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The computational cost of calculating the self-energy matrices used in first-principles transport-property
calculations is proportional to the cube of the lateral length of electrodes. Therefore, the clarification of transport
properties is difficult because the system size increases when the transition region structure becomes complicated
owing to lattice defects such as adatoms, substitutional doping, vacancies, and lattice distortions. In this study we
propose an improved procedure to calculate the self-energy matrices in the electrodes to reduce computational
costs of electron-transport calculations without degrading the accuracy. This procedure accurately reproduces the
self-energy matrices of the supercell-structured electrodes from the generalized Bloch states of the primitive unit
cell. Furthermore, we carry out electron-transport calculations on fluorine-adsorbed graphene sheets connected
to semi-infinite graphene electrodes and find the dependence of the electron transmission on the symmetry of the
arrangement of adatoms perpendicular to the transport direction.
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I. INTRODUCTION

In the last decade, two-dimensional materials attracted a lot
of interest, and their electron-transport properties have been
investigated not only for exploring fundamental physics but
also for applying them to novel electronic devices. Among the
various two-dimensional materials, graphene is recognized as
an essential material; hence it has been frequently used as a
platform for electron-transport measurement and simulation,
where the graphene platform is modified to tune the electron-
transport properties by adsorbing a heteroatom/molecule
[1–5], introducing point/line defects [6–9], substituting the C
atoms with heteroatoms [10–14], and so on. It is clearly seen
that increasing the complexity of the chemically/physically
modified graphene platforms, the system size to be dealt with
also increases. Therefore, the computational cost for calculat-
ing the electron-transport properties of such two-dimensional
systems increases drastically as the complexity increases.
This growth in computational cost obviously prevents us
from investigating the electron-transport properties of realistic
systems, and forces us to introduce some approximations and
accuracy deterioration.

Aiming at reducing the computational cost of electron-
transport calculations without deteriorating accuracy, we have
so far studied how to improve the electron-transport calcula-
tion method based on the wave function matching formula.
One of the bottlenecks in calculating the electron-transport
properties of a two-dimensional system with a pair of semi-
infinite electrodes is the computational cost for calculating
the self-energy matrices of the semi-infinite electrodes. More
specifically, the length of the electrode unit cells in the di-
rection perpendicular to the electron flow is restricted to be
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the same as that of the adjoining transition region. Therefore,
the computational cost of the self-energy matrices increases
proportionally to the cubic of the transversal length of the
transition region. Even if a small primitive unit cell is just tiled
and filled in the electrode unit cell in the transversal direction,
one has to calculate the self-energy matrices of the large
electrode unit cell. So far, many researchers have struggled
to calculate self-energy matrices with low computational cost
[15–17], and have achieved a reduction in computational costs
by using some approximations. In this paper we tackle the
problem of improving the highly inefficient calculation of
self-energy matrices without introducing any approximation
and deteriorating accuracy.

As an application of the improved electron-transport cal-
culation method, we study the electron-transport properties
of graphene sheets modified by fluorine adsorption. More
specifically, we investigate the possibility of tuning electron
transmission by changing the density and adsorption site of
fluorine atoms. The transmission in the vicinity of the Fermi
level can be greatly reduced even if the adatom density is
small. By contrast, the several conduction channels with trans-
mission peaks according to the density of the adatoms were
observed in the high incident energy region. Furthermore, in
the direction perpendicular to the transport direction, the dif-
ference between the structural symmetry of the fluorine atoms
adsorbed on the graphene surface and the spatial symmetry of
the incident Bloch waves inside the electrodes affects the peak
value of the electron transmission. In addition, we describe
the procedure for improving the computational accuracy of
the calculation for the transmission and reflection coefficients
in the Appendix.

The rest of this paper is composed as follows: Sec-
tion II presents the theoretical procedure used to construct
the self-energy matrices of an extended unit cell with a large
transversal dimension based on the generalized Bloch states
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of the corresponding primitive unit cell. Section III demon-
strates our method of examining the transport properties of
fluorinated graphene models and reveals how the transport
property is influenced by the concentration and arrangement
of the adatom. Section IV provides the conclusions. Ap-
pendix A describes the method for accurately calculating the
transmission/reflection coefficient from scattering wave func-
tions. Appendices B and C describe some of the mathematical
techniques used in this paper.

II. SELF-ENERGY MATRIX OF A
SUPERCELL-STRUCTURED ELECTRODE

In general, an electrode unit cell employed in transport
calculations has a simpler geometry than a transition region,
and can be divided into smaller primitive unit cells. All the
physical quantities of the electrode, such as the self-energy
matrix, can be in principle obtained from the calculations
for the small primitive unit cell, i.e., one need not treat a
large electrode unit cell that is composed by just repeating
a primitive unit cell. In this section we propose an efficient
procedure for calculating the self-energy matrix of a semi-
infinite electrode in a supercell structure, in which a primitive
unit cell is repeated in the directions parallel to the electrode
surface like as a crystal. This section is composed of three
subsections: First, we briefly present the conventional way to
calculate the self-energy matrix of a semi-infinite electrode.
Second, we derive a procedure for the self-energy matrix of a
supercell-structured electrode based on the conventional way,
and show that it is not practical. Third, we discuss a more
promising and less expensive procedure.

A. Conventional procedure

Here we briefly describe a conventional procedure to derive
the self-energy matrix of a leftward semi-infinite electrode
from a set of the generalized Bloch states of the corresponding
bulk system [18,19]. In an electrode part far away from the
surface, the effective potential can be considered to converge
to that of the corresponding bulk system, and therefore, to
be periodic. The Hamiltonian matrix H of the electrode unit
cell repeats along the unit-cell index . . . , � − 1, �, � + 1, . . .

as shown in Fig. 1, and is independent of �. The interaction
between the adjoining unit cells represented by matrix B is
also independent of the unit-cell index �. On the basis of the
real-space finite-difference formalism [20] within the frame-
work of the density functional theory [21], the dimension of
B is finite, and we can regard B as a NB-dimensional square
matrix. In general, NB is smaller than the dimension of H.
Accordingly, the ith generalized Bloch state of a periodic
bulk system with respect to energy ε satisfies the following
Kohn-Sham equation:⎡⎣0 0 B†

...
. . . 0

0 . . . 0

⎤⎦⎡⎣qi,�−1,1
...

qi,�−1,N

⎤⎦ + (ε − H)

⎡⎣qi,�,1
...

qi,�,N

⎤⎦

+
⎡⎣0 . . . 0

0 . . .
...

B 0 0

⎤⎦⎡⎣qi,�+1,1
...

qi,�+1,N

⎤⎦ = 0. (1)
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FIG. 1. Schematic representation of an electrode part away from
the surface. Unit cells are indexed as . . . , � − 1, �, � + 1, . . . , and
the real-space grids in each unit cell are indexed as z1, . . . , zN . H
and B represent the Hamiltonian of a unit cell and the interaction
between the adjoining unit cells. Note that the dimension of B is finite
within the framework of the real-space finite-difference formalism.
The curves with arrows represent the leftward propagating/decaying
generalized Bloch waves, which are referred to as q in the text.

Here qi,�−1,1(N ), qi,�,1(N ), and qi,�+1,1(N ) represent the wave
function vector at z = z1(N ) in the (� − 1)th, �th, and (� + 1)th
unit cells, respectively. The length of the subvectors is NB,
i.e., NB is generally the number of real-space grids on an xy
plane at z = zi or can be an integer multiple of it. Note that
the superscript † denotes the conjugate transpose of a matrix.
The Kohn-Sham equation is known to have 2NB independent
solutions, as far as B is a regular matrix [22]. Half of the
solutions represents the leftward propagating/decaying gen-
eralized Bloch wave functions, and the rest is the rightward
propagating/decaying ones, as depicted in Fig. 1.

Collecting the NB leftward propagating/decaying general-
ized Bloch waves in the �th unit cell, qi,�,N for i = 1, . . . , NB,
we define matrix

QL = [q1,�,N , . . . , qNB,�,N ]. (2)

In the same way, we define another matrix composed of the
NB leftward propagating/decaying generalized Bloch waves
in the (� + 1)th unit cell, i.e., qi,�+1,N for i = 1, . . . , NB:

QR = [q1,�+1,1, . . . , qNB,�+1,1]. (3)

It is clearly seen that QL and QR are both NB-dimensional
regular matrices and are invertible [23]. Consequently, we
define the following matrix:

RL = QLQ−1
R , (4)

which represents the ratio of the generalized Bloch wave
functions at z = zN in the �th unit cell to those at z = z1 in the
(� + 1)th unit cell. Note that RL is independent of �. When RL

operates on any subvector at z = z1 in a unit cell, the vector
is transferred into a subvector at z = zN in the left adjoining
unit cell. The self-energy matrix of a leftward semi-infinite
electrode �L is known to be obtained as the matrix product of
the interaction matrix B and the ratio matrix RL [24]:

�L = B†RL. (5)

It is obvious that the self-energy matrix of a rightward
semi-infinite electrode �R can be straightforwardly derived
by collecting the NB rightward propagating/decaying gener-
alized Bloch waves.
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FIG. 2. Schematic representation of a primitive unit cell and a
supercell. The small gray area indicates a primitive unit cell, whereas
the large one shows a supercell. The supercell is composed of m
primitive unit cells repeated along the x direction. M denotes the
number of real-space grids in a primitive unit cell in the x direction.
L(pri)

x and L(ext)
x represent the unit-cell and supercell lengths in the x

direction, respectively.

B. Extending generalized Bloch wave functions

Let us now discuss the case of a semi-infinite electrode in
a supercell structure in the directions parallel to the electrode
surface. For simplicity we consider the case in which a prim-
itive unit cell is repeated for m times only in the x direction
to form a supercell structure, as depicted in Fig. 2. Although
we do not explicitly take into account any k points in the x
direction in Sec. II A, hereafter we explicitly treat discrete k
points in the x direction with respect to a primitive unit cell
defined as

k(pri)
x, j = k(pri)

x,0 + 2π

L(pri)
x

j − 1

m
, (6)

for j = 1, . . . , m, where L(pri)
x represents the length of the

primitive unit cell in the x direction. k(pri)
x,0 denotes an offset

of the set of the k points and is given as

0 � k(pri)
x,0 <

2π

L(pri)
x

. (7)

Since generalized Bloch states are obtained by solving Eq. (1)
for each k(pri)

x, j , the matrices composed of NB generalized Bloch
wave functions are also defined for each j as

Q( j)
L = [

q( j)
1,�,N , . . . , q( j)

NB,�,N

]
, (8)

Q( j)
R = [

q( j)
1,�+1,1, . . . , q( j)

NB,�+1,1

]
. (9)

A column vector q( j)
i,�,k represents the portion of the ith gen-

eralized Bloch wave function at z = zk in the �th primitive
unit cell obtained for the jth k-point k(pri)

x, j . According to the
Bloch’s theorem, a generalized Bloch wave function over a
supercell is obtained by multiplying that of the corresponding

primitive unit cell by the Bloch’s phase factors

aI,J = 1√
m

exp
[
ik(pri)

x,J (I − 1)L(pri)
x

]
, (10)

for I = 1, . . . , m, where 1/
√

m is a normalization factor.
Consequently, the set of leftward propagating and decaying
generalized Bloch wave function vectors of the supercell at
k(ext)

x = k(pri)
x,0 is expressed as

Q̃X =

⎡⎢⎣a1,1Q(1)
X · · · a1,mQ(m)

X
...

. . .
...

am,1Q(1)
X · · · am,mQ(m)

X

⎤⎥⎦, (11)

where X stands for L or R. The matrix Q̃L(R) is obviously m
times as large as Q( j)

L(R) in both the row and column dimen-
sions, i.e., mNB, and is also invertible. In analogy with the dis-
cussion in Sec. II A, we can determine the self-energy matrix
of the leftward semi-infinite supercell-structured electrode �̃L

as

�̃L = B̃†R̃L where R̃L = Q̃LQ̃−1
R . (12)

Here R̃L denotes the ratio matrix of the supercell, and B̃
represents the interaction between the adjoining supercells in
the z direction. It is, however, difficult to calculate the inverse
of Q̃R in a practical computation, because the dimension
of the matrix is generally too large and the computational
cost is O[(mNB)3]. Therefore, computing �̃L according to
the aforementioned recipe is very time consuming and im-
practical. Since solving Eq. (1) for all the generalized Bloch
states deteriorates the accuracy, one may use the recursive
procedure, which calculates R̃L only from propagating and
slowly decaying generalized Bloch states, to avoid accuracy
deterioration [9,18,19]. Nevertheless this procedure requires
us to calculate the inverse of R̃L, which also costs O[(mNB)3].
Therefore, we conclude that extending the generalized Bloch
wave functions is straightforward to calculate �̃L but is ineffi-
cient and impractical.

C. Extending singular vectors

In this subsection we propose an efficient procedure to
calculate the self-energy matrix of a supercell-structured elec-
trode. First, it is assumed that we have already obtained the
ratio matrices for the corresponding primitive unit cell R( j)

L
for j = 1, . . . , m. By using the singular-value decomposition
[25], R( j)

L is expressed as the product of three matrices:

R( j)
L = U( j)

L S( j)
L

[
V( j)

L

]†
, (13)

where S( j)
L is the diagonal matrix composed of the singular

values of R( j)
L , and U( j)

L and V( j)
L are the left and right singular

matrices composed of the left and right singular vectors, re-
spectively. Note that the three matrices are all NB-dimensional
square matrices. One can see that the singular vectors are pe-
riodic in the x direction, because R( j)

L is essentially composed
of the generalized Bloch wave functions of the primitive unit
cell that are periodic in the x direction, as seen from Eq. (4).

In analogy with the discussion in Sec. II B, one can extend
each singular vector of the primitive unit cell over the super-
cell by multiplying the vector by the Bloch’s phase factors
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aI,J for I = 1, . . . , m. Consequently, the left and right singular
vector matrices of the supercell are expressed as

ŨL =

⎡⎢⎣a1,1U(1)
L . . . a1,mU(m)

L
...

. . .
...

am,1U(1)
L . . . am,mU(m)

L

⎤⎥⎦ (14)

and

ṼL =

⎡⎢⎣a1,1V(1)
L . . . a1,mV(m)

L
...

. . .
...

am,1V(1)
L . . . am,mV(m)

L

⎤⎥⎦, (15)

respectively. The singular-value matrix of the supercell is
composed of S( j) for j = 1, . . . , m and is expressed as the
following block-diagonal matrix:

S̃L =

⎡⎢⎣S(1)
L 0 0

0 . . . 0
0 0 S(m)

L

⎤⎥⎦. (16)

Therefore, the ratio matrix of the supercell is given as the
product of three mNB-dimensional square matrices:

R̃L = ŨLS̃L[ṼL]†. (17)

The self-energy matrix of the leftward semi-infinite supercell-
structured electrode is, finally, given as

�̃L = B̃†R̃L. (18)

It should be noted that this procedure to calculate �̃L does not
include inverting any large matrices, and thus, it is obviously
less costly in practical computation.

It is already known that R( j)
L can be accurately calculated

only from propagating and slowly decaying generalized Bloch
states by using a recursive procedure [9,18,19]. Therefore, we
do not need to perform an expensive computation to calcu-
late all generalized Bloch states. In the recursive procedure,
one has to calculate numerically the inverse of a matrix
with the same dimension to R( j)

L . The computational cost for
inverting all R( j)

L for j = 1, . . . , m is only O[mN3
B], while

that for inverting R̃L is O[(mNB)3]. The present method is,
therefore, more efficient in calculating the self-energy matrix
of a semi-infinite electrode in a supercell structure in the di-
rections parallel to the electrode surface. It should be noticed
that the aforementioned procedure for extending the ratio
matrix using singular-value decomposition is also applicable
for extending Green’s function in the directions perpendicular
to the electrode surface because the basis functions composing
Green’s function are also periodic in these directions.

D. Accuracy test

In this section we verify that the procedure proposed in
Sec. II C does not deteriorate the accuracy. For this verification
we employ a Si(001)-1 × 1 bulk system with a tetragonal
primitive unit cell that contains four Si atoms. The dimen-
sions of the primitive unit cell are set to L(pri)

x = L(pri)
y =

3.84 Å (=7.26 aB), and L(pri)
z = 5.43 Å (=10.3 aB) [26]. The

supercell employed here has a dimension in the x direction
that is two times as long as that of the primitive unit cell,

i.e., L(ext)
x = 2L(pri)

x . This corresponds to m = 2 in Fig. 2. The
other dimensions are the same as those of the primitive unit
cell, i.e., L(ext)

y = L(pri)
y and L(ext)

z = L(pri)
z . We evaluate the

accuracy by comparing the self-energy matrix obtained by
Eq. (5) for the extended unit cell and that obtained by Eq. (18).
In this subsection the former is referred to as �ref

L and the
latter is referred to as �̃L. To perform the accuracy verification
without loss of generality for k points, we calculate �ref

L and
�̃L for a nonzero k point in the x direction of the supercell,
i.e., k(ext)

x = 0.2 × 2π/L(ext)
x , which corresponds to k(pri)

x,0 =
0.1 × 2π/L(pri)

x . Using the electronic structure calculation
code RSPACE [18,27], which is an implementation of the real-
space finite-difference formalism, the effective potential of the
primitive unit cell is calculated with 8 × 8 × 6 k points and the
finite-difference order Nf = 4 [20]. The effective potential of
the supercell is obtained by repeating that of the primitive unit
cell in the x direction. The calculations are carried out with the
norm-conserving pseudopotentials proposed by Troullier and
Martins [28,29] and with the local-density approximation [30]
within the framework of the density functional theory [21].

Figures 3(a) and 3(b) show the absolute and relative errors
in �̃L with respect to �ref

L evaluated for each entry of the
matrices as

[absolute error]i j = ∣∣[�̃L]i j − [
�ref

L

]
i j

∣∣ (19)

and

[relative error]i j = [absolute error]i j∣∣[�ref
L

]
i j

∣∣ , (20)

respectively. Here [X]i j denotes the (i, j)th entry of a matrix
X. One can see in Fig. 3(a) that the absolute errors are not
more than 10−10 and the large errors appear mainly in the
submatrix at around the upper-left corner, which operates on
a wave function at the interface between a transition region
and a lead. In Fig. 3(c) the full-width at half-maximum of
the absolute errors is found to be from 10−16 to 10−12,
implying large distribution of the absolute errors. However,
from Figs. 3(b) and 3(d) it turns out that the relative errors are
approximately 10−9 over the whole matrix and the dispersion
is small. We conclude that �̃L obtained for the supercell is
accurately reproduced by the method proposed in Sec. II C.

We also verify that the proposed method is applicable
to extending a Green’s function matrix as well as a ra-
tio matrix, as mentioned in the last of Sec. II C. For this
verification, we extend the tetragonal Si(001) primitive unit
cell into a 2 × 2 supercell, i.e., L(ext)

x = 2L(pri)
x and L(ext)

y =
2L(pri)

y , and adopt k(ext)
x = 0.2 × 2π/L(ext)

x and k(ext)
y = 0.2 ×

2π/L(ext)
y , which correspond to k(pri)

x,0 = 0.1 × 2π/L(pri)
x and

k(pri)
y,0 = 0.1 × 2π/L(pri)

y , respectively. The other calculation
conditions are the same as those used for the verification
of �̃L. Computational error in the Green’s function matrix
obtained by the proposed method G̃L with respect to that
obtained by inverting a truncated Hamiltonian matrix of an
extended system G(ref)

L is evaluated through Eqs. (19) and (20)
with G̃L and G(ref)

L instead of �̃L and �ref
L . Figures 3(e) and

3(f) show the histograms of the absolute and relative errors of
G̃L with respect to G(ref)

L . Both absolute and relative errors are
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FIG. 3. Computational error brought by the proposed method. The computational error in �̃L with respect to �ref
L is shown in (a)–(d), and

that in G̃L with respect to Gref
L in (e) and (f). The contour maps (a) and (b) represent the absolute and relative errors calculated by Eqs. (19) and

(20), respectively. The histograms (c)–(f) are shown as a function of error in logarithmic scale.

small enough, and G̃L is correctly reproduced by the proposed
method. Consequently, we conclude that the proposed method
is available to extend a Green’s function matrix in the x and/or
y directions as well as a self-energy matrix.

Furthermore, we compare the computational time in gen-
erating the self-energy terms for several supercell models
according to Eq. (5) with that in reproducing them using
Eq. (18). The results are summarized in Table I. The com-
putational time for a primitive cell is obtained by aver-
aging the computational times for the primitive cell with
various wave numbers k(pri)

x(y),0. For generating �L, the com-
putational time increases proportional to N3, where N is
the number of the total grid points in the supercell. In
some cases, the computational efficiency exceeds the theo-
retical value (the square of the supercell size) because the
order of the computational time for the recursive iteration

to generate the self-energy terms is slightly larger than N3.
On the other hand, the computational time for reproducing
�̃L is significantly reduced by the proposed method, and
this benefit becomes more remarkable as the supercell size
increases.

In addition, in order to investigate the efficiency of reduc-
tion of computational time by using our method, the ratio of
the computational time required for generating the self-energy
matrices to that for calculating the electron-transport proper-
ties is demonstrated. Here the electron-transport property of
a model in which some Si atoms in the Si (001) bulk are
replaced with N atoms is calculated. The scattering region
consists of 459 Si atoms and 5 N atoms, and the dimensions
of the cell are set to L(ext)

x = L(ext)
y = 15.4 Å (=29.0 aB),

and L(ext)
z = 38.0 Å (=71.8 aB), and the number of grids

is 48 × 48 × 112 with Nf = 4. In large-scale systems it is

TABLE I. Computational time to generate and to reproduce self-energy terms. The computational efficiency is evaluated as [generating
time]/[reproducing time]. The calculations are performed on a single core of Intel®Xeon®CPU Gold 6130. The number of recursive iteration
to generate each ratio matrix is 20 [9]. The finite-difference order Nf is 4.

Primitive model Supercell Computational time (s) Computational

[number of grids] size Generate �L Reproduce �̃L efficiency

Si(001) 1 × 1 15.4 – –
[12 × 12 × 16] 2 × 1 117.7 30.8 3.8
4 Si atoms 2 × 2 1 058.4 68.4 15.5

4 × 4 82 168.1 435.7 188.6
Al(001) 1 × 1 63.1 – –
[16 × 16 × 16] 2 × 1 585.6 134.1 4.1
4 Al atoms 2 × 2 5 119.7 278.9 18.4

4 × 1 5 253.9 284.7 18.5
Al(111) 1 × 1 383.3 – –
[16 × 28 × 40] 2 × 1 3 471.9 828.3 4.2
12 Al atoms 2 × 2 32 610.0 1 701.6 19.2
Zigzag graphene 1 × 1 8701.5 – –
[20 × 60 × 16] 2 × 1 87 316.9 18 514.1 4.7
4 C atoms 4 × 1 677 154.4 38 346.2 17.7
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difficult to perform self-consistent transport property calcu-
lations because the computational cost is proportional to the
cube of the system size. However, non-self-consistent calcu-
lations can also provide transport properties with an adequate
accuracy. The electrode structure is obtained by arranging
primitive cells containing 4 Si atoms, which are the same as
mentioned above, in 4 × 4 in the xy directions, and there are
16 Si atoms at the interface between the scattering and the
electrode regions. The transport property calculation is collec-
tively performed for 24 incident electron energy points, and a
computational CPU time required per energy point (an energy
point of 1.0 eV above the Fermi energy is sampled) is esti-
mated. This calculation is performed on Intel®Xeon®CPU
E5-2680. The computational CPU time for generating the
self-energy matrices using Eq. (5) is 485 661 s (the ratio
to the total CPU time is 27.0%). On the other hand, when
the self-energy matrices are reproduced from the those of 16
primitive cells using Eq. (18), the computational CPU time
can be reduced to 1113 s (the ratio to the total CPU time is
0.1%). The proposed method is more useful for larger systems
as shown in Table I. Moreover, the transmission probabilities
obtained based on the respective formulas coincide with the
accuracy of the relative error of 10−7. Thus, it is confirmed
that electron-transport properties can be estimated efficiently
without deterioration of computational accuracy using our
method.

In order to apply the advantages of the proposed method to
practical calculations, we analyze and compare the electron-
transport properties of chemically modified graphenes with
different geometrical structures in the following section.

III. APPLICATIONS

Recently, graphene-based electronic devices such as field-
effect transistors have attracted significant attention because
of the excellent electrical, mechanical, and optical properties
of the graphene [1,31–33]. Graphene has a zero band gap
at the K and K ′ points in the Brillouin zone, where the
conduction and valence bands touch each other in the charge
neutrality point. For electronic applications, it is important to
open a finite energy gap and to tune the band structure.

The electronic structures of graphene can be drastically
changed by a chemical modification, such as atomic adsorp-
tion on the surface, and can be tuned by the density and
arrangement of adatoms. When a hydrogen or a fluorine atom
is adsorbed on a carbon atom [5,34–39], electron conductivity
is suppressed because the π orbitals extending over the pris-
tine graphene surface are terminated. However, discussions on
the influence of the difference in symmetry of the structure
on the electron-transport properties are still ongoing. In this
section we perform transport simulations of electrons flowing
through the fluorinated graphene to examine the influence of
the structural symmetry on the transport properties.

Figure 4 illustrates the computational models wherein a
partially fluorinated graphene is connected to semi-infinite
pristine graphene electrodes. The adatoms are adsorbed on
both sides of the graphene, and the fluorinated carbon dimers
are arranged along the transport direction (z direction) where
the carbon atom making C-C bonds is converted from a

x
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y

x

z

(a)

x

zy

(b)

top view side view

top view side view

FIG. 4. Schematic views of the unit cells of the (a) CFG model
and the (b) IFG model. The blue dashed lines indicate the cell
boundaries. The gray and green spheres represent the C and F
atoms, respectively. The models with Nd = 3, which is the number
of fluorinated carbon dimers in the x direction, are illustrated (a
fluorinated carbon dimer is surrounded by red dotted lines).

sp2 (a flat plane) to sp3-like (a buckled graphene) configu-
ration [5,12,34,35,38] (the fluorinated carbon dimer is sur-
rounded by red dotted lines in Fig. 4). In the current study we
consider two types of symmetry of the arrangement of the flu-
orinated carbon dimers to examine the influence of the struc-
tural symmetry in the x direction perpendicular to the trans-
port direction on the transport properties. One is the buckled
configuration being commensurate with the neighbor dimers
in the x direction [Fig. 4(a)]. In the other type of models,
the buckled configuration is opposite to the neighbor in the
x direction [Fig. 4(b)]. Here and hereafter we refer to the fluo-
rinated graphene structures in Figs. 4(a) and 4(b) as the com-
mensurate fluorinated graphene (CFG) model and the incom-
mensurate fluorinated graphene (IFG) model, respectively. In
the electron-transport calculations, since the electrodes for the
IFG model are twice as wide as those for the CFG model,
the self-energy matrices for the IFG model can be calculated
from those for the CFG models without significant increase
in computational cost by using the proposed method. We
also explore the influence of the density of adatoms on the
electron-transport properties, where the number of fluorinated
carbon dimers in the z direction Nd varies between two and
four.

We first optimize the atomic and electronic structures of the
models. First-principles calculations using the RSPACE code
[18,27] were performed. For the optimization calculations of
atomic structures, periodic boundary conditions are imposed
in all directions. In the CFG (IFG) model, the side lengths of
the unit cell in the lateral direction parallel to the graphene sur-

face are taken as 4.26(8.52) × 27.1 Å
2

and a repeating sheet
model is separated by 12.7 Å in the y direction perpendicular
to the graphene surface. The number of grid points in the
real space is 24(48) × 72 × 176, the finite-difference order
Nf = 4, and there are 44 (88) C and 2 (4) × Nd F atoms in
the unit cell of the CFG (IFG) model. The Brillouin zone
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FIG. 5. Channel transmission profiles as functions of the incident electron energy measured from the Fermi energy EF for the (a) CFG and
(b) IFG models.

is sampled using a 20(10) × 1 × 1 k-point grid for the CFG
(IFG) model. The exchange-correlation effects are treated
by the local density approximation [30], and the interaction
between the electrons and the atomic cores is described by the
norm-conserving pseudopotentials of Troullier and Martins
[29,40].

We next examine the electron-transport properties of each
fluorinated graphene connected to semi-infinite graphene
electrodes. The scattering wave functions and the transmis-
sion coefficients are computed by using the overbridging
boundary-matching method [18,19] with the proposed proce-
dures. As shown in Fig. 4, the length of the supercell in the x
direction for the IFG model is extended to twice that for the
CFG model, where the generalized Bloch states and the self-
energy matrices in the large electrodes for the extended model
are constructed from those in the small model in accordance
with the proposed method in Sec. II. We first calculate the
electronic structure of the models by using periodic boundary
conditions and then compute the scattering wave functions.
For the CFG (IFG) model, the number of grid points in the
scattering region is 20 (40) × 60 × 176 and Nf is 4. On the
other hand, in the electrode region of the CFG (IFG) model
which contains 4 (8) C atoms, the cell lengths are taken as
4.26(8.52) × 12.7 × 2.46 Å3 and the number of grid points is
20 (40) × 60 × 16. The Brillouin zone is sampled with the 20
(10) k-point mesh for the CFG (IFG) model to evaluate the
Kohn-Sham effective potential under the periodic boundary

condition. The conductance per unit cell under zero temper-
ature and zero bias is described by the Landauer-Büttiker
formula. To obtain a deeper understanding of the transport
properties, the eigenchannels are computed by diagonalizing
the Hermitian matrix T†T [41], where T is the transmission
matrix.

Figure 5 plots the channel transmission of the CFG and
IFG models with Nd = 2, 3, and 4 as a function of the energy
of the incident electrons Ein. For the CFG (IFG) model we
evaluate the transport properties of electrons with kx = 0 and
0.5 (kx = 0) in the unit of 2π/Lx, where kx and Lx are the
Bloch wave number and the cell length in the x direction,
respectively. The generalized Bloch states and the self-energy
matrices with kx = 0 in the semi-infinite graphene electrodes
for the IFG model are comprised of those with kx = 0 and 0.5
for the CFG model using the formalism proposed in Sec. II.
We confirm that the relative errors between the channel trans-
mission probabilities evaluated with the self-energy matrices
generated by using Eq. (5) with that reproduced by using
Eq. (18) are lower than 10−10. In the CFG model, channels A
and B are the profiles for incident electrons with kx = 0. The
profiles of the other channels are obtained from the results for
the incident electrons with kx = 0.5.

In the profiles there are mainly two conduction channels
(i.e., channels A and C) with high transmission peaks in the
energy range between EF + 1.6 eV and EF + 3.0 eV while the
transmission probabilities are almost zero in a wide energy
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FIG. 6. Contour plots of LDOS for the IFG model with (a) Nd =
2 and kx = 0, (b) Nd = 3 and kx = 0, and (c) Nd = 4 and kx = 0.
The energies are measured from the Fermi energy EF. Each contour
represents twice or half the density of the adjacent contours. The

lowest contour is 4.23 × 10−8 electron/eV Å
−1

.

range near the Fermi energy EF. To reveal the influence
of the adatoms on the electron transport, we analyzed the
local density of states (LDOS) of models as shown in Fig. 6
where the LDOS for the IFG model is drawn. The LDOS is
plotted by integrating them along the xy plane, ρ(z, kx, E ) =∫ |�(r, kx, E )|2dr||, where r = (x, y, z), r|| = (x, y), � is the
wave function obtained by the electronic structure calculation,
and E is the energy of the state. No transmission peaks
exist in Fig. 5 despite the presence of the LDOS around the
Fermi level (Fig. 6). In the vicinity of the Fermi level, high
densities of states are observed around the fluorinated region,
but decrease toward the pristine region. This result suggests

that the states localized at the fluorinated region are coupled to
the evanescent wave in the pristine graphene. Therefore, these
localized states do not contribute to the electron transport. On
the other hand, at EF + 1.6 eV or more, the densities of the
states around the fluorinated region extend to the graphene
without attenuation, thus indicating that the states are suc-
cessfully coupled with the propagating wave in the graphene.
These states play important roles in the appearance of the
transmission peaks. The same interpretation can be made for
the CFG model.

Channel A has several peaks in the transmission profile,
and the number of peaks increases with Nd while channel C
has only one peak at approximately EF + 1.8 eV regardless of
the Nd value. We will discuss the IFG model in the following,
for simplicity. In order to explore the relationship between
the number of peaks and Nd, the spatial distributions of the
scattering wave functions with the incident energy at each
transmission peak are revealed in Fig. 7.

It is found that channels A and C are classified according
to the symmetry of the scattering wave function in the x di-
rection. These characteristics should reflect the incident Bloch
states in the electrode region and the electronic structure in the
transition region. Figure 8 shows the energy band structure
and the spatial distributions of the Bloch states constituting
subbands in the graphene electrode. The states of bands A,
C, and D contribute to the incident Bloch states exhibiting
the transmission peaks in the energy range of EF + 1.6 eV to
EF + 3.0 eV [Fig. 8(a)].

The spatial distributions of the wave function �(r, kx, E ) at
the energy level of EF + 1.6 eV to EF + 3.0 eV are represented
in Fig. 9 for the IFG model with Nd = 4. The Bloch state
constituting band A [Fig. 8(b)] has the same symmetry in the
x direction as the states depicted in Figs. 9(a)–9(c). On the
contrary, the symmetry in the x direction of the Bloch state in
band D [Fig. 8(f)] is the same as the symmetry of the state as
shown in Fig. 9(d). Thus, the incident Bloch states smoothly
connect to the states in the transition region. Furthermore,
when the z component of the wave vector determined by the
incident energy matches the wave number of the wave func-
tion allowed in the transition region, the transmission profile
exhibits peaks. The number of the allowed wave number is
proportional to Nd. Similar conclusions are obtained for the
other models.

In the profiles of channel A, there are no significant
differences in the channel transmission profiles between the
CFG and IFG models while the peak positions for the IFG
model are slightly shifted toward a lower energy compared to
those for the CFG model. By contrast, with regard to channel
C, the transmission probability reaches almost unity in the
CFG model, while the peak value remains at approximately
0.9 in the IFG model with a large Nd. The atomic geometry
and the electronic structure of the IFG model have mirror
symmetry with respect to the center in the x direction of
the cell [Fig. 4(c)] although the Bloch states in the graphene
electrode have the translational symmetry in the x direction
(Fig. 8). This discrepancy in the symmetry is considered to
prevent unity of the transmission probability.

As mentioned earlier, the adsorption of fluorine atoms on
the graphene surface effectively inhibits electron transport
near the Fermi level. The number of fluorinated carbon dimers
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FIG. 7. Distribution of the scattering wave function for the IFG model. (a)–(f) and (g)–(i) Depict the scattering wave functions for the
electrons with incident energy that peaks the transmission profile of channels A and C in Fig. 5(b), respectively. Ein refers to the incident
energy measured from EF. The key to the symbols is the same as that in Fig. 4. The value of the yellow (blue) isosurface is 0.03 (−0.03) a.u.
for channel A and 0.005 (−0.005) a.u. for channel C.

aligned in the transport (z) direction Nd is important for
evaluating the electron-transport properties of the presented
models. The symmetry of the atomic geometry in the x
direction affects the peak value of the transmission profile.
In addition, it is expected that the energy interval of the peaks
can be tuned depending on the arrangement of the fluorinated
carbon dimer in the z direction.

IV. CONCLUSION

We proposed herein an improved algorithm for prepar-
ing the self-energy matrices for the first-principles electron-
transport property calculations. In the conventional procedure,
the computational cost of the self-energy matrices increased
proportionally to the cubic of the transversal length of the
electrodes surface because the inverse matrix calculations
were required. By contrast, in the proposed procedure, the
self-energy matrices of the large electrode unit cell where
the primitive unit cell was repeated in the directions parallel

to the electrode surface can be accurately reproduced from
the calculations for the small primitive unit cell. We also
demonstrated the accuracy of the reconstructed self-energy
matrices employing the Si(001) bulk system and verified that
our procedure can reduce the computational costs in con-
structing the self-energy matrices of a large electrode without
deteriorating accuracy.

On the basis of the proposed procedure, we performed
electron-transport calculations of the fluorinated graphene
system and investigated the dependency of the transport
properties on the density and arrangement of adatoms. In
the transport calculation, fluorinated graphene was connected
to semi-infinite graphene electrodes, where the self-energy
matrices of the large graphene electrodes were efficiently
constructed based on the generalized Bloch states of the
small graphene electrodes. The calculations revealed that
fluorination of graphene surface suppresses the transmission
probability near the Fermi level. The results of the density
of states calculations in the transition region showed that the
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FIG. 8. Energy band structure in the infinite graphene and spatial
distributions of the Bloch wave functions. In (a) the energy band
structure is calculated using the unit cell represented by the inset
figure, where blue dashed lines indicate the cell boundaries. Energy
bands C and D are degenerated. In (b)–(e) the Bloch wave functions
of band A at kz = 0, band B at kz = 0, band C at kz = 0.5, and band
D at kz = 0.5 are illustrated, respectively. The value of the yellow
(blue) isosurface is 0.05 (−0.05) a.u. The key to the symbols is the
same as that in Fig. 4.

transmission was significantly impaired because the incident
Bloch states cannot be successfully coupled with the states
of the transition region. On the other hand, two conduction
channels had high transmission peaks in the region of high
incident energy. The differences in the electron-transmission
dependency on the density and arrangement of adatoms be-
tween these channels can be explained from the symmetry
of the electronic structures of the transition regions calcu-
lated under periodic boundary conditions and the generalized
Bloch states of the semi-infinite electrodes. The interpreta-
tion of the electron-transport properties of the fluorinated
graphene utilizing symmetry is expected to be applied to
other systems, such as those containing other adatoms or
substitutional impurities and materials other than graphene as
well.

(a)

(b)

(c)

(d)

FIG. 9. Distributions of wave functions for the IFG model
with Nd = 4 at the energy of (a) E = EF + 1.77 eV, (b) E = EF +
2.08 eV, (c) E = EF + 2.49 eV, and (d) E = EF + 2.29 eV. The key
to the symbols is the same as that in Fig. 4. The value of the yellow
(blue) isosurface is 0.01 (−0.01) a.u.
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APPENDIX A: IMPROVING ACCURACY
OF THE TRANSMISSION COEFFICIENT

In the wave-function matching method, the transmission
coefficients are obtained by decomposing a scattering wave
function into the generalized Bloch wave functions of an elec-
trode. The accuracy of the coefficients is known to deteriorate
if a scattering wave function contains decaying generalized
Bloch wave components, because the generalized Bloch wave
functions are not orthogonal to each other. In this Appendix,
aiming at improving the accuracy of the transmission coeffi-
cients, we propose an effective procedure to calculate them
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FIG. 10. Schematic representation of a system used for the trans-
port calculations. � = 0 indicates the transition region, and � > 0
denotes the electrode unit cell at the right-hand side of the transition
region. N ′ and H′ represent the number of the real-space grids along
the z direction and the truncated Hamiltonian of the transition region,
respectively. H and B are the same as those in Fig. 1.

from a scattering wave function deep inside an electrode,
where the rightward decaying generalized Bloch wave com-
ponents of it vanish and it is expressed as a linear combination
only of the rightward propagating generalized Bloch wave
functions of the electrode. The coefficients for the linear
combination are just the transmission coefficients. Since the
number of rightward propagating/decaying generalized Bloch
states in an electrode is NB [22] as defined in Sec. II, the
number of transmission coefficients is also NB, and then, we
hereafter express the set of the transmission coefficients as a
column vector t = [t1, t2, . . . , tNB ]T.

1. Calculating a transmission coefficient inside an electrode

We show in the following that the transmission coefficients
can be obtained from a scattering wave function at the inter-
face between two electrode unit cells indicated by � = 1 and
2 in Fig. 10, whereas they have been so far evaluated from a
scattering wave function at the interface between the transition
region (� = 0 in Fig. 10) and the adjoining electrode unit cell
(� = 1 in Fig. 10). A scattering wave function in the first
electrode unit cell (� = 1) is known to satisfy the following
Kohn-Sham equation:

(ε − H)

⎡⎢⎢⎢⎢⎢⎣
ψ1,1

...

...

...

ψ1,N

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
−B†ψ0,N

0
...

0
−Bψ2,1

⎤⎥⎥⎥⎥⎦, (A1)

where H denotes the truncated Hamiltonian matrix of an
electrode unit cell, and B represents the interaction between
the adjoining electrode unit cells (see Fig. 10). Note that
the interaction between the transition region and the next
electrode unit cell is assumed to be identical to that between
the adjoining electrode unit cells, and is represented by B.
The subvectors ψ�,1 and ψ�,N represent the portions of the
scattering wave function at z = z1 and z = zN in the �th unit
cell, respectively. By defining the Green’s function matrix as
G = (ε − H)−1, the Kohn-Sham equation above is rewritten

as⎡⎢⎢⎢⎢⎢⎣
ψ1,1

...

...

...

ψ1,N

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
G11 . . . . . . . . . G1N
...

. . .
...

...
. . .

...
...

. . .
...

GN1 . . . . . . . . . GNN

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

−B†ψ0,N
0
...

0
−Bψ2,1

⎤⎥⎥⎥⎥⎦,

(A2)

where G11, G1N , GN1, and GNN are the NB-dimensional
submatrices of G found at the top-left, top-right, bottom-left,
and bottom-right corners, respectively. The last block-row of
the equation above reads

ψ1,N = −GN1B†ψ0,N − GNN Bψ2,1. (A3)

We now expand the scattering wave functions ψ1,N and ψ2,1
with the rightward propagating/decaying generalized Bloch
wave functions of the electrode unit cell as follows:

ψ1,N =
NB∑
i=1

tiqi,1,N , (A4)

ψ2,1 =
NB∑
i=1

tiqi,2,1 =
NB∑
i=1

tiλiqi,1,1. (A5)

λi denotes the phase factor of the ith generalized Bloch state.
Substituting Eqs. (A4) and (A5) for Eq. (A3), we can derive
the following linear equation with respect to t :

[QN + GNN BQ1�]t = −GN1B†ψ0,N , (A6)

where � is the diagonal matrix composed of λi for
i = 1, . . . , NB. Solving the linear equation above, we
can obtain the t that is evaluated from a scattering wave
function at the interface between the unit cells of � = 1 and
� = 2. In general, a scattering wave function is composed
of propagating and decaying generalized Bloch waves.
Among the decaying generalized Bloch wave components,
quickly decaying ones are suppressed when the scattering
wave reaches the interface between the unit cells of � = 1
and � = 2, however, slowly decaying ones still survive.
Therefore, the accuracy of t obtained by solving Eq. (A6) is
improved to some degree, but is not yet enough for a detailed
investigation of the electron-transport properties; this issue
will be discussed later in Appendix A 3. To obtain a more
accurate t , we have to remove the slowly decaying generalized
Bloch wave components from the scattering wave functions.

2. Green function of an elongated electrode unit cell

If we could combine multiple electrode unit cells in the z
direction (see Fig. 10) and obtain the Green’s function matrix
of the large unit cell, we would able to accurately calculate
the transmission coefficient from the scattering wave function
deep inside the electrode. However, it is obviously expensive
and impractical to compute such a large Green’s function ma-
trix. In this subsection we discuss a more efficient procedure
than the direct calculation of the Green’s function matrix.
According to Eq. (A6), one can see that to calculate t we need
only two NB-dimensional square matrices at the bottom-left
and bottom-right corners of the Green’s function matrix of an
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electrode unit cell. Therefore, we introduce a method to obtain
the two NB-dimensional square matrices without calculating
the whole Green’s function matrix of a large electrode unit cell
elongated along the z direction. In the following we exemplify
it with an electrode unit cell that is two times longer than that
shown in Fig. 10. The Hamiltonian of the elongated electrode
unit cell is simply expressed using H and B as

ε − H̃(2) =

⎡⎢⎢⎢⎢⎢⎢⎣

0 . . . 0

ε − H 0 . . .
...

B 0 0
0 0 B†

...
. . . 0 ε − H

0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎦. (A7)

Let us now think of deriving the Green’s function matrix of
the elongated electrode unit cell, i.e, G̃(2) = (ε − H̃(2) )−1.
According to Appendix B, the bottom-right quadrant of G̃(2)

is expressed as

G̃(2)
BR =

⎛⎝ε − H −
⎡⎣B†GNN B 0 0

0 . .
. ...

0 . . . 0

⎤⎦⎞⎠−1

. (A8)

The NB-dimensional submatrix at the bottom-right corner of
G̃(2) is found at the bottom-right corner of the inverse matrix
on the right-hand side of the equation above. The former is
referred to as G̃(2)

NN , and the latter as G̃(2)
BR,NN . According to

Appendix C, G̃(2)
BR,NN can be analytically derived as

G̃(2)
NN = G̃(2)

BR,NN

= GNN + GN1B†GNN B

× [I − G11B†GNN B]−1G1N , (A9)

where I denotes the NB-dimensional identity matrix. In
a similar way, using Eqs. (B1) and (B2), the bottom-left
quadrant of G̃(2) is expressed as

G̃(2)
BL = −G̃(2)

BR

⎡⎣B†GN1 . . . B†GNN

0 . . . 0
0 . . . 0

⎤⎦. (A10)

Since the NB-dimensional submatrix at the bottom-left corner
of G̃(2), which is referred to as G̃(2)

N1, is found at the bottom-left
corner of the matrix on the right-hand side of the equation
above, it is given as

G̃(2)
N1 = G̃(2)

BL,N1 = −G̃(2)
BR,N1B†GN1, (A11)

where G̃(2)
BL,N1 and G̃(2)

BR,N1 represent the NB-dimensional

submatrices at the bottom-left corner of G̃(2)
BL and G̃(2)

BR,
respectively. According to Appendix C, G̃(2)

BR,N1 can be
analytically derived as

G̃(2)
BR,N1 = GN1[I − B†GNN BG11]−1. (A12)

Therefore, we finally obtain

G̃(2)
N1 = −GN1[I − B†GNN BG11]−1B†GN1. (A13)

Using G̃(2)
N1 defined at Eq. (A13) and G̃(2)

NN defined at Eq. (A9),
one can derive the equation describing the relation among the

scattering wave function subvectors ψ2,N , ψ0,N , and ψ3,1 as

ψ2,N = −G̃(2)
N1B†ψ0,N − G̃(2)

NN Bψ3,1. (A14)

In analogy with Eqs. (A4) and (A5), ψ2,N and ψ3,1 are
expressed as the linear combinations of the rightward
propagating/decaying generalized Bloch waves:

ψ2,N =
NB∑
i=1

tiqi,2,N =
NB∑
i=1

tiλiqi,1,N , (A15)

ψ3,1 =
NB∑
i=1

tiqi,3,1 =
NB∑
i=1

tiλ
2
i qi,1,1. (A16)

Substituting Eqs. (A15) and (A16) for Eq. (A14), one finally
obtains the linear equation for t of the scattering wave function
at the interface between the unit cells of � = 2 and � = 3:[

QN� + G̃(2)
NN BQ1�

2]t = −G̃(2)
N1B†ψ0,N . (A17)

Extending the aforementioned discussion to be n > 2, we can
derive the general form of Eq. (A6) as[

QN�n−1 + G̃(n)
NN BQ1�

n
]
t = −G̃(n)

N1B†ψ0,N , (A18)

in which t is evaluated from the scattering wave function at the
interface between the unit cells of � = n and � = n + 1, where
any rightward decaying generalized Bloch wave components
of the scattering wave function must be negligibly small. G̃(n)

N1

and G̃(n)
NN can be straightforwardly obtained by repeating the

procedure mentioned in this subsection. It should be noticed
that the aforementioned discussion about the transmission
coefficients is also applicable for accurately calculating the
reflection coefficients.

3. Accuracy test

To validate the procedure discussed in the previous sec-
tions, we evaluate accuracy of the transmission coefficients
of a simple Al atomic chain containing a single Si atom as
an impurity. The model used for the accuracy evaluation is
depicted in Fig. 11(a). The dimensions of the unit cell in the
direction perpendicular to the chain axis are set to Lx = 16 aB

and Ly = 16 aB for both electrode and transition regions. The
length of the unit cell is Lz = 5.6 aB for the electrode region,
and Lz = NS × 5.6 aB for the transition region. NS denotes the
number of atoms included in the transition region that varied
from three and five in this evaluation. The position impurity
Si atom is fixed at the second from the left. In calculating the
transmission coefficients, the Green’s function submatrices
G̃(n)

NN and G̃(n)
N1 in Eq. (A18) are evaluated for n = NR, and

therefore, the transmission coefficients are obtained from the
scattering wave functions at the interface between the NRth
and (NR + 1)th electrode unit cells. Note that in the case of
NR = 0 the transmission coefficients are evaluated from the
scattering wave function at the interface between the transition
region and the neighboring electrode unit cell. The effective
potential of the electrode unit cell of the chain system is
calculated by the RSPACE code with 1 × 1 × 60 k points.
For the transition region, the effective potential is calculated
with 1 × 1 × 20, 1 × 1 × 15, and 1 × 1 × 12 k points for
NR = 3, 4, and 5, respectively. The calculations are carried
out with norm-conserving pseudopotentials [28,29] and with
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FIG. 11. Computational error in the transmission coefficients. (a) The schematic representation of an atomic chain model used for the
accuracy test. The chain is composed of Al atoms and a single Si atom as an impurity. In the calculation of the transmission coefficients, NR

electrode unit cells are combined, and the Green’s function submatrices are calculated. (b)–(d) The errors in the transmission coefficients for
the first, second, and third transmission channels, respectively. The computational error is evaluated with respect to the transmission coefficient
obtained for NS = 8 and NR = 0. Note that in this context the transmission coefficients are calculated from the scattering wave function at the
interface between the electrode unit cells of � = NR and � = NR + 1, e.g., the scattering wave function at the interface between the transition
region and the first electrode unit cell is used for calculating the transmission coefficients for NR = 0. The dashed horizontal lines are guide
for the eyes.

the local-density approximation [30] within the framework of
the density functional theory.

Figures 11(b)–11(d) show the error in the transmission
coefficient as a function of the number of electrode unit cells
combined for the first, second, and third channels, respec-
tively. The computational error is evaluated by |ti − t ′

i |, where
ti denotes the calculated transmission coefficient of the ith
channel, t ′

i is the reference one. t ′
i is calculated for NS = 8

and without using Eq. (A18), i.e., NR = 0. We have confirmed
that in comparison to the case of NS = 8 and NR = 5, t ′

i
is accurate down to the 11th, 11th, and 9th decimal places
for the first, second, and third channels, respectively. From
Figs. 11(b)–11(d), it is clearly seen that in the case of NS =
3 the transition region is too short to evaluate the error in
the transmission coefficient. This would be attributed to the
effective potential at the right end of the transition region,
which does not yet converge to that of the electrode unit
cell. We need to include more electrode unit cells at the end
of the transition region. In cases of NS = 3 and 4, the error
in the transmission coefficients monotonically decreases as
a function of NR, and reaches the accuracy limit mentioned
above at NR = 5. One can see the fact that the accuracy is
almost the same when NS + NR is identical, e.g., (NS, NR) =
(3, 3), (4,2), (5,1) in Fig. 11(d). This result implies that we
can reduce the length of the transition region to as short as
possible if we use the procedure mentioned in the previous
sections for calculating transmission/reflection coefficients.
Consequently, we can conclude that the procedure proposed in
this section contributes not only an accurate calculation of the

transmission/reflection coefficients but also a less expensive
computation of the scattering wave functions.

APPENDIX B: INVERSE OF A 2 × 2 BLOCK MATRIX

It is already known that the inverse of a 2 × 2 block matrix
is expressed as [42][

A11 A12

A21 A22

]−1

=
[

C−1
1 −A−1

11 A12C−1
2

−C−1
2 A21A−1

11 C−1
2

]
, (B1)

where

C1 = A11 − A12A−1
22 A21,

C2 = A22 − A21A−1
11 A12. (B2)

Note that A11 and A22 must both be invertible.

APPENDIX C: DERIVATION OF EQS. (A9) AND (A13)

Here we show how to derive the analytic form of G̃(2)
NN in

Eq. (A9) and G̃(2)
N1 in Eq. (A13). It is convenient to start with a

more general derivation of the submatrices at the four corners
of an inverse matrix. First, let us think of the inverse of the
following matrix:

A = A0 −

⎡⎢⎣�L 0 0

0 0 0

0 0 �R

⎤⎥⎦. (C1)

075413-13



EGAMI, TSUKAMOTO, AND ONO PHYSICAL REVIEW B 100, 075413 (2019)

The second term on the right-hand side looks like a pertur-
bation to A0 and has nonzero values only at the top-left and
bottom-right corners. We define a square matrix �L (�R) so
that the nonzero entries at the top-left corner (bottom-right
corner) are included in �L (�R). The dimensions of �L and
�R are represented by NL and NR, respectively. By defining
X = A−1, AX = I is rewritten as

A0X = I +

⎡⎢⎣�L 0 0

0 0 0

0 0 �R

⎤⎥⎦X. (C2)

Multiplying both sides of the equation by Y = A−1
0 from the

left, we obtain the following:

X = Y + Y

⎡⎣�L 0 0
0 0 0
0 0 �R

⎤⎦X. (C3)

From the matrix in each side, we extract the NL × NL,
NL × NR, NR × NL, and NR × NR submatrices at the top-left,
top-right, bottom-left, and bottom-right corners, respectively.
Using these submatrices, we can construct the following
(NL + NR)-dimensional matrix equation with respect to the
submatrices of X:

C
[

X11 X1N

XN1 XNN

]
=

[
Y11 Y1N

YN1 YNN

]
, (C4)

where

C =
[

I − Y11�L −Y1N�R

−YN1�L I − YNN�R

]
. (C5)

Finally, the four submatrices of X are given as[
X11 X1N

XN1 XNN

]
= C−1

[
Y11 Y1N

YN1 YNN

]
. (C6)

It is clearly seen that the submatrices of X can be derived
only from the four submatrices at the corners of Y, i.e., we
do not need to know all the entries of matrix Y. The inverse
matrix on the right-hand side of the equation above is in the
form of a 2 × 2 block matrix, and therefore, the discussion in
Appendix B is applicable to the analytical calculation of the
inverse.

Now let us apply the general discussion above to derive
Eqs. (A9) and (A13). Substituting BGNN B for �L, 0 for �R,
Gi j for Yi j (for i, j = 1, N), and G̃(2)

BR,i j for Xi j (for i, j =
1, N), the inverse matrix on the right-hand side of Eq. (C6)
is given as [

I − G11BGNN B 0
−GN1BGNN B I

]−1

. (C7)

Using the formula in Appendix B, one can easily calculate the
inverse of this 2 × 2 block matrix, and obtain the bottom-right
and bottom-left quadrants of G̃(2)

BR, respectively. Consequently,
one can determine G̃(2)

NN in Eq. (A9) and G̃(2)
N1 in Eq. (A13).

[1] A. K. Geim, Science 324, 1530 (2009).
[2] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake,

M. I. Katsnelson, and K. S. Novoselov, Nat. Mater. 6, 652
(2007).

[3] O. Leenaerts, B. Partoens, and F. M. Peeters, Phys. Rev. B 77,
125416 (2008).

[4] K. T. Chan, J. B. Neaton, and M. L. Cohen, Phys. Rev. B 77,
235430 (2008).

[5] N. T. T. Tran, D. K. Nguyen, O. E. Glukhova, and M.-F. Lin,
Sci. Rep. 7, 17858 (2017).

[6] O. V. Yazyev and S. G. Louie, Nat. Mater. 9, 806
(2010).

[7] D. L. Duong, G. H. Han, S. M. Lee, F. Gunes, E. S. Kim, S. T.
Kim, H. Kim, Q. H. Ta, K. P. So, S. J. Yoon, S. J. Chae, Y. W.
Jo, M. H. Park, S. H. Chae, S. C. Lim, J. Y. Choi, and Y. H. Lee,
Nature (London) 490, 235 (2012).

[8] A. Lherbier, S. M.-M. Dubois, X. Declerck, Y.-M. Niquet,
S. Roche, and J.-C. Charlier, Phys. Rev. B 86, 075402
(2012).

[9] S. Tsukamoto, T. Ono, and S. Blügel, Phys. Rev. B 97, 115450
(2018).

[10] A. Lherbier, X. Blase, Y.-M. Niquet, F. Triozan, and S. Roche,
Phys. Rev. Lett. 101, 036808 (2008).

[11] T. Ono, T. Ota, and Y. Egami, Phys. Rev. B 84, 224424 (2011).
[12] R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks,

M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, S. Lizzit, Z.
Sljivancanin, F. Besenbacher, B. Hammer, T. G. Pedersen, H.
Philip, and L. Hornekær, Nat. Mater. 9, 315 (2010).

[13] S. Latil, S. Roche, D. Mayou, and J.-C. Charlier, Phys. Rev.
Lett. 92, 256805 (2004).

[14] T. B. Martins, R. H. Miwa, A. J. R. da Silva, and A. Fazzio,
Phys. Rev. Lett. 98, 196803 (2007).

[15] H. H. B. Sørensen, P. C. Hansen, D. E. Petersen, S. Skelboe,
and K. Stokbro, Phys. Rev. B 77, 155301 (2008).

[16] S. E. Laux, Phys. Rev. B 86, 075103 (2012).
[17] S. Brück, M. Calderara, M. H. Bani-Hashemian, J.

VandeVondele, and M. Luisier, J. Chem. Phys. 147, 074116
(2017).

[18] K. Hirose, T. Ono, Y. Fujimoto, and S. Tsukamoto, First-
Principles Calculations in Real-Space Formalism (Imperial
College Press, London, 2005).

[19] Y. Fujimoto and K. Hirose, Phys. Rev. B 67, 195315 (2003).
[20] J. R. Chelikowsky, N. Troullier, K. Wu, and Y. Saad, Phys. Rev.

B 50, 11355 (1994); J. R. Chelikowsky, N. Troullier, and Y.
Saad, Phys. Rev. Lett. 72, 1240 (1994).

[21] W. Kohn, Rev. Mod. Phys. 71, 1253 (1999); P. Hohenberg and
W. Kohn, Phys. Rev. 136, B864 (1964); W. Kohn and L. J.
Sham, ibid. 140, A1133 (1965).

[22] S. Tsukamoto, K. Hirose, and S. Blügel, Phys. Rev. E 90,
013306 (2014).

[23] This is true only if B is full rank. Even in the case of B being
rank deficient, this is true if a unitary transformation is applied
to Eq. (1) so that the matrix corresponding to B is full rank. For
more details, see Ref. [22].

[24] T. Ono, Y. Egami, and K. Hirose, Phys. Rev. B 86, 195406
(2012).

075413-14

https://doi.org/10.1126/science.1158877
https://doi.org/10.1126/science.1158877
https://doi.org/10.1126/science.1158877
https://doi.org/10.1126/science.1158877
https://doi.org/10.1038/nmat1967
https://doi.org/10.1038/nmat1967
https://doi.org/10.1038/nmat1967
https://doi.org/10.1038/nmat1967
https://doi.org/10.1103/PhysRevB.77.125416
https://doi.org/10.1103/PhysRevB.77.125416
https://doi.org/10.1103/PhysRevB.77.125416
https://doi.org/10.1103/PhysRevB.77.125416
https://doi.org/10.1103/PhysRevB.77.235430
https://doi.org/10.1103/PhysRevB.77.235430
https://doi.org/10.1103/PhysRevB.77.235430
https://doi.org/10.1103/PhysRevB.77.235430
https://doi.org/10.1038/s41598-017-18170-8
https://doi.org/10.1038/s41598-017-18170-8
https://doi.org/10.1038/s41598-017-18170-8
https://doi.org/10.1038/s41598-017-18170-8
https://doi.org/10.1038/nmat2830
https://doi.org/10.1038/nmat2830
https://doi.org/10.1038/nmat2830
https://doi.org/10.1038/nmat2830
https://doi.org/10.1038/nature11562
https://doi.org/10.1038/nature11562
https://doi.org/10.1038/nature11562
https://doi.org/10.1038/nature11562
https://doi.org/10.1103/PhysRevB.86.075402
https://doi.org/10.1103/PhysRevB.86.075402
https://doi.org/10.1103/PhysRevB.86.075402
https://doi.org/10.1103/PhysRevB.86.075402
https://doi.org/10.1103/PhysRevB.97.115450
https://doi.org/10.1103/PhysRevB.97.115450
https://doi.org/10.1103/PhysRevB.97.115450
https://doi.org/10.1103/PhysRevB.97.115450
https://doi.org/10.1103/PhysRevLett.101.036808
https://doi.org/10.1103/PhysRevLett.101.036808
https://doi.org/10.1103/PhysRevLett.101.036808
https://doi.org/10.1103/PhysRevLett.101.036808
https://doi.org/10.1103/PhysRevB.84.224424
https://doi.org/10.1103/PhysRevB.84.224424
https://doi.org/10.1103/PhysRevB.84.224424
https://doi.org/10.1103/PhysRevB.84.224424
https://doi.org/10.1038/nmat2710
https://doi.org/10.1038/nmat2710
https://doi.org/10.1038/nmat2710
https://doi.org/10.1038/nmat2710
https://doi.org/10.1103/PhysRevLett.92.256805
https://doi.org/10.1103/PhysRevLett.92.256805
https://doi.org/10.1103/PhysRevLett.92.256805
https://doi.org/10.1103/PhysRevLett.92.256805
https://doi.org/10.1103/PhysRevLett.98.196803
https://doi.org/10.1103/PhysRevLett.98.196803
https://doi.org/10.1103/PhysRevLett.98.196803
https://doi.org/10.1103/PhysRevLett.98.196803
https://doi.org/10.1103/PhysRevB.77.155301
https://doi.org/10.1103/PhysRevB.77.155301
https://doi.org/10.1103/PhysRevB.77.155301
https://doi.org/10.1103/PhysRevB.77.155301
https://doi.org/10.1103/PhysRevB.86.075103
https://doi.org/10.1103/PhysRevB.86.075103
https://doi.org/10.1103/PhysRevB.86.075103
https://doi.org/10.1103/PhysRevB.86.075103
https://doi.org/10.1063/1.4998421
https://doi.org/10.1063/1.4998421
https://doi.org/10.1063/1.4998421
https://doi.org/10.1063/1.4998421
https://doi.org/10.1103/PhysRevB.67.195315
https://doi.org/10.1103/PhysRevB.67.195315
https://doi.org/10.1103/PhysRevB.67.195315
https://doi.org/10.1103/PhysRevB.67.195315
https://doi.org/10.1103/PhysRevB.50.11355
https://doi.org/10.1103/PhysRevB.50.11355
https://doi.org/10.1103/PhysRevB.50.11355
https://doi.org/10.1103/PhysRevB.50.11355
https://doi.org/10.1103/PhysRevLett.72.1240
https://doi.org/10.1103/PhysRevLett.72.1240
https://doi.org/10.1103/PhysRevLett.72.1240
https://doi.org/10.1103/PhysRevLett.72.1240
https://doi.org/10.1103/RevModPhys.71.1253
https://doi.org/10.1103/RevModPhys.71.1253
https://doi.org/10.1103/RevModPhys.71.1253
https://doi.org/10.1103/RevModPhys.71.1253
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRevE.90.013306
https://doi.org/10.1103/PhysRevE.90.013306
https://doi.org/10.1103/PhysRevE.90.013306
https://doi.org/10.1103/PhysRevE.90.013306
https://doi.org/10.1103/PhysRevB.86.195406
https://doi.org/10.1103/PhysRevB.86.195406
https://doi.org/10.1103/PhysRevB.86.195406
https://doi.org/10.1103/PhysRevB.86.195406


EFFICIENT CALCULATION OF SELF-ENERGY MATRICES … PHYSICAL REVIEW B 100, 075413 (2019)

[25] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery, Numerical Recipes: The Art of Scientific Computing,
3rd ed. (Cambridge University Press, New York, 2007); A. K.
Cline and I. S. Dhillon, in Handbook of Linear Algebra, Dis-
crete Mathematics and Its Applications, edited by L. Hogben
(Chapman and Hall/CRC, Boca Raton, FL, 2006), Chap. 45,
pp. 45.1–45.13; G. Golub and C. Reinsch, Numer. Math. 14,
403 (1970).

[26] aB represents the unit of length in the atomic units, and 1aB =
0.529 Å.

[27] T. Ono and K. Hirose, Phys. Rev. B 72, 085115 (2005).
[28] K. Kobayashi, Comput. Mater. Sci. 14, 72 (1999).
[29] N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991);

L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425
(1982).

[30] S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200
(1980).

[31] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y.
Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov,
Science 306, 666 (2004).

[32] K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G.
Schwab, and K. Kim, Nature (London) 490, 192 (2012).

[33] A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183
(2007).

[34] M. H. F. Sluiter and Y. Kawazoe, Phys. Rev. B 68, 085410
(2003).

[35] J. O. Sofo, A. S. Chaudhari, and G. D. Barber, Phys. Rev. B 75,
153401 (2007).

[36] V. V. Ivanovskaya, A. Zobelli, D. Teillet-Billy, N. Rougeau,
V. Sidis, and P. R. Briddon, Eur. Phys. J. B 76, 481
(2010).

[37] R. R. Nair, W. Ren, R. Jalil, I. Riaz, V. G. Kravets, L. Britnell,
P. Blake, F. Schedin, A. S. Mayorov, S. Yuan, M. I. Katsnelson,
H.-M. Cheng, W. Strupinski, L. G. Bulusheva, A. V. Okotrub,
I. V. Grigorieva, A. N. Grigorenko, K. S. Novoselov, and A. K.
Geim, Small 6, 2877 (2010).
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