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Distinguishing trivial and topological quadrupolar insulators by Wannier-Stark ladders
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I study theoretically quadrupolar topological insulators under applied static electric field rotated along the
crystal axis. I demonstrate that the energy spectrum of this structure is a Wannier-Stark ladder that naturally
visualizes the quantization of nested Wilson loops for the bulk bands. This enables a direct distinction between
the topological phase, possessing localized corner states, and the trivial phase, lacking the corner states. The
crossover between the topological and trivial cases takes place via the nonadiabatic regime. These results may
find applications in the characterization of rapidly emerging higher-order topological phases of light and matter.
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I. INTRODUCTION

Berry phase and Chern numbers are now well-established
concepts to characterize the excitations in crystalline
solids [1]. Namely, depending on the value of the Chern num-
bers, calculated for bulk Bloch bands in infinite crystals, the
finite samples, made from the same materials, will or will not
have topological states propagating along their edges. Various
interference techniques have been proposed to measure the
Berry phase for Bloch bands, and the correspondence between
bulk and edge features has been tested experimentally [2,3].

Recently, a quadrupolar two-dimensional (2D) topological
phase has been put forward [4]. Contrary to the traditional
2D topological insulators, the quadrupolar phase has local-
ized fractional quantized corner states, rather than propa-
gating one-dimensional (1D) edge states. Such corner states
have been demonstrated experimentally in the microwave [5],
electric [6], and optical [7] setups. While corner states are
relatively easy to measure in experiment, direct proof of
their topological nature is very hard. The topological man-
ifestations of the quadrupole phases are in stark contrast
to the traditional topological insulators, being significantly
less visual. Namely, instead of the celebrated Berry phase,
the bulk topological feature in quadrupolar insulators is the
quantized phase of so-called nested Wilson loops [4,8]. The
Wilson loops have an inherently non-Abelian nature, which
makes them conceptually more difficult to interpret and to
measure. The traditional interference techniques developed to
probe the Berry phase [2,3,9] are inapplicable. The Wilson
loop tomography has so far been developed only for the case
of nondegenerate Bloch bands [10], while the quadrupolar
phase has doubly degenerate Bloch bands due to the reflection
and chiral symmetries [8]. Thus, the fundamental question of
measurable bulk manifestations of the quadrupolar topologi-
cal phase remains open, and a clear protocol to measure the
topological invariants in the bulk is highly desired.

Here, I put forward a procedure for bulk spectroscopy of
topological features of the quadrupolar phase based on the
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application of a constant electric field F to the structure. The
energy spectrum of a general one-dimensional biased periodic
structure is a Wannier-Stark ladder of discrete levels [11–13].
The energy levels En of the ladder formed from a given Bloch
band depend on the electric field as En = En(F = 0) + F (n +
c), where n = 0,±1, . . . is the level number [14–16] and c
are the Wannier center positions [17]. It is known for a 1D
Su-Schrieffer-Heeger (SSH) structure [15] as well as for 2D
and three-dimensional topological insulators [14,16,18] that
the centers c = {dEn/dFx} contain information on the topo-
logical invariants ({x} is the fractional part of x). Here, I extend
this concept to the quadrupolar phase in a rotated electric
field. I demonstrate that the shifts {dE/dFy} are quantized for
Fx �= 0, Fy = 0 and naturally reveal the topological phases of
nested Wilson loops. This provides a transparent connection
between the formal mathematical definition of the topological
quadrupolar phase and its physical manifestations observable
in the bulk.

II. QUADRUPOLAR PHASE IN THE ROTATED
ELECTRIC FIELD

The structure under consideration is schematically illus-
trated in Fig. 1(a) [8]. It can be described by a tight-binding
Hamiltonian on a square lattice with alternating intracell and
intercell tunneling constants γ and λ (black and red solid
lines). Dotted lines correspond to the couplings −γ and −λ.
Alternation of the positive and negative couplings ensures
the nonzero π flux through the unit cell and opens the band
gap in the energy spectrum of the infinite structure [4]. The
momentum space Hamiltonian for the periodic structure reads

H (kx, ky)

=

⎛⎜⎜⎝
0 γ + λe−ikx 0 −γ − λeiky

γ + λeikx 0 γ + λeiky 0
0 γ + λe−iky 0 γ + λeikx

−γ − λe−iky 0 γ + λe−ikx 0

⎞⎟⎟⎠,

(1)

where k is the Bloch wave vector and the basis corresponds to
the atoms in the unit cell ordered as indicated in Fig. 1(a).
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FIG. 1. Scheme of the structure under consideration. (a) Un-
biased structure. Biased (b) topological and (c) trivial structures.
Green, blue, and yellow shading depicts bulk, corner, and edge states,
respectively. External potential in the four unit cells is indicated on
the graph.

Depending on the ratio between the couplings γ and λ,
the structure can be in either a topological or trivial phase.
Namely, for |γ | < |λ| [Fig. 1(b)] it has corner states (blue
circles) and edge states (yellow lines) in addition to the
bulk states (green shading). In the opposite case, |γ | > |λ|
[Fig. 1(c)], the corner and edge states are absent. This is seem-
ingly similar to the case of the 1D SSH model, where the ter-
mination with a weak tunneling link leads to the formation of
a zero-energy edge state [1]. However, the quadrupolar phase
is qualitatively different from the 2D SSH lattice because of
the presence of negative couplings that are essential for the
formation of the bulk band gap and topologically protected
corner states, which are absent in a 2D SSH system [7].

The goal of this work is to distinguish between the topolog-
ical and trivial phases from the bulk, rather than edge, spectral
features by applying the external electric field F. The main
idea is sketched in Figs. 1(b) and 1(c). I assume that all four
sites in each unit cell with the discrete coordinates x, y =
0,±1,±2, . . . are biased by the same energy Fxx + Fyy. In
the trivial phase with γ � λ [Fig. 1(c)], each Wannier state
is fully located inside the given unit cell. The states have
twofold degeneracy, and the energies are ±√

2γ . The external
potential does not split these states and only shifts them
independently. In the topological phase with strong intracell
couplings, λ � γ , the centers of the Wannier functions (green
squares) are located between the unit cells [8] [see Fig. 1(b)].
As such, each Wannier state is shared between four unit cells
with different values of the external potential, and contrary
to the trivial case, the spectrum of the Wannier states will be
split by the potential. Next, I prove this crude analysis by the
rigorous calculation of the Wannier-Stark ladder.

III. STARK LADDERS FOR Fy = 0

I start by considering the structure with the electric field
applied along the x direction and the periodic boundary con-
ditions with the wave vector ky along y. The energy spectra

FIG. 2. Stark ladders depending on Fx calculated for Fy = 0.
(a) and (b) correspond to the topological (γ = 0.2, λ = 1) and trivial
(γ = 1, λ = 0.2) structures. Black lines have been calculated numer-
ically, and red lines correspond to the analytical results, Eqs. (2)
and (3). Green shading shows the Bloch bands in the unbiased
periodic structure. The vertical arrow in (a) indicates the splitting
due to the Landau-Zener effect. Periodic boundary conditions with
ky = 0.5 have been used along the y direction; open boundary
conditions with N = 10 unit cells have been used along x.

in the topological and trivial phases are shown in Figs. 2(a)
and 2(b), respectively. The calculation demonstrates that the
bulk Bloch bands are split due to the electric field and the
two fans of levels, with the energies linear in the electric
field, emerge from each band. In the limit of γ � λ (λ � γ )
the energy levels are approximately given by the analytical
expressions

E (topo)
nσ± ≈ σ

(√
2λ + γ cos ky√

2

)
+ Fx

(
n + 1

2
±

√
2

4
q

)
, (2)

E (triv)
nσ± ≈ σ

(√
2γ + λ cos ky√

2

)
+ nFx, (3)

where n = 0,±1, . . ., σ = ±1 distinguishes the upper and
lower bands, and q = 1 + γ cos ky/(2λ). These equations can
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be rigorously obtained as

Enσ± =
∫ 2π

0

dkx

2π
Eσ (kx ) + Fx(n + c±), (4)

where c± = ln(λ±)/2π i and λ are the eigenvalues of the 2 × 2
Wilson loop operator W = exp[− ∫ 2π

0 dkxu†
σ ∂uσ /∂kx]. Here,

Eσ = σ
√

2
√

λ2 + γ 2 + λγ (cos kx + cos ky) are the Bloch
band energies, and the 4 × 2 matrix uσ = [u1σ , u2σ ] contains
two Bloch functions, u1 and u2, for the corresponding band
σ . The detailed derivation is presented in Appendix A. The
results are valid in the adiabatic regime, i.e., when the upper
and lower Bloch bands can be considered separately and the
transitions between them can be ignored.

The analytical answers (2) and (3), calculated from the
Wilson loops, are shown by the red lines in Fig. 2 and well
describe the direct numerical calculation of the Stark ladder
(black lines). This proves that the Stark ladder can be used
to calculate the Wannier eigenstates of the Wilson loops.
The difference between the topological and trivial cases is
now clearly seen. In agreement with the naive explanation
in Figs. 1(b) and 1(c), in the topological case the levels (2)
are split by ≈√

2Fx/2, while in the trivial case the states (3)
remain almost doubly degenerate.

IV. LANDAU-ZENER EFFECT

Equations (2) and (3) describe two independent Stark
ladders formed from the two Bloch bands. However, it can
be seen from Fig. 2(a) that, in fact, these ladders are not in-
dependent and feature avoided crossings. The largest avoided
crossing in Fig. 2(a) takes place at Fx ≈ 2 and is indicated by
an arrow. In Fig. 3 I plot the same levels zoomed in around the
field Fx ≈ 2. The physical origin of the avoided crossing can
be understood by noticing that in the limit γ → 0 the structure

FIG. 3. Spectrum of the Wannier-Stark ladder from Fig. 2(a) en-
larged in the vicinity of Fx = 2. Black lines show the results of
numerical calculation; red lines show the analytical result, Eq. (8).
The inset schematically illustrates the spatial structure of the two
Wannier functions of the coupled states, with red (blue) circles
corresponding to the amplitude of the Wannier function ψ (x, y) =
±1 (2).

is decoupled into noninteracting 4 × 4 unit cells with the sites
coupled by the links ±λ. The tight-binding Hamiltonian for
each such cell is

H̃ =

⎛⎜⎝Fx λ 0 λ

λ Fx −λ 0
0 −λ F (x + 1) λ

λ 0 λ F (x + 1)

⎞⎟⎠. (5)

Its eigenenergies are equal to

Exσ± = F

(
x − 1

2

)
+ σ

√
F 2 ± 4Fλσ + 8λ2

2
, σ = ±1.

(6)

In the limit of λ � γ the Wannier functions are fully localized
on four sites between the unit cells [see Fig. 1(b)] with the
absolute values of all four nonzero wave function components
equal to 1/2. Clearly, for F = 2λ one has

Ex,+− = Ex+1,−+, (7)

which means that the Wannier functions corresponding to the
two adjacent unit cells become degenerate. The parameter n
in Eq. (2) specifies the horizontal coordinate; that is, the state
n is located between the nth and (n + 1)th unit cells. Hence,
for Fx ≈ 1.7λ one has E1,−+ ≈ E0,+−, which means that the
Wannier states of upper and lower bands, shifted by one site,
become degenerate (see the inset of Fig. 3). The tunneling
between these states lifts the degeneracy and opens the gap
with the width γ ; that is, the energy spectrum in the vicinity
of the gap reads

ε± = ±1

2

√
(E1,−+ − E0,+−)2 + γ 2. (8)

Indeed, the analytical result (8), shown by the red lines in
Fig. 3, well describes the exact numerical answer. The only
difference is the small horizontal shift of the position of the
avoided crossing, which is a next-order effect in the parameter
F/λ, not taken into account in the approximation equations (2)
and (8). However, the width of the gap for the black curves in
Fig. 3 is close to γ = 0.2, in agreement with Eq. (8). Avoided
crossings due to the Landau-Zener effect take place in both
topological and trivial cases. However, in the trivial case
they start to be discernible for larger electric fields, Fx ∼ 3
[see Fig. 8(b) in Appendix A], that are beyond the range
considered in Fig. 2. The avoided crossings represent the onset
of the breakdown of adiabatic approximation when the indi-
vidual Bloch bands can still be considered separately. At even
larger electric fields, Fx ∼ 5, the electrostatic potential fully
overcomes the crystalline potential, the topological features
of individual Bloch bands are completely washed out, and the
slope {∂E/∂Fx} is equal to zero in both topological and trivial
structures.

V. NESTED WILSON LOOPS VIA THE STARK LADDERS

Figure 2 demonstrates that the application of the electric
field modifies the structure in such a way that its eigenstates
become the Wannier functions, depending on the wave vector
ky. The phase of the nested Wilson loops proposed in
Refs. [4,8] is just the winding number of these functions
calculated when ky is varied across the Brillouin zone. I
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FIG. 4. Stark ladders for an open lattice with 5 × 5 unit cells de-
pending on (a) and (d) Fx and (b) and (e) Fy in the (a)–(c) topological
and (d)–(f) trivial phases with γ = 0.15, λ = 1 and γ = 1, λ = 0.15,
respectively. (c) and (f) show the distributions of dE/dFy for Fx = 1,
Fy = 0.1. Green shading indicates the Bloch bands in the unbiased
periodic structure.

have verified numerically that this phase is equal to π (2π )
for the topological (trivial) states in Fig. 2(a) [Fig. 2(b)], as
expected (see Appendix B). Instead of the calculation of this
phase under the periodic boundary conditions along the y
direction I will now consider a more realistic situation of a
finite structure, open from all four sides. Application of an
additional electric field along the y direction, corresponding
to the rotation of the total electric field, will then further split
the states in Fig. 2. Next, I will demonstrate by an explicit
numerical calculation that the resulting nested Stark ladder is
quantized and directly reflects the phases of the nested Wilson
loops.

The results of the calculation are presented in Fig. 4.
First, I apply the electric field along the x direction, which
leads to the splitting of the Bloch bands for both topological
[Fig. 4(a)] and trivial [Fig. 4(d)] structures, similar to Fig. 2.
Since now the topological structure is open in both directions,
it also has edge and corner modes, indicated by blue and red,
respectively, in addition to the bulk modes. The edge (corner)
states have been formally defined as the states where the
probability of localization at the edge (corner) sites is larger
than 0.2. Application of an additional electric field along the
y direction splits the spectrum further [Figs. 4(b) and 4(e)].
The key difference between the topological and trivial cases
is the distribution of the derivatives dE/dFy for given Fx �= 0,
shown in Figs. 4(d) and 4(f). In the topological structure
this distribution has maxima around the half-integer values
±1/2,±3/2, . . ., i.e., {dE/dFy} = 1/2. In order to illustrate

FIG. 5. Color map of the distribution function of the values
dE/dFy for different eigenstates depending on γ for λ = 1, Fx =
1, Fy = 0.1. The calculation was performed for the structure with
33 × 33 unit cells.

this result analytically, I explicitly calculate the Wannier-Stark
centers for Fx �= 0, Fy �= 0 in the limit when λ � γ . The
corresponding tight-binding Hamiltonian is given by

H̃ = Fxx + Fyy +

⎛⎜⎝0 λ 0 λ

λ Fy −λ 0
0 −λ Fx + Fy λ

λ 0 λ Fx

⎞⎟⎠. (9)

Its eigenvalues in the lowest order in F are readily found as

Eσ± =
√

2σλ + Fx(x + 1/2) + Fy(y + 1/2)

±
√

2

4

√
F 2

x + F 2
y , (10)

where σ = ±1 labels the Bloch band. In the exact limit Fy =
0 this result is equivalent to Eqs. (2) and (3). Importantly,
Eq. (10) is a clearly nonanalytical function of electric field.
The second derivative of the energy over the electric field
is well defined and quantized only when either Fx or Fy is
nonzero, i.e.,{

∂Eσ±
∂Fy

}∣∣∣∣
Fx �=0

=
{

∂Eσ±
∂Fx

}∣∣∣∣
Fy �=0

= 1

2
. (11)

In the trivial structure the distribution peaks are at the integer
values 0,±1,±2, . . ., i.e., {dE/dFy} = 0. The broadening of
the peaks in Fig. 4, most distinct in the topological phase, is
due to the finite-size effects. This distinction between half-
integer and integer values of the derivatives exactly corre-
sponds to the difference between the π and 2π phases of the
nested Wilson loops calculated in Ref. [4] for the topological
and trivial structures. The advantage of the proposed scheme
is that the topological phase arises naturally and can be
accessible in finite open systems.

Finally, in Fig. 5 I calculate the variation of the distribution
dE/dFy for given fixed values of Fx and Fy depending on
the ratio γ /λ. Due to the larger size of the structure, more
peaks are resolved compared to Fig. 4. In order to simplify the
presentation, the peak distribution has been convoluted with
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FIG. 6. Color map of the distribution dE/dFy for the middle
level of the Stark ladder depending on γ /λ and the electric field Fx .
The calculation was performed for the structure with 17 × 17 unit
cells and Fy = 0.1.

a Gaussian function with a dispersion of 0.02. In agreement
with Fig. 4, the positions of the peaks shift from half-integer
to integer values with the increase of γ . This reflects the
transition from the topological to the trivial regime. Notably,
the quantization should be quite strong in the experimentally
realized regime γ /λ ∼ 0.17 [7]. On the other hand, the quan-
tization is not evident in the crossover range with γ ∼ λ.
A possible explanation is that the energy gap between the
Bloch bands becomes narrow for γ ≈ λ and the adiabatic
approximation, underlying the construction of the topological
indices, is no longer valid. This regime features a rich energy
spectrum, strongly sensitive to the electric field and the size
of the sample. The calculated dependence of {∂E/∂Fy} on the
electric field and γ /λ is shown in Fig. 6. After the distribution
of ∂E/∂Fy was calculated for a given electric field and a given
ratio of γ /λ, I averaged all the values of ∂E/∂Fy belonging to
the range −0.25 to 0.75. Thus, the topological structure with
γ � λ should correspond to the mean value of {∂E/∂Fy} =
1/2, and the trivial structure corresponds to {∂E/∂Fy} = 0.
These expectations are in general agreement with the nu-
merical results in Fig. 6. However, no distinct quantization
is observed for 0.5 < γ/λ < 1. Moreover, interesting fine
structures appear in the map, for instance, in the region 0.5 <

γ/λ < 1 at large electric fields Fx ≈ 4.5, Fx ≈ 5.5. The fine
structure strongly depends on the specific value of Fy � 1 for
which the distribution {∂E/∂Fy} is calculated and also on the
size of the structure. The explanation can be related to the
nonadiabaticity or even to the fractal spectrum of the Stark
ladder, which might emerge at the irrational directions of the
electric field [19–21].

The behavior of the Stark shifts for an arbitrary field direc-
tion is also quite instructive. In the topological structure with
γ � λ, the Stark shifts are E (F ) − E (0) = (Fx + Fy)/2 ±√

2|F|/4. While this is clearly a nonanalytical function of
the electric field F, the derivatives {dE/dFy} and {dE/dFx}
are quantized when the field is applied along the x and y
directions, respectively. So far, I have focused on the Stark

ladder quantization for the electric field oriented close to
the crystalline axis. In the considered case of the adiabatic
regime and the relatively small finite structures, the distinc-
tion between rational and irrational directions should be less
important, so it is out of the scope of the present study.

VI. SUMMARY

To summarize, I have introduced the concept of bulk
spectroscopy of topological invariants in the quadrupolar insu-
lators by relating the quantized phases of nested Wilson loops
to the spectra of Wannier-Stark ladders. Experimental imple-
mentation requires a comparison of the energy spectra for
different external potentials. In optics, this could be achieved
for a two-dimensional array of ring resonators with thermally
tunable on-site energies, similar to the experiment in Ref. [3].
The energy spectra can be extracted from the measured trans-
mission maps by using the tomography procedure proposed
in Ref. [22]. Instead of a single tunable sample, one could
also fabricate a set of rigid samples with different effective
electric fields, as was already done for the characterization
of topological photonic quasicrystals [23]. An even simpler
experimental realization is possible for the topoelectric cir-
cuits [6], where the on-site energies of individual sites can be
tuned by introducing nonlinear elements [24] and the local
on-site voltages can be probed directly. The proposed scheme
could also be generalized to other higher-order topological
insulators [25].
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APPENDIX A: STARK LADDERS FOR Fy = 0

Here, I will reiterate the general procedure to calculate
the spectrum of a periodic structure in a constant electric
field [10,15] for the case of a quadrupolar insulator. I assume
that the electric field is applied only along the x direction
and periodic boundary conditions with the wave vector ky are
applied along the y direction. The energy spectrum can be then
calculated from the following system of equations:

(H0 + Fxx)ux + H+ux+1 + H−ux−1 = Eux, 1 < x < N,

(H0 + F )u1 + H+u2 = Eu1, (A1)

(H0 + FN )uN + H−uN−1 = EuN ,

where

H0 =

⎛⎜⎜⎝
0 γ 0 −γ − λeiky

γ 0 γ + λeiky 0
0 γ + λe−iky 0 γ

−γ − λe−iky 0 γ 0

⎞⎟⎟⎠,

H+ = λ

⎛⎜⎝0 0 0 0
1 0 0 0
0 0 0 1
0 0 0 0

⎞⎟⎠, H− = H†
+. (A2)
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FIG. 7. Stark ladders depending on Fx calculated for Fy = 0.
Black lines correspond to results obtained from Eq. (A1) in the real
space, red lines were calculated from Eq. (A9) in the reciprocal
space, and blue lines were found from Eq. (A12) in the single-band
approximation. The calculation was performed for γ = 0.4, λ = 1,
ky = 0.5, N = 10.

Here, N is the number of unit cells in the x direction taken
into account. This is the approach used to calculate the black
curves in Fig. 2 in the main text. Alternatively, one can
consider an infinite structure and look for the solution in the
form

ψ (x) =
∫ 2π

0

dkx

2π
u(kx )eikxx, (A3)

with u(kx ) satisfying the periodic gauge

u(kx + 2π ) = u(kx ). (A4)

Substituting Eq. (A3) into Eq. (A1), I obtain

iF
∂

∂kx
u(kx ) + H (kx, ky)u(kx ) = Eu(kx ), (A5)

where the Hamiltonian

H (kx, ky)

=

⎛⎜⎜⎝
0 γ + λe−ikx 0 −γ − λeiky

γ + λeikx 0 γ + λeiky 0
0 γ + λe−iky 0 γ + λeikx

−γ − λe−iky 0 γ + λe−ikx 0

⎞⎟⎟⎠
(A6)

is the same as in Eq. (1) of the main text. The solution of
Eq. (A5) can then be sought in the form

u(kx ) = e−i Ekx
Fx V (kx )u(0), (A7)

V (kx ) = exp

(
i

Fx

∫ kx

0
dk′

xH (k′
x )

)
. (A8)

Substituting Eq. (A8) into Eq. (A4), we find that u(0) should
be the eigenvector of V (2π ) with the eigenvalue 1 and

E = Fx(n + cν ), cν = 1

2π i
ln λ̃ν, ν = 1, . . . , 4, (A9)

where λ̃ν are the eigenvalues of the 4 × 4 matrix V (2π ).

FIG. 8. Stark ladders depending on Fx calculated for Fy = 0.
(a) and (b) correspond to the topological (γ = 0.2, λ = 1) and trivial
(γ = 1, λ = 0.2) structures. Black lines were calculated numerically,
and red lines correspond to the analytical results from Eqs. (A12) and
Eq. (A13). Green shading shows the Bloch bands in the unbiased
periodic structure. Periodic boundary conditions with ky = 0.5 have
been used along the y direction; open boundary conditions with
N = 10 unit cells have been used along x.

Equation (A9) is equivalent to Eqs. (A1) in the limit
N → ∞, as can be seen by comparing the black and red lines
in Fig. 7. The discrepancy at small electric fields is due to the
finite value of N used to solve Eqs. (A1) and the finite number
of n = −14, . . . , 14 used for plotting Eq. (A9).

One can simplify Eq. (A9) by ignoring the interaction be-
tween the Stark ladders originating from the upper and lower
Bloch bands (i.e., the Landau-Zener effect). Specifically, I will
consider the lower Bloch band with the energy

E− = −E+ = −
√

2
√

λ2 + γ 2 + λγ (cos kx + cos ky).

(A10)
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FIG. 9. (a) Dependence of the Wannier-Stark ladder spectrum on
ky. (b) Integrand of the Zak phase for the lowest-energy state, shown
in red in (a). γ = 0.15, λ = 1, N = 5, F = 0.5.

The two eigenvectors u1,2− of the Hamiltonian (1) correspond-
ing to the bottom Bloch band are

[u1−, u2−] ≡ u− = 1√
2

⎛⎜⎜⎜⎜⎝
1 0

− γ+λeikx

E+
−eikx γ+λeiky

E+

0 eikx

γ+λe−iky

E+
−eikx γ+λe−ikx

E+

⎞⎟⎟⎟⎟⎠. (A11)

Next, we project Eq. (A5) into the subspace spanned by the
functions u1− and u2−. Namely, we substitute u(k) in the form
A1u1− + A2u2− into Eq. (A5) and solve for A1,2(kx ) satisfying
Eq. (A4). This results in the energy spectrum

E =
∫ 2π

0

ekx

2π
E (kx ) + Fx(n + cν ), cν = ln λν

2π i
, ν = 1, 2,

(A12)

with λν being the eigenvalues of the 2 × 2 Wilson loop

W = exp

[
−

∫ 2π

0

dkx

2π
u†

−
∂u−
∂kx

]
. (A13)

This is Eq. (4) from the main text. Blue lines in Fig. 7,
calculated according to Eq. (A12), well describe the results of

FIG. 10. Same as Fig. 9, but for the trivial phase γ = 1, λ = 0.15.

exact calculation with the only difference being the avoided
crossings between the Stark ladders originating from the
upper and lower allowed bands (i.e., the Landau-Zener effect).
These avoided crossings stem from the coupling between
the two bands induced by the electric field and hence are
not captured by the single-band approximation. In the case
when γ � λ (λ � γ ), the u− matrix is simplified, and the
integral over kx in Eq. (A13) can be calculated analytically.
This results in Eqs. (2) and (3).

Figure 8 shows the Stark ladder in the topological
[Fig. 8(a)] and trivial [Fig. 8(b)] cases in the wider range of
electric fields up to Fx = 5.5. It demonstrates that while for
low electric fields the numerical results well agree with the
single-band adiabatic approximation (A12), for large electric
fields the adiabatic approximation breaks down. First, the
avoided crossings appear between the levels corresponding to
different bands, starting from Fx ∼ 2 in the topological and
Fx ∼ 3 in the trivial case. Second, the slope of the dependence
{∂E/∂Fx} changes at large fields for the topological structure
and becomes equal to zero, similar to the case of trivial
structure [see Fig. 8(a)]. This is similar to the behavior of the
one-dimensional Su-Schrieffer-Heeger model [15]: a large ex-
ternal electrostatic potential completely overcomes the crys-
talline potential, and the topological features of individual
Bloch bands are washed out. The avoided crossings between
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the individual levels present the onset of this breakdown. They
result from the Landau-Zener effect and are analyzed in more
detail in Sec. IV.

APPENDIX B: ZAK PHASE FOR THE WANNIER STATES

In this Appendix I present an explicit calculation of the Zak
phase for the eigenstates of the Wannier-Stark ladder found
from Eqs. (A1). To this end I fix the value of Fx and calculate
the dependence of the eigenstate on ky varying from 0 to 2π .
In order to fix the gauge I set the component of the 4N-length
eigenvector of Eq. (A1) with the largest absolute value to be
real. The Zak phase is defined as [1]

ϕ = i
∫ 2π

0
dky〈ψ |∂ky |ψ〉. (B1)

The calculation in Fig. 9 clearly demonstrates that the Zak
phase for the lowest eigenstate is equal to π , which means

that the structure is in the nontrivial phase, in full agreement
with Ref. [8]. I have numerically verified that the same holds
for all the eigenstates. On the other hand, in the trivial phase
the Zak phase cancels out [see Fig. 10(b)]. This presents an
explicit confirmation that the eigenstates of the Wannier-Stark
ladder in the electric field applied along the x direction inherit
the topological features of the structure.

The crossings between different levels in Fig. 10 are ac-
cidental rather than appearing from the general symmetry
arguments. As such, they do not affect the overall quantization
of the Zak phase: the crossing points can just be excluded from
the integrals. In the actual calculation of the Stark ladder the
topological indices are evaluated in the real space by analyz-
ing the dependence on the electric field Fy, and this accidental
degeneracy does not play a role. The only requirement is the
small step in the electric field δFy when evaluating numeri-
cally the derivative ∂E/∂Fy = [E (Fy + δFy) − E (Fy)]/δFy, so
that the order of the levels remains the same.
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