reactive near-field region (typically considered
as h < λ/4π ) we can neglect the contribution to the force
due to reflected propagating plane waves. In that near-field
regime, the lateral force on the dipole can either be dominated
by the quasistatic force [Eq. (3)], which can be thought of as
the force exerted on the dipole by the image dipole formed
at the surface [16,45], or by a mode-recoil force, caused
by the directional excitation of any existing modes in the
surface, resulting in an imbalance of linear momentum and
an associated recoil mechanical force [16].

III. RESULTS AND DISCUSSION

Let us consider a realistic material as our magneto-optical
surface. We will model a cobalt-silver alloy (Co6Ag94) at
room temperature after annealing at 250 ◦C in the presence
of an external magnetic field of 0.8 T. We will take a dipole
radiation wavelength of λ = 631 nm such that the response
of the diagonal and nondiagonal elements of the permittiv-
ity tensor is ε2 = −10.51 + 2.10i and εxy = −1.2 + 1.15i,
respectively [46,47]. In order to appreciate the effect of the
magnetization, we will also consider a non-magneto-optical
substrate by keeping the same ε2 as the magnetized Co6Ag94
but setting εxy = 0.

In Figs. 2(a) and 2(b) we plot different electromagnetic
field components at the substrate’s surface, when a diagonally
polarized dipole p = (1, 0, 1) is radiating above the non-
magneto-optical metal substrate. The fields were calculated
semianalytically following a Green function approach as de-
scribed in Appendix A, but also independently confirmed
via electromagnetic simulations in Comsol Multiphysics. In
Fig. 2(a) a p-polarized surface plasmon mode is observed,
propagating away from the source, having equal strength in
any two diametrically opposite directions, which eliminates
the possibility of the existence of a net lateral recoil optical
force contribution. Figure 2(b) shows the Hz component of
the magnetic field. This figure does not show any surface
wave, because p-polarized modes—which are the only modes
supported by this plasmonic surface—do not carry this mag-
netic field component, which would only exist in s-polarized
modes. Instead, Fig. 2(b) is showing the near-field reflected
fields, corresponding to the image dipole. In this case, the
image dipole fields are symmetric and no lateral gradient is
established, hence there is no quasistatic contribution to the
lateral force either. The net lateral force is therefore zero, as
it corresponds to a linearly polarized dipole near a reciprocal
surface.

The application of a static magnetic field on the system
along the z axis (or if the substrate itself shows a sponta-
neous magnetization) breaks the time reversal symmetry as
well as Lorentz reciprocity, inducing the appearance of off-
diagonal terms in the dielectric permittivity tensor εxy. This
class of materials, called MO materials, allow electromagnetic

FIG. 2. Magnetic field distribution induced by a linearly polar-
ized dipole p = (1, 0, 1), located at h = 0.018λ (λ = 632.8 nm)
above (a) and (b): a metallic surface (ε2 = −10.51 + 2.10i) and
(c) and (d) a realistic magneto-optical surface (diagonal ε2 =
−10.51 + 2.10i and off-diagonal εxy = −1.20 + 1.15i element of
the permittivity tensor). (e) Distance dependence of the time-
averaged lateral forces over a MO metal Co6Ag94 (solid line) and
iron (dashed line) substrate. The conversion of polarization allows
the existence of 〈Fy〉 (solid and dashed lines), which matches well
to the near-field approximation 〈F QS

y 〉 (dotted lines) when the dipole
is close to the surface. The triangles correspond to the numerically
simulated force 〈F SIM

y 〉 at different heights using Maxwell’s stress
tensor in a COMSOL Multiphysics simulation.

waves to propagate as elliptically polarized waves through
them with different speeds. This leads to a rotation of the
polarization plane of both transmitted and reflected fields at
their interface [35,38]. This also leads to a modification in
the polarization of the surface plasmon modes which exist
at the interface: instead of being purely p polarized, they
acquire a hybrid character, becoming a fixed superposition
of p and s polarization (see Appendix E). This can have
an effect on the directionality of excitation of modes by the
dipole, however, in this realistic case the effect is very small.
In Figs. 2(c) and 2(d) we study the same metallic surface
analyzed in Figs. 2(a) and 2(b) but adding a magneto-optical
response, corresponding to the dielectric permittivity tensor of
Co6Ag94 mentioned above, characterized by the presence of
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off-diagonal elements εxy. From Eq. (2), we know that this will
imply the appearance of a lateral force 〈Fy〉 which depends
strongly on the polarization conversion of the reflected fields
�K when the system shows a MO response. By looking at the
fields, we can understand whether the force comes from the
quasistatic or the mode recoil contributions. Figure 2(c) shows
the surface plasmon, seemingly identical to the non-MO case
in Fig. 2(a). A quantitative study of the fields, however, reveals
that the surface plasmon (SPP) directionality in this case
has a top/down ratio of 1.035:1, slightly directional, but not
visible on this figure. Indeed, the lateral force contribution
from surface plasmon recoil is negligible. The appearance of
an s-polarized Hz field component of the surface plasmons
is visible in the background of Fig. 2(d), as faint concentric
circles that follow the same pattern as Ez in Fig. 2(c). Much
more interesting is the central part of Fig. 2(d), showing how
the quasistatic near fields have been modified and now exhibit
a very clear lateral gradient in the y direction. This gradient is
responsible for the quasistatic contribution to the lateral force,
given in Eq. (3).

In order to estimate the strength of this force in realistic
materials, we provide in Fig. 2(e) the dependence of the
time-averaged force 〈Fy〉, normalized to the power radiated by
the dipole, with respect to the distance h between the dipole
and the surface. The graph corresponds to a linearly polarized
dipole radiating over two examples of MO surfaces. The first
one corresponds to the cobalt-silver alloy mentioned above.
As expected, the force 〈Fy〉 is most intense when the dipole
is very close to the substrate. In the reactive near-field region,
at very subwavelength distances (h < λ/4π ), we see that the
exact result obtained for the cobalt-silver alloy using Eq. (2)
agrees very well with the near-field quasistatic approximation
from Eq. (3) (red dotted line). Beyond this distance, the force
can be seen to change sign periodically. This is because
the force becomes dominated by the phase-sensitive far-field
plane wave force contribution (see Appendix E). The mode
recoil contribution of the force, which would reveal itself as
a lateral force decaying exponentially with the distance of the
dipole to the surface, is not seen for the cobalt-silver alloy, be-
cause this component is negligible compared to the quasistatic
contribution to the force. The figure also shows the calculation
of the force from numerical simulations using the software
COMSOL Multiphysics and Maxwell stress tensor integra-
tion, fully confirming our analytical derivations (triangles).
The lateral force can be controlled via the polarization of the
dipole and via the magnetization (see Fig. 1). For instance, the
force changes sign if we use a dipole p = (−1, 0, 1).

The second example of realistic material shown in Fig. 2(e)
is an iron substrate in the presence of an external magnetic
field of 1.1 T (dashed line), whose dielectric permittivity
tensor may be written as ε2 = −0.88 + 17.94i and εxy =
−0.67 + 0.09i when the dipole radiates at 632.8 nm [48–50].
For this material, in the reactive near-field region (h < λ/4π ),
we notice that the force has a change in sign (seen as a
downwards peak in this logarithmic plot near h/λ = 10−2).
This is because the quasistatic component of the lateral force
is opposed to the mode recoil force, so at a certain distance,
the quasistatic component of the force becomes weak enough
to be exactly canceled out by the mode recoil force. Above this
distance, and up to h ≈ λ/2π , the lateral force is dominated

by the plasmon recoil force term, whose origin we explain in
depth later. Both examples illustrate the wide applicability of
such lateral force and the possibility of an additional control
to manipulation of particles over MO surfaces.

We have given an analytical prediction and numerical
confirmation of the existence of this lateral force over
a realistic surface in which the quasistatic term of the
force dominates. However, the lateral force can also arise
from a directionality in the excitation of surface plasmon
modes by the diagonal dipole, enabled by the MO effect,
as shown by the realistic iron substrate. To explain the
physical origin of this directionality in mode excitation,
we put forward a simplified model that is best illustrated
by considering ideal lossless materials with relatively large
off-diagonal components in the permittivity tensor. In the
absence of MO effects, the electric field of a surface plasmon
mode in a smooth interface is given by ESPP ∝ ê+

p , where

ê+
p (φ) = (i

√
n2

SPP − 1 cos φ, i
√

n2
SPP − 1 sin φ, −nSPP) is the

basis vector corresponding to p polarization (see Appendix
A) applied to a surface plasmon with effective index nSPP

propagating at a polar angle φ on the xy plane. In the
presence of MO effects, the plasmon modes become hybrid
ESPP ∝ (ê+

p + α ês), where ês(φ) = (− sin φ, cos φ, 0) is the
basis unit vector corresponding to s polarization, and α is the
fixed ratio between the p- and s-polarized components which
characterizes the hybrid nature of the mode. The surface and
the applied magnetic field are rotationally symmetric around
the z axis, so the surface plasmon propagation constant and
mode structure is identical in every direction due to symmetry.
The value of α depends on the material and increases with
the off-diagonal permittivity component (see Appendix F).
The amplitude and phase with which this surface plasmon is
excited by a dipolar source p = (px, 0, pz ) is given by Fermi’s
golden rule p∗ · ESPP [51–57], which after substitution of the
plasmon fields yields

p∗ · ESPP(φ) ∝ p∗
x

[
i cos φ

√
n2

SPP − 1 − α sin φ
] − p∗

z nSPP.

(4)

Equation (4) defines the planar radiation diagram of the
surface modes excited by the dipole in every direction φ

within the plane, as shown in Figs. 3(a)–3(d). For example, if
we take φ = {0, π}, which corresponds to a direction ±x, the
coupling amplitude is p∗ · ESPP ∝ ±p∗

xi
√

n2
SPP − 1 − p∗

z nSPP.
This translates into the well-known result that an ellipti-
cally polarized dipole p = (nSPP, 0, i

√
n2

SPP − 1) will achieve
perfect directionality along ±x. However, if we take φ =
{π

2 , 3π
2 }, corresponding to excitation of surface modes in the

±y direction, the coupling amplitude is given by p∗ · ESPP ∝
∓p∗

xα − p∗
z nSPP. This equation is key to understanding the

novel mode-recoil component of the lateral optical force along
y. First notice that with no MO effects α = 0, only the pz

component will excite surface plasmons along ±y, and it will
do so with equal strength on both directions, hence resulting
in no net recoil force along y. However, the presence of the
additional s-polarized component of the hybrid modes in the
MO substrate enables px to also contribute to the excitation
of plasmons in the ±y direction. The coherent superposi-
tion of both excitations may result in near-field destructive
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FIG. 3. (a)–(d) Planar radiation diagrams of the surface modes
excited for different dipole polarizations. The polarization has been
chosen as pz = 1

4 px eiθ , where θ is the relative phase between pz and
px varied throughout as (a) θ = 0, (b) θ = π

2 , (c) θ = π , and (d) θ =
3π

2 . The dipole polarization has been optimized according to |px| =
|pz|nSPP/α, to achieve maximum unidirectionality along the y axis.
(e)–(h) Magnetic field distribution over the MO surface, confirming
the unidirectionality reported in the radiation diagrams (a)–(d). Here
the dipole is located at h = 0.01λ above a toy model MO material
(ε2 = −6 + 0.01i and εxy = 6i) for λ = 500 nm.

interference. The plasmons excited by pz can destructively
interfere with those excited by px in the +y or −y direction.
This dual excitation is only possible thanks to the hybrid
nature of the surface modes, enabled by the magneto-optics.
The imbalance in excitation along the y axis must result in
a corresponding recoil force in the opposite direction. For
example, a maximum contrast of excitation is obtained when
px = pznSPP

α
. This optimized situation is shown in Figs. 3(a),

3(c), 3(e), and 3(g).
For lossless MO materials, α is a purely real value, and so

the dipoles which achieve directionality along ±y are linearly
polarized, tilted in the xz plane. This is very different to

the well-known directionality of circular dipoles along ±x
which requires quadrature phase difference between px and
pz. Therefore, varying the phase difference between px and
pz (changing the polarization of the dipole from linear to
elliptical) changes the directionality of excited plasmons in
the xy plane, as shown in the panels of Fig. 3. This suggests
the possibility of a tunable lateral force whose direction
can be selected to point anywhere within the xy plane in
an experimentally convenient way, by simply changing the
polarization of illumination of a dipolar scatterer. This can
be done easily, with no need for changes in the direction of
incidence, hence, a single wide-area plane wave illumination
could be used. This requires only electric dipoles and an MO
surface. A similar tunable directionality effect was recently
achieved experimentally without MO surface, but requiring
the combination of electric and magnetic dipoles [58].

It might appear counterintuitive that the lateral optical
force, as given by Eq. (2), is always maximum when the
dipole is exactly diagonally polarized px = pz, whereas the
condition for maximum contrast in directionality occurs when
px = pznSPP

α
, as derived from Eq. (4) and used in Figs. 3(a), 3(c)

3(e), and 3(g). This apparent contradiction can be explained
by noting that the magnitude of the recoil force is proportional
to the imbalance in the net electromagnetic momentum, and
not by its contrast. The net linear momentum vector of all
the surface plasmons P propagating on the surface can be
obtained via the angular integration of the linear momentum
vectors of the individual surface plasmon waves propagating
in each direction, which are proportional to the mode intensity
and directed in the radial direction:

P =

⎛
⎜⎝
Px

Py

0

⎞
⎟⎠ ∝

∫ 2π

0
êr |p∗ · ESPP|2dφ, (5)

where êr = (cos φ, sin φ, 0) is the unit vector in the radial
direction. After substituting Eq. (4) into Eq. (5), we may
analytically evaluate the integral in the lossless case (see
Appendix G for the general case):(Px

Py

)
∝ 2π nSPP

(
Im[px p∗

z ]
√

n2
SPP − 1

Re[px p∗
z ]α

)
. (6)

This expression encompasses the existence of the usual
lateral recoil force acting along x on circularly polarized
dipoles, as well as the novel lateral force acting along y on
linearly polarized dipoles, caused by the hybrid character of
surface plasmons α = 0 due to the MO effect. For a fixed
dipole radiated power, the momentum imbalance in both the x
and the y direction is greatest when |px| = |pz|, corresponding
to purely circular or purely diagonal polarization, respectively,
in agreement with the calculation of the force.

IV. CONCLUSIONS

In conclusion, we have analytically and numerically
demonstrated the existence, and have given a physical
explanation, of an optical force acting on a dipole over a
magneto-optical substrate with a magnetization perpendicular
to the substrate, which emerges from the cross-polarized re-
flection of the surface. A comparison of the magnitude of this
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force with previously known forces on a circularly polarized
dipole is provided in Appendix H. Although we focused on
surfaces with a magnetic bias, cross-polarization components
may arise in other situations such as anisotropic surfaces [59],
where this same force could appear. The existence of this
force was not easy to predict for two reasons: (i) a linearly
polarized dipole, even when diagonally polarized, does not
provide near-field directionality of surface modes on its own
when near a reciprocal substrate, and (ii) a MO material whose
magnetization is normal to the surface also does not show an
intrinsic directionality in the surface modes that it supports
(unlike the more usual case of magnetization parallel to the
surface). Both conditions are simultaneously needed. Indeed,
symmetry considerations are subtle: The dipole tilt in the xz
plane breaks the rotational symmetry around z while, by itself,
would not break the mirror-reflection symmetry along mirror
plane y = 0. On the other hand, the magnetization normal
to the surface Mz, being a pseudovector, breaks the mirror-
reflection symmetry along the mirror plane y = 0, while by
itself it would not break the rotational symmetry around z.
From symmetry considerations, both rotation and reflection
symmetries need to be broken for a nonzero lateral force
along y to arise. Indeed, when both are combined, such a
force appears. Some previous works break the symmetry of
surface modes via a magnetic field parallel to the surface,
and therefore the direction of the force is independent of
the polarization of the dipole. In this work, the dipole tilt is
required for breaking the symmetry, and therefore the lateral
force direction depends directly on, and therefore can be
controlled by, the dipole polarization. This study suggests that
nanosystems combining magnetic and plasmonic functional-
ities could prove strong candidates for the exploration and
control of optical force technologies and applications.
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APPENDIX A: DYADIC GREEN’S FUNCTION FOR A
DIPOLE ABOVE SURFACE WITH CROSS-POLARIZED

REFLECTION

Consider an arbitrary electric dipole p located at r0 =
(0, 0, h) within a homogeneous medium, as illustrated in
Fig. 4. The total electric field is a solution of the wave equation
and as such fulfils the corresponding dispersion relation for
the wave-vector components k2

x + k2
y + k2

z1 = k2
1 . Therefore,

the electric field reaching the surface EED
inc generated by the

dipole can be expressed using the angular spectrum represen-
tation [39–41] as

EED
inc (x, y, z) =

∫∫
EED

inc (kx, ky)|±z=hei(kxx+kyy±kz1(z−h)dkxdky,

(A1)

where the integral is performed over kx, ky ∈ [−∞,∞],
EED

inc (kx, ky)|±z=h is the angular spectrum representation of the
dipole fields at the plane z = h. The + and − sign are used

FIG. 4. Reflected fields by a surface with cross-polarized
reflection.

to distinguish between fields radiated above and below the
dipole z = h, respectively, corresponding to fields whose z
dependence is e±ikz1(z−h). The angular spectrum is a superposi-
tion of two polarization components: ê±

s and ê±
p , which are the

unit vectors of the electric field of s-polarized and p-polarized
waves

ê±
s =

(
−ky

kt
,

kx

kt
, 0

)
, (A2)

ê±
p =

(
±kxkz1

k1kt
,±kykz1

k1kt
,− kt

k1

)
, (A3)

where kt =
√

k2
x + k2

y , k1 = n1k0, n1 is the refractive index
of the medium, taken as free space in the main text, and
kz1 =

√
k2

1 − k2
t , where we always take the sign of the square

root that results in a positive imaginary part. Note that ê±
s

and ê±
p correspond to the well-known unit vectors in spherical

coordinates when describing propagating plane wave compo-
nents inside the light cone (k2

x + k2
y � k2

1 ), but can be extended
with no alteration to their mathematical equation outside
of the light cone, accurately describing the polarization of
evanescent waves. Note that ê+

s = ê−
s so it is unaffected by

this sign and usually referred to as ês. The angular spectrum
of the field reaching the surface can be written as the sum of
s- and p-polarized components:

EED
inc (kx, ky)|−z=0 = A−

s ê−
s + A−

p ê−
p , (A4)

where the amplitudes A−
s,p correspond to the angular spectrum

of an electric dipole [42] propagated down to z = 0:

A−
s = i

k2
1

8π2ε0ε1

1

kz1
eikz1h(ê−

s · p), (A5)

A−
p = i

k2
1

8π2ε0ε1

1

kz1
eikz1h(ê−

p · p). (A6)

Since the surface is magneto-optic and its magnetization is
along the z axis, the reflected and transmitted fields experience
rotation of the polarization plane. Taking into account the
polarization conversion, the reflected electric field reads

EED
ref (kx, ky, z) = eikz1z[rssA

−
s + rspA−

p ]ê+
s

+ eikz1z[rpsA
−
s + rppA−

p ]ê+
p , (A7)
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where the polarization vectors now have the + superscript
because they are propagating (or evanescently decaying) away
from the surface in the +z direction. Expanding the right-hand
side of the above equation leads to

= i
k2

1

8π2ε0ε1

1

kz1
eikz1(h+z)([rss(ê−

s .p) + rsp(ê−
p .p)]ê+

s

+ [rps(ê−
s .p) + rpp(ê−

p .p)]ê+
p ), (A8)

and using the fact that (a · p)b = (b ⊗ a)p, we arrive at

= i
k2

1

8π2ε0ε1

1

kz1
eikz1(h+z)[rss(ê+

s ⊗ ê−
s ) + rsp(ê+

s ⊗ ê−
p )

+ rps(ê+
p ⊗ ê−

s ) + rpp(ê+
p ⊗ ê−

p )]p, (A9)

where ⊗ represents an outer product. Performing the outer
products, we have

←→
M ss = k2

1

kz1
ês ⊗ ês = k2

1

kz1k2
t

⎛
⎜⎝

k2
y −kxky 0

−kxky k2
x 0

0 0 0

⎞
⎟⎠, (A10)

←→
M sp = k2

1

kz1
ês ⊗ ê−

p = k1

k2
t

⎛
⎜⎝

kxky k2
y kyk2

t /kz1

−k2
x −kxky −kxk2

t /kz1

0 0 0

⎞
⎟⎠,

(A11)

←→
M ps = k2

1

kz1
ê+

p ⊗ ês = k1

k2
t

⎛
⎜⎝

−kxky k2
x 0

−k2
y kxky 0

kyk2
t /kz1 −kxk2

t /kz1 0

⎞
⎟⎠,

(A12)

←→
M pp = k2

1

kz1
ê+

p ⊗ ê−
p

=

⎛
⎜⎝

−kz1k2
x /k2

t −kz1kxky/k2
t −kx

−kz1kxky/k2
t −kz1k2

y /k2
t −ky

kx ky k2
t /kz1

⎞
⎟⎠. (A13)

With the previous expressions (A10)–(A13), we can
rewrite Eq. (A7) as follows:

EED
ref (kx, ky, z) = i

8π2ε0ε1
eikz1(h+z)←→M p, (A14)

where

←→
M = rss

←→
M ss + rsp

←→
M sp + rps

←→
M ps + rpp

←→
M pp. (A15)

Finally, the reflected electric field in real space is written as

EED
ref (x, y, z) =

∫∫
EED

ref (kx, ky, z) ei(kxx+kyy)dkxdky. (A16)

By substituting Eq. (A14) into Eq. (A16), and taking the
constant dipole moment out of the integral, we finally arrive
at the concept of the dyadic Green’s function over the MO
surface:

EED
ref (r) = ←→

G (r, r0, ω)p, (A17)

where

←→
G (r, r0, ω) = i

8π2ε0ε1

∫∫ ←→
M ei(kxx+kyy+kz1(h+z))dkxdky.

(A18)

For the calculation of the optical forces, we need the
gradient of the fields. The gradient of Green’s function with
respect to r = (x, y, z) is given by

∇←→
G = ∂

←→
G

∂x
x̂ + ∂

←→
G

∂y
ŷ + ∂

←→
G

∂z
ẑ, (A19)

where the spatial derivatives can be calculated from Eq. (A18)
at the location of the dipole r0 = (0, 0, h) as

∂
←→
G

∂x
(r0, r0, ω) = −1

8π2ε0ε1

∫∫
kx

←→
M ei2kz1hdkxdky, (A20)

∂
←→
G

∂y
(r0, r0, ω) = −1

8π2ε0ε1

∫∫
ky

←→
M ei2kz1hdkxdky. (A21)

Writing the transverse wave vector components in cylin-
drical coordinates kx = kt cos φ, ky = kt sin φ, and dkxdky =
kt dkt dφ and performing the angular integration in φ we arrive
at a single integration for the Green function derivatives:

∂
←→
G

∂x
(r0, r0, ω) = 1

8πε0ε1

∫
dkt e

i2kz1hk3
t

×

⎛
⎜⎝

0 0 rpp

0 0 rspk1/kz1

−rpp rpsk1/kz1 0

⎞
⎟⎠,

(A22)

∂
←→
G

∂y
(r0, r0, ω) = 1

8πε0ε1

∫
dkt e

i2kz1hk3
t

×

⎛
⎜⎝

0 0 −rspk1/kz1

0 0 rpp

−rpsk1/kz1 −rpp 0

⎞
⎟⎠.

(A23)

The angular integration in φ shown here is only valid when
the Fresnel reflection coefficients are rotationally symmetric
(i.e., rpp, rss, rsp, and rps are independent of φ) as is the case
in our current geometry. Care should be taken if consider-
ing other surfaces, where this rotational symmetry might be
broken.

APPENDIX B: TIME-AVERAGED FORCE ON A DIPOLE
NEAR A SURFACE WITH CROSS-POLARIZED

REFLECTION

The time-averaged optical force 〈F〉 acting on the dipole is
given by [41,43,44]

〈F〉 =
∑

i=x,y,z

1

2
Re{p∗

i ∇Ei}, (B1)

where ∇ is the gradient with respect to r evaluated at r0, and
E = (Ex, Ey, Ez ) is the field reflected by the surface, acting
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back on the dipole, which can be written using the Green’s
function approach as seen in Eq. (A17). Replacing this into
Eq. (B1), we arrive at

〈F〉 =
∑

i, j=x,y,z

1

2
Re

{
p∗

i p j

(
∂Gi j

∂x
x̂ + ∂Gi j

∂y
ŷ + ∂Gi j

∂z
ẑ
)}

.

(B2)

Here we are interested on the lateral force components,
which are given by

〈Fx〉 =
∑

i, j=x,y,z

1

2
Re

{
p∗

i p j
∂Gi j

∂x

}
, (B3)

〈Fy〉 =
∑

i, j=x,y,z

1

2
Re

{
p∗

i p j
∂Gi j

∂y

}
. (B4)

1. Force over x axis

Performing the summation over each element of the tensor
defined in Eq. (A22), we obtain the optical force over the x
axis as

〈Fx〉 = 1

2
Re

{
p∗

x pz
∂Gxz

∂x
+ p∗

z px
∂Gzx

∂x

+ p∗
y pz

∂Gyz

∂x
+ p∗

z py
∂Gzy

∂x

}
, (B5)

where we can substitute the terms from the Green function
tensor from Eq. (A22). In the case of materials with off-
diagonal permittivity components as considered here, it turns
out that the cross-polarization Fresnel reflection coefficients
rsp = rps are identical to each other [60,61], allowing us to
rewrite Eq. (B5) in the following way:

〈Fx〉 = 1

2
Re

{
1

8πε0ε1

∫
dkt e

i2kz1hk3
t

[
rpp(p∗

x pz − p∗
z px )

+ k1

kz1
rps(p∗

y pz + p∗
z py)

]}
. (B6)

This is an exact expression in terms of all of the variables
of the system and could be given as a final equation. However,
we can gain some further insight by performing substitutions,
with the aim of writing the dipole components in terms of
the degree of circular and diagonal polarization, and to write
the force in terms of the Kerr rotation. To this end, substi-
tuting 2iIm[p∗

x pz] = p∗
x pz − p∗

z px, 2Re[p∗
y pz] = p∗

y pz + p∗
z py

and the Kerr rotation �K = rps/rpp into Eq. (B6) we get

〈Fx〉 = 1

2
Re

{
1

8πε0ε1

∫
dkt e

i2kz1hk3
t rpp

×
[

2iIm{p∗
x pz} + k1

kz1
2Re{p∗

y pz}�K

]}
. (B7)

It is now very convenient to introduce the power radiated
by the dipole as a measure of its amplitude [16]. The power
radiated by a dipole p in a medium with permittivity ε0ε1 and
refractive index n1 can be written as the sum of the power
radiated by each of its components. The power radiated by
only two of those components i and j (where i, j = x, y, or z)

in free space is given by

Pi j
rad = c0k4

0n3
1

12πε0ε1
(|pi|2 + |p j |2). (B8)

Using the above definition, we can rewrite Eq. (B7) as

〈Fx〉 = 3

4c0k4
0n3

1

Re

{ ∫
dkt e

i2kz1hk3
t rpp

[
i

2Im{p∗
x pz}

|px|2 + |pz|2 Pxz
rad

+ k1

kz1

2Re{p∗
y pz}

|py|2 + |pz|2 Pyz
rad�K

]}
, (B9)

now we can introduce convenient symbols which describe
the polarization of our dipole. For example, the “spin” of
the dipole particle around the y axis can be defined as σy =
− 2Im[p∗

x pz]
|px |2+|pz |2 , while χ yz = 2Re[p∗

y pz]
|py|2+|pz |2 can be used as a measure of

the degree of diagonal polarization on the yz plane. It will be
maximum when the dipole is linearly polarized at 45◦ to the
surface normal. Both σy and χ yz closely resemble the expres-
sions of Stokes parameters. Substituting these measures, we
get

〈Fx〉 = −3

4c0k4
0n3

1

Re

{∫
dkt e

i2kz1hk3
t rpp

×
[

iσyPxz
rad − k1

kz1
χ yz�K Pyz

rad

]}
, (B10)

This equation is completely general for any dipole polar-
ization.

2. Force over y axis

We can perform the analogous steps to calculate the force
along the y axis. The result is, evidently, identical to that of the
force along the x axis, but with the dipole components suitably
rotated:

〈Fy〉 = −3

4c0k4
0n3

1

Re

{∫
dkt e

i2kz1hk3
t rpp

×
[

− iσxPyz
rad + k1

kz1
χ xz�K Pxz

rad

]}
, (B11)

where the spin of the dipole particle around the x axis has been

defined as σx = 2Im[p∗
y pz]

|py|2+|pz |2 , and χ xz = 2Re[p∗
x pz]

|px |2+|pz |2 is the degree of
diagonal polarization on the xz plane.

3. Further simplifications

The first term in the integrand of Eq. (B11) is the well-
known recoil force for circularly polarized dipoles over a
surface [16–19]. However, the second term explicitly depends
on the magneto-optical response and corresponds to novel
physics. In order to isolate this term and study its behavior,
we may consider a polarized particle p = [px, 0, pz] on the
xz plane. The lateral optical force in the y direction is then
simplified to

〈Fy〉 = −3χ xz

4c0k4
0n3

1

Pxz
radRe

{ ∫
dkt e

i2kz1hk3
t rpp

k1

kz1
�K

}
. (B12)

Now we can introduce the normalized transverse wave-
vector ktr = kt/k0 to normalize the integrals above de-
fined. This change allows us to write dkt = k0 dktr, kz1 =
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k0

√
ε1 − k2

tr, and k0 = ω/c0 = 2π/λ. This normalization is
very convenient because we arrive at an expression of the
force as a function that is independent of frequency except for
the effect of the normalized height (h/λ), and is proportional
to the power radiated by the dipole. This expression therefore
becomes very general for any frequency and dipole:

〈Fy〉 = − 3

4c0n2
1

χ xzPxz
rad

× Re

{∫ ∞

0
rppe4iπ( h

λ )
√

ε2
1−k2

tr k3
tr

�K√
ε2

1 − k2
tr

dktr

}
,

(B13)

which reduces to Eq. (2) when ε1 = n1 = 1.

APPENDIX C: FRESNEL REFLECTION COEFFICIENTS
FOR AN MO SURFACE WHEN THE MAGNETIZATION IS

ALONG THE Z AXIS

We consider the structure shown in Fig. 5, which consists

of an interface between isotropic (ε1) and MO (
↔
ε2) material.

We have considered the magnetization of the MO material
along the negative z axis. Then, the corresponding permittivity
tensor can be written as

↔
ε2=

⎛
⎝εxx εxy 0

εyx εyy 0
0 0 εzz

⎞
⎠, (C1)

where εxx = εyy = εzz = ε2 and εyx = −εxy.
To describe the propagation of the electromagnetic waves

through both the isotropic and the MO material, we have
obtained the z component of the wave vector and the proper
polarization modes in each medium by solving the corre-
sponding wave equation [34,35]. The expression of these
wave vectors are shown below:

kz1 = k0

√
ε1 − k2

tr = k0Nz1, (C2)

kz21 = k0

√
N2

z2 + i
εxy√
ε2

Nz2 = k0Nz21, (C3)

kz23 = k0

√
N2

z2 − i
εxy√
ε2

Nz2 = k0Nz23, (C4)

with k0 = ω/c, ktr = kt/k0, and Nz2 =
√

ε2 − k2
tr (which

would correspond to the case when the medium 2 does not
have a MO response). From a computational point of view,

FIG. 5. Schematic representation of the system under study, ε1

and
↔
ε2 are the corresponding dielectric permittivity and dielectric

permittivity tensor for isotropic incident medium and magneto-
optical material, respectively.

it is very important to use the correct sign when doing the
square root for the various Nz’s. Calculations must use the sign
which results in a positive imaginary part (or positive real part
if purely real). After obtaining the associated normal modes
in each medium and implementing the boundary conditions at
the interface, a system of equations can be solved to arrive at
the Fresnel reflection coefficients at the interface, which are
written as [34,35]

rpp = −App

B
, (C5)

rss = Ass

B
, (C6)

rps = Aps

B
, (C7)

where

App = ε1N2
z2(2Nz1 + Nz21 + Nz23)

− Nz1[2Nz21Nz23 + Nz1(Nz21 + Nz23)]ε2, (C8)

Ass = ε1N2
z2(2Nz1 − Nz21 − Nz23)

+ Nz1[−2Nz21Nz23 + Nz1(Nz21 + Nz23)]ε2, (C9)

Aps = −2iNz1Nz2(Nz21 − Nz23)
√

ε1
√

ε2, (C10)

B = ε1N2
z2(2Nz1 + Nz21 + Nz23)

+ Nz1[2Nz21Nz23 + Nz1(Nz21 + Nz23)]ε2. (C11)

APPENDIX D: APPROXIMATIONS ON THE FORCE:
QUASISTATIC AND FIRST-ORDER APPROXIMATIONS

We can apply the near-field quasistatic approximation with
the intention to obtain simpler expressions that allow us to bet-
ter understand the origin of the force. This approximation is
valid when the dipole is very close to the substrate—the case
under study—where the lateral force of interest to this work
is strongest. We assume kt � k0 implying that we can take
the limit kt/k0 → ∞ and the Fresnel reflection coefficients
rps and the MO Kerr rotation (�K = rps/rpp) are written in
the quasistatic limit as

rQS
pp = ε2 − ε1

ε2 + ε1
, (D1)

rQS
ps = −i

√
ε1εxy

2(ε1 + ε2)ktr
, (D2)

�
QS
K = −i

√
ε1εxy

2(ε2 − ε1)ktr
. (D3)

Substituting the previous results into the expression of
the lateral force (B13) allows one to solve the integration
analytically to obtain the near-field approximation:

〈
F QS

y

〉 = 3χ xz

128c0π2n2
1

Pxz
radRe

{ √
ε1εxy

(ε1 + ε2)

}(
h

λ

)−2

, (D4)

which reduces to Eq. (3) when ε1 = n1 = 1.
Alternatively, we can also derive a first-order approxima-

tion of the force, with the assumption that the off-diagonal
component of the permittivity is small, while not neglecting
phase retardation. We will rewrite the reflection coefficients
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FIG. 6. Distance dependence of the time-averaged lateral forces
over a linearly polarized dipole p = (1, 0, 1), located above a re-
alistic magneto-optical surface (diagonal ε2 = −10.51 + 2.10i and
off-diagonal εxy = −1.20 + 1.15i element of the permittivity tensor).
The exact expression of 〈Fy〉 is depicted by a dashed line, while the
approximation to first order in εxy is depicted by a solid line.

expressed in Eqs. (C5)–(C7) in a simpler way by considering
only first-order (linear) corrections due to the off-diagonal
permittivity component εxy. These simplified reflection co-
efficients can then be introduced into Eq. (B13) to calculate
the approximate lateral force. We check the validity of this
simplified form by comparing the exact and approximate
forms and find excellent agreement.

First, we assume that the off-diagonal elements in the
permittivity tensor of a magnetized medium are much smaller
than the diagonal ones, εxy � ε2. In this case we can expand
the reflection coefficients to first order in εxy, as seen below:

rApprox
pp = Nz1ε2 − Nz2ε1

Nz1ε2 + Nz2ε1
, (D5)

rApprox
ps = n1Nz1εxy

(Nz1 + Nz2)(Nz1ε2 + Nz2ε1)
, (D6)

�
Approx
K = n1Nz1εxy

(Nz1 + Nz2)(Nz1ε2 − Nz2ε1)
. (D7)

With this approximation, the lateral force can be expressed
as

〈Fy〉Approx = − 3

4c0n2
1

χ xzPxz
rad

× Re

{∫ ∞

0

rApprox
ps

Nz1
e4iπ( h

λ )Nz1 k3
trdktr

}
. (D8)

In Fig. 6 we calculate the exact expression of the lateral
force acting on a linearly polarized dipole and compare it with
the first order one, Eq. (D8). We see that the approximated
expression allows us to reliably describe the obtained results,
and also allows any reader to simplify, in a considerable way,
the calculation time of the integrals.

APPENDIX E: DIFFERENT CONTRIBUTIONS
TO THE LATERAL FORCE

The integrand in the force in Eq. (2) has several distinct
features which we can consider separately. For added physical
insight, it is highly convenient to decompose the integrand

into three separate contributions, as proposed in Ref. [16]:

〈Fy〉 = 〈
F QS

y

〉 + 〈
F pw

y

〉 + 〈
F recoil

y

〉
. (E1)

The first term is the quasistatic approximation, which
corresponds to the integrand at very high values of ktr, and
is calculated in Appendix D [Eq. (D4)]. This term varies like
h−2 and hence dominates the force when h → 0, in the very
near field.

The second term is the force caused by the propagating
plane waves, radiated by the dipole, reflected on the surface,
and acting back on the dipole. This force is very weak for
practical purposes but has long range, and therefore it always
dominates at sufficiently high distances. It dominates above
approximately h ≈ λ/2π . Mathematically, this term can be
calculated by limiting the integral in Eq. (2) to the far-field
region 0 � ktr � 1 only:〈

F pw
y

〉 = − 3

4c0
Pxz

radχ

× Re

{∫ 1

0
rppe4iπ( h

λ )
√

1−k2
tr k3

tr
�K√
1 − k2

tr

dktr

}
. (E2)

Due to the complex exponential, which represents the
phase propagation of the waves, this term of the force os-
cillates in sign with increasing distance, which is seen in the
log-log plot as periodic inverted peaks going to zero. The sign
of this term flips every λ/4 increase in height h, because the
total increase in propagation distance for the plane waves is
equal to 2h, due to the round trip from the dipole to the surface
and back again.

The third term is the contribution to the force due to the
mode recoil, and is the most difficult to calculate. This term is
associated with the existence of complex poles in the Fresnel
reflection coefficient rps(ktr ) when we consider ktr as a com-
plex variable. Each complex pole in the reflection coefficient
represents a distinct mode in the surface or system of slabs.
When the modes have low loss, the poles are close to the real
line, and appear as distinct sharp peaks in the integrand of
Eq. (2). In that case (low losses) it is very easy to estimate the
contribution of the peak to the integral by approximating the
peak via a delta function Im{rps(ktr )} ≈ Rδ(ktr − neff ) where
neff > 1 is the effective mode index, and hence integrating
Eq. (2) over the delta function:

〈
F recoil

y

〉 ≈ −3Pxz
radχ

4c0

Rn3
eff√

n2
eff − 1

e−4π
√

n2
eff −1( h

λ ), (E3)

where R is a measure of the mode excitation efficiency,
and can be estimated via the integration of the peak using
a suitable bandwidth � that embraces the whole resonant
peak R = ∫ neff +�/2

neff −�/2 Im{rps(ktr )}dktr. Notice that this term of
the force decays exponentially with height, as one would
expect for a mode recoil force due to the evanescent tails of
the mode. This term turns out to be negligible in some of the
force plots presented in the paper, but sometimes dominates
at intermediate near-field distances, between the region of
quasistatic force and the region of propagating plane wave
force.

The appropriateness of dividing the force into these three
terms, each with a very distinct behavior, is clearly observed
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FIG. 7. Distance dependence of the time-averaged lateral forces
over a linearly polarized dipole p = (1, 0, 1), located above
a magneto-optical substrate (diagonal ε2 = −2 + 0.1i and off-
diagonal εxy = −i element of the permittivity tensor). The exact
result from Eq. (2) and the different terms in the approximation are
shown. For the calculation of Rk we used �k = 0.56 and neff = 1.41.
The material was chosen to show the three terms as clearly as
possible.

in Fig. 7, which shows the distance h/λ dependence of the
total force on a material system, calculated exactly via Eq. (2)
together with the contribution from the three different terms,
each with its own distance dependence. Notice how the qua-
sistatic term dominates for h < 0.01λ, the mode recoil (in
this case SPPs) term dominates for 0.01λ < h < 0.2λ, and
the propagating plane wave term dominates for h > 0.2λ. The
three terms add up together to account for the exact force.
Performing this decomposition in very lossy materials such
as the realistic materials considered in the main text is not
straightforward because the calculation of the recoil mode
contribution is difficult to estimate when the peak in the
integrand is very broad.

APPENDIX F: CALCULATION OF THE SURFACE
PLASMON POLARITON’S ELECTRIC FIELD

IN A SINGLE MO INTERFACE

We briefly describe here our general approach to determine
the dispersion relation and the electric field of the surface
electromagnetic modes in our MO interface. These results
are of great importance to calculate the radiation diagram
discussed in Eq. (4). Assuming that the interface is located
at z = 0, as in Fig. 8, the electric field of the surface mode can
be written in each medium as

Er = (E+
s ês + E+

p ê+
p )ei(kr ·r−ωt ), z > 0,

Et = (E1 + E3)ei(kt ·r−ωt ), z < 0. (F1)

The electric field vectors E1 and E3 correspond to eigen-
modes of the wave equation inside the MO material. The
amplitudes of the E1 and E3 components can be expressed
in terms of the x components, that is, Ey j = p jEx j and Ez j =

FIG. 8. Schematic diagram of a plasmonic excitation on a single-
MO interface.

q jEx j . This allows us to write the transmitted field as [35]

E1 = (Ex1, Ey1, Ez1) = Ex1(1, p1, q1),

E3 = (Ex3, Ey3, Ez3) = Ex3(1, p3, q3), (F2)

with p j = εxy

N2
z2−N2

z2 j
, q j = nSPPNz2 j

N2
z2

and the normalized transverse

wave vector ktr = kt/k0 = nSPP is equal to the plasmon mode
effective index.

The requirements of the continuity for the electric and
magnetic field components parallel to the interface plane z =
0 provide four equations, which can be written in matrix form
as⎛

⎜⎜⎜⎝
−1 0 p1 p3

Nz1 0 Nz21 p1 Nz23 p3

0 −Nz1/N1 1 1

0 N1 Nz21 + q1nsppNz23 + q3nspp

⎞
⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎝

E+
s

E+
p

Ex1

Ex3

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0

0

0

0

⎞
⎟⎟⎟⎠. (F3)

Nontrivial solutions to this system correspond to the sur-
face modes at the interface, and exist only when the determi-
nant of the matrix is equal to zero. After some algebra, the
determinant of the matrix can be written as

Nz1[2Nz21Nz23 + Nz1(Nz21 + Nz23)]ε2

+ n2
1N2

z2(2Nz1 + Nz21 + Nz23) = 0. (F4)

The solution of Eq. (F4) provides the explicit values of the
transverse wave vector (k0nSPP) for the plasmonic excitation,
which must be calculated numerically. Once nSPP is known,
we can calculate the coefficients for the fields of this surface
mode by solving Eq. (F3). We can express the field coeffi-
cients in terms of Ex1 as seen below:

E+
s

Ex1
= (Nz23 − Nz21)(

N2
z2 − N2

z21

)
(Nz1 + Nz23)

εxy, (F5)

E+
p

Ex1
= n1(Nz23 − Nz21)

[
N2

z2 + Nz21Nz23 + Nz1(Nz21 + Nz23)
]

Nz1(Nz1 + Nz23)
(
N2

z2 − N2
z21

) .

(F6)

Finally, we can obtain the ratio of s to p polarization
of the surface mode, which is an important parameter for
understanding the existence of this new lateral force. After
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some algebra, this ratio is expressed as

α = E+
s

E+
p

= Nz1εxy

n1
[
N2

z2 + Nz21Nz23 + Nz1(Nz21 + Nz23)
] . (F7)

APPENDIX G: NET MOMENTUM CARRIED BY
THE EXCITED SURFACE PLASMONS

Substituting the plasmon radiation diagram Eq. (4) into
the angular integration of the vector momentum of each
excited plasmon mode Eq. (5), we can analytically evaluate
the integration and arrive at

(Px

Py

)
∝ 2π

(
Im

[
px p∗

z nSPP

√
n2

SPP − 1
]

Re[px p∗
z nSPPα]

)
. (G1)

When the surface is lossless, then nSPP,
√

n2
SPP − 1, and α

are all real, leading to the expression in the main text.

APPENDIX H: COMPARISON OF NOVEL LATERAL
FORCE WITH PREVIOUSLY KNOWN LATERAL FORCES

In order to put this novel lateral force into context, we
provide here a direct comparison with the known circular
dipole’s lateral force, both over the MO Co6Ag94 substrate
from Fig. 2 and a bulk gold surface [62], as used in Ref. [16].
For these examples, pdiag = (1, 0, 1), pcirc = (1, 0, i), and the

FIG. 9. The lateral forces of diagonal and circular dipoles over
MO (Co6Ag94 with a magnetic field of 0.8 T) and non-magneto-
optical (Au) substrates, normalized by the scattering power.

FIG. 10. Magnetic field dependence of the time-averaged lateral
forces over a linearly polarized dipole p = (1, 0, 1), located above
an n-doped InSb substrate. The dipole is located at h = 0.01λ and
its angular frequency is ω = 3.6 × 1013 rad/s. The elements of the
permittivity tensor of InSb follow the model reported in Refs. [63,64]
taking into account that, for low values of magnetic field, the differ-
ence between the diagonal elements of the permittivity tensor can be
safely neglected.

dipoles radiate at 631 nm. In Fig. 9, we compare the |〈Fy〉| of
pdiag against the |〈Fx〉| of pcirc.

For these particular materials, the circular dipole experi-
ences a greater lateral force than an equally powerful diagonal
dipole. Of course, the MO force can be increased by increas-
ing the material magnetization, which could make the forces
comparable. With smaller distances, the circular dipole will
always overcome the diagonal dipole eventually, thanks to its
h−4 height dependence, compared to h−2 for the MO based
diagonal dipole.

We emphasize that in all scenarios, these forces are propor-
tional to the scattering power of the dipole and so increasing
the power always provides a theoretical avenue for enhancing
optical forces.

To demonstrate the effect of changing the magnetic field,
in Fig. 10 we show the magnetic field dependence of the time-
averaged lateral forces acting on a linearly polarized dipole
p = (1, 0, 1), located above a n-doped InSb substrate. The
elements of permittivity tensor for InSb were taken following
the analytical model of Refs. [63,64], allowing us to test
different values of the magnetic field. The figure shows the
linear growth of the force with the magnetic field, as expected,
because the nondiagonal element εxy depends linearly with the
magnetic field at low values of magnetic field [see Eq. (3)].
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