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Simulation of the coupling strength of capacitively coupled singlet-triplet qubits

Donovan Buterakos, Robert E. Throckmorton, and S. Das Sarma
Department of Physics, Condensed Matter Theory Center, Joint Quantum Institute, University of Maryland,

College Park, Maryland 20742-4111, USA

(Received 26 September 2018; revised manuscript received 22 July 2019; published 6 August 2019)

We consider a system of two purely capacitively coupled singlet-triplet qubits and numerically simulate the
energy structure of four electrons in two double quantum dots with a large potential barrier between them. We
calculate the interqubit coupling strength using an extended Hund-Mulliken approach which includes excited
orbitals in addition to the lowest-energy orbital for each quantum dot. We show the coupling strength as a
function of the qubit separation as well as plotting it against the detunings of the two double quantum dots and
show that the general qualitative features of our results can be captured by a potential-independent toy model of
the system.
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I. INTRODUCTION

Semiconductor-based spin qubits are an attractive platform
for quantum computing due to their long coherence times,
fast gates, and potential for scalability. Such qubits consist
of one or more electrons trapped in quantum dots established
near the surface of a semiconductor. Although such qubits
have lower fidelities than competing platforms, such as ion
trap and superconducting qubits, much experimental progress
has been made in recent years in improving the fidelity in
semiconductor-based spin qubits (see, e.g., Ref. [1]). Several
semiconductor-based qubit architectures have been proposed
and studied both theoretically and experimentally, including
the single-spin qubit [2–9], the singlet-triplet two-spin qubit
[10–19], the exchange-only three-spin qubit [20–24], and the
hybrid qubit, consisting of three electrons in two quantum dots
[25–27]. We will be focusing on the singlet-triplet qubit in this
paper.

A singlet-triplet qubit consists of two electrons confined to
a double quantum dot but free to tunnel between the two dots.
Tunneling between the two dots creates an energy splitting
J between the singlet and triplet states, which is controlled
by adjusting the detuning ε, defined to be the potential-
energy difference between the two dots. In order to build a
working quantum computer, we must first have a means to
couple qubits so that multiqubit gates can be performed. For
singlet-triplet qubits, there are two such methods—capacitive
coupling and exchange coupling. Capacitive coupling uses the
fact that the singlet and triplet states have different electric
dipole moments to realize a state-dependent coupling between
two qubits, whereas exchange coupling simply uses an ex-
change interaction between one electron in one qubit and
a neighboring electron in another qubit to couple the two.
Although exchange coupling has the advantage of allowing
the interqubit coupling to be tuned independently of the
intraqubit exchange interactions, it has the disadvantage of en-
abling leakage of the qubits out of the computational singlet-
triplet space. Capacitive coupling, on the other hand, does not
present the leakage problem, but the interqubit coupling is

dependent on the intraqubit exchange couplings. Our paper
will be dedicated to calculating the capacitive coupling within
a simplified model of a pair of singlet-triplet qubits.

A number of previous works have considered microscopic
models of one- and two-qubit systems of various types. For
example, Refs. [28,29] employed tight-binding models with
the former concerning itself with determining the capacitive
coupling within such a model. Others have used harmonic
potentials [30–34]. Although Ref. [33] concerned itself with
determining the coupling between two singlet-triplet qubits,
the relationship between the capacitive coupling and the in-
traqubit exchange couplings has not been explored as we will
do in this paper. It has often been assumed in both theoretical
[35] and experimental [1,15] works that the capacitive cou-
pling J12 ∝ J1J2, where J1 and J2 are the intraqubit exchange
couplings. As this is just an empirical relation used in the
experimental works and can only be justified theoretically
within a very crude approximation [35], the assumptions of
which are strongly violated in real experimental systems (i.e.,
the qubits are assumed to be very far apart in the argument,
whereas the interqubit distance is comparable to the distance
between dots within a qubit in real systems), this relation
deserves further investigation.

The major features of a singlet-triplet qubit can be de-
scribed by a Hund-Mulliken molecular orbit model [36]. For
zero detuning, the ground state is symmetric between the two
dots with one electron in each, which we will call the (1,1)
configuration, and the triplet state, which is spatially anti-
symmetric, carries only slightly more energy. As the detuning
increases, the singlet state lowers its energy by mixing with
the (0,2) configuration, the state with both electrons in the
lower-energy dot. However, the triplet state is confined to the
(1,1) configuration due to the Pauli exclusion principle, and
thus, the exchange splitting can be increased by increasing the
detuning. At a certain point, the energy difference between
the two dots exceeds the energy cost due to the Coulomb
repulsion, and it becomes energetically favorable for both
electrons to occupy a single dot if allowed by the spin state. At
this point, the singlet and triplet wave functions are relatively
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FIG. 1. Schematic of the coupled double quantum dot qubit setup
considered here, showing the intraqubit exchange couplings J1 and J2

and the interqubit coupling J12.

static with respect to changes in ε, and J simply grows linearly
with ε.

We consider a system of two singlet-triplet qubits with
an infinite potential barrier between them so that the qubits
interact only via the electron-electron Coulomb interaction.
Because the singlet state is partially in the (0,2) configuration,
it has a dipole moment, whereas the dipole moment of the
triplet state, which must stay in the (1,1) configuration, is
essentially zero. Thus, for a system of two qubits, there exists
a state-dependent dipole-dipole energy shift J12 proportional
(at least, in the classical limit) to the strength of the two
dipole moments. We illustrate the basic setup that we will be
considering, showing what all of the couplings represent in
Fig. 1.

We numerically simulate a system of two capacitively
coupled qubits in square-well quantum dot potentials. We
extend the Hund-Mulliken model by considering the ground
state and first excited states in each direction for each quantum
dot and construct the Hamiltonian by numerically evaluating
two-body Coulomb integrals between each pair of states. We
then numerically diagonalize the Hamiltonian, extracting the
intraqubit exchange interaction strengths J1 and J2 and the
interqubit coupling strength J12 as functions of the detunings
ε1 and ε2. We also find how J12 varies as a function of qubit
separation distance for fixed values of detuning. We gauge
the precision of our results by calculating J for a single
qubit using up to four states in each dimension per dot and
comparing how the results change with an increasing number
of basis states.

We then show that the general qualitative features of the
results we obtain can be modeled using a simplified potential-
independent Hund-Mulliken model, which depends only on
the tunneling strength between the dots t , the detunings ε1 and
ε2, and the classical dipole-dipole interaction energy D which
can be positive or negative depending on the qubit geometry
and directions of bias for each qubit. We then analytically
calculate J12 and show that this closely matches the numerical
results we obtain. Interestingly, we find that J12 can only be
approximated by the product of the dipole moments of two
noninteracting qubits for very small detunings, when both
qubits are in the (1,1) configuration. As the qubits are detuned
away from this regime, the behavior of J12 becomes more
complicated. This model captures the qualitative features of
the system and is very general in that the only dependence on
a specific potential or geometry is in the parameters t and D.

The rest of this paper is organized as follows. In Sec. II,
we describe our numerical methods and provide our model
Hamiltonian. In Sec. III, we present our numerical results,
and, in Sec. IV, we derive the form of J12 from the general
simplified Hund-Mulliken model for a two-qubit system. Fi-
nally, we give our conclusions in Sec. V.

II. NUMERICAL METHODS

A common method of modeling interactions between sev-
eral quantum dots or other atomlike structures is a Hund-
Mulliken approach, which has been used to model the dy-
namics of a single singlet-triplet qubit [34]. This approach in-
volves constructing eigenstates of the interacting Hamiltonian
from linear combinations of the n lowest-energy noninteract-
ing orbitals of each quantum dot.

We begin by presenting our model Hamiltonian. The exact
form of the Hamiltonian describing the systems studied in
quantum dot experiments has not been derived from any
microscopic model and, in fact, may vary between different
experimental implementations. Therefore, our focus will still
be on qualitative features and self-consistency rather than ex-
act quantitative results and absolute accuracy. We first present
our model for a single qubit as the two-qubit model is easily
generalized from it. We use a two-dimensional model, which
we define to lie on the xz plane as the width of the dots
in the y direction is much smaller than the radius on the xz
plane. We take the x axis to run parallel to the line connecting
the two quantum dots. For simplicity, we restrict any applied
magnetic-field �B to lie on the xz plane; this allows us to
choose the gauge in which the magnetic vector potential �A =
(xBz − zBx )ŷ so that the orbital effects of the magnetic field
in the Hamiltonian are confined to the y direction, allowing
these orbital effects to be ignored for the purposes of our
calculations. We will also be working entirely within the
subspace in which the electrons within a given qubit are in
a singlet |S〉 = 1√

2
(|↑↓〉 − |↓↑〉) or triplet |T 〉 = 1√

2
(|↑↓〉 +

|↓↑〉) state, and thus there will be no magnetic-field effects
from spin either. We, therefore, adopt the model,

H =
∑

i

[
p2

i

2m
+ V (�xi )

]
+ e2

κ|�x1 − �x2| , (1)
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where V (�xi ) is the single-particle potential defining the double
quantum dot system. We take κ ≈ 292 for the purpose of
making the Coulomb interaction a small perturbation; again,
we are not interested in absolute accuracy, only in basic qual-
itative features, and in making our calculations as tractable as
possible. For reasons that we will explain shortly, we choose
the following form for V (�xi ):

V (�xi ) = Vsq( �xi ) − Vcorr ( �xi ), (2)

where the square-well potential Vsq( �xi ) is

Vsq(�x)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε/2, if |z| < a and −b − a < x < −b + a,

U, if |z| < a and −b + a < x < b − a,

−ε/2, if |z| < a and b − a < x < b + a,

∞, otherwise,
(3)

and the “correction” potential is

Vcorr (�x) =
⎧⎨
⎩

∫
e2

κ|�x−�x′|ψ
2
R(�x′)d2�x′ if x < 0,∫

e2

κ|�x−�x′|ψ
2
L (�x′)d2�x′ if x > 0.

(4)

The wave functions ψL/R(�x) are constructed by forming linear
combinations of the lowest two eigenstates of Vsq such that
ψL/R(�x) = 0 at the midpoint of the potential barrier. The
combination with most of its “weight” in the left dot is ψL(�x),
and that with most of its weight in the right dot is ψR(�x). These
are essentially the ground states of the potentials obtained
by placing an infinite wall at the midpoint of the double
quantum dot system. This correction potential is similar to a
mean-field potential, such as in Ref. [30] and, in fact, becomes
identical to it in the limit of an infinitely high barrier. Since
the integrals defining this potential can be difficult to evaluate,
we numerically calculate the first several terms in a multipole
expansion for the given charge distribution. Here, ε is the
detuning, U is the barrier height, a is the dot radius, and b is
half the separation between dots. We provide a plot of Vsq(�x)
along the x axis for |z| < a in Fig. 2.

As the Schrödinger equation for a multielectron wave func-
tion cannot be exactly solved, a common method of modeling
such systems involves choosing a finite basis |�i〉, calculating
the projection of the Hamiltonian onto this basis,

H� =
∑

i j

|�i〉 〈�i|H |� j〉 〈� j | , (5)

and numerically diagonalizing H� . As the size of the basis
|�i〉 grows, H� approaches the exact Hamiltonian H , and
thus, its eigenvalues converge to the exact energies. The
standard Hund-Mulliken model corresponds to choosing |�i〉
to be the set of antisymmetrized two-electron products of
single-electron states |ψi〉, where |ψi〉 includes the ground
states of the two quantum dots tensored with the up and down
spin states under the restriction that Sz |�i〉 = 0 (i.e., restricted
to the singlet-triplet computational space). We extend this
model by allowing |ψi〉 to include the ground-state orbital
and first few excited orbitals of each quantum dot. In order to
help this method converge quickly, we attempt to maximize
the overlap of the basis states with the true wave function

2a

−b 0 b
x

− /2
0

/2

U

Vsq

FIG. 2. The effective square-well potential for a double quantum
dot defined by Eq. (3) in the x direction with detuning ε, barrier
height U , dot width 2a, and dot spacing 2b. The z direction (not
shown) forms a standard infinite square well with width 2a.

by accounting for the mean-field effects of other electrons
in our choice of basis. Rather than choosing the basis to be
eigenstates of the bare potential V , we use eigenstates of the
effective potential formed by adding to the bare potential the
mean-field correction Vcorr defined in Eq. (4). We define this
effective potential to be Vsq, and thus, the bare potential is
formed by subtracting the mean-field correction from Vsq as in
Eq. (2). In effect, we are assuming that the gates defining the
quantum dots are tuned in such a way as to produce a potential
that, when the mean-field experienced by one electron due to
the other is added to it, will produce a semi-infinite square
well on each side of the double quantum dot system.

Two choices for the potential are commonly used in the-
oretical work—a polynomial that forms an (approximate)
harmonic potential at each of the two dots, and the square-well
potential that we use in this paper. We choose the square-
well potential for two reasons. First, screening due to the
metal gates causes the potential inside the dot to become
nearly flat, and thus, the square-well potential is physically
closer to the true potential. One downside of this choice is
that, in order to keep the potential separable in the x and z
directions (for ease of computation), we must use the square
dots produced by the potential in Eq. (3) rather than circular
dots; however, this should only have a relatively small effect
on the exchange coupling. Second, the exchange coupling
depends very heavily on the tunneling coefficient between the
two dots, and thus, it is essential for the single-particle states
to accurately match the potential both inside and between
the two quantum dots. Eigenstates for electrons in potentials
given by high-order polynomials cannot be found exactly,
and, although using Gaussian wave functions will accurately
represent the wave function inside the quantum dots, they do
not accurately approximate the magnitude between the two
dots, and thus, we require a large number of such basis states
to obtain accurate results for the exchange energy. In contrast,
the eigenstates for a square-well potential are trivial to calcu-
late, and thus, the tunneling behavior of the wave function can
be encoded in the basis states themselves. Simulations for the
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harmonic potential have also been performed for one [30,32]
and two [28,33] qubits, but we find a square well to be more
convenient for this context.

To model a system of two capacitively coupled qubits, we
simply take two copies of the single qubit Hamiltonian given
by Eq. (1) and add interqubit Coulomb interaction terms as
follows:

HI + HII +
∑
i∈I

∑
j∈II

e2

κ|�xi − �x j | . (6)

We assume that the two qubits are a distance 2c apart, mea-
sured between the midpoints of their closest dots. In this case,
Vcorr is modified to take into account the electrons in the other
qubit as well. It should be understood that the square-well
parts of the potentials are finite within each qubit, and infinite
elsewhere, so that there is no tunneling between the qubits.
As a result, the qubits are coupled purely capacitively—there
is no exchange coupling between them.

III. NUMERICAL RESULTS

Matrix elements of the Hamiltonian in the basis of the
tensor products of single-electron eigenstates of Vsq are cal-
culated via numerical integration with the two-body Coulomb
integrals being performed in Fourier space in order to reduce
the dimensionality of the integrals. We choose a cutoff n, cor-
responding to the maximum number of orbitals we consider
for each dot in each direction (n = 1 corresponds to using only
the ground-state square-well orbitals of each dot, n = 2 allows
orbitals with one excitation in either the x or the z direction,
and so on). We give energies in terms of the ground-state
energy of a single square well in one dimension of radius a,
which we will denote E0 = π2

2m(2a)2 . For our simulation, we use
the relative dot sizes a/b = 0.58 and c = b resulting in all
four dots being evenly spaced, matching the architecture in
Ref. [37]. We adjust the barrier height U so that it is larger
than the highest-energy state in the basis |ψi〉 in order that no
oscillatory behavior is present between the dots as this would
require many additional states to cancel out.

We diagonalize H� for a single qubit for cutoffs of n =
1–4 and extract the value of the exchange coupling J by
subtracting the energy of the lowest-lying triplet state from
that of the lowest-lying singlet state. We plot this exchange
coupling as a function of the detuning ε for several values of
n in Fig. 3. We see that this method converges very quickly;
the qualitative features remain the same even for a small basis
size. We note that J increases relatively slowly as a function
of ε except near the critical value around ε ≈ 0.5 which is
the value for which we observe a transition between the (1,1)
state and the (0,2) state. We see that this transition point shifts
only slightly when extending the basis size, illustrating that
our numerical methods, converge quickly as a function of the
basis size.

We now consider the case of two capacitively coupled
singlet-triplet qubits. We again construct the full four-electron
basis states from the single-electron eigenstates under the as-
sumption that there are two electrons in each qubit, restricting
ourselves to those states for which the total z component of
the electrons’ spins Sz = 0 and in which each qubit is in

0.4 0.5 0.6

10−3

10−6

10−9

J

n = 1
n = 2
n = 3
n = 4

FIG. 3. Plot of the exchange coupling J for U = 17.4E0 as a
function of the detuning ε for a single qubit. For increasing values
of n, the shape of the plot remains similar with only the position of
the transition point shifting left or right slightly.

the singlet-triplet computational subspace (i.e., the spin state
of the electrons is not, say, |↑↑↓↓〉). We then extract the
values of the exchange couplings J1 and J2 and the capacitive
coupling J12 by identifying the lowest-energy states with the
spin configurations |SS〉 , |ST 〉 , |T S〉, and |T T 〉, and fitting
the resulting diagonalized effective Hamiltonian to the form

H = 1
2 J1Z1 + 1

2 J2Z2 + 1
4 J12(Z1 − 1)(Z2 − 1) + K, (7)

where Zi is the logical Pauli Z matrix acting on qubit i and K
is an (unimportant) constant. We do this twice, once for the
case where the detunings ε1 and ε2 are in the same direction
(making the dipole moments parallel, and thus giving a neg-
ative interaction energy) and once for the case in which the
detunings are in opposite directions (thus, giving a positive
interaction energy). We provide plots of our numerical results
for U = 17.4E0 as a function of the detunings ε1 and ε2 in
Fig. 4. Finally, we fix the detunings and adjust the distance
between qubits 2c in order to show how J12 depends on
qubit separation. We find that for long distances, J12 falls
off as would a classical dipole-dipole interaction (see Fig. 5).
However, as c becomes smaller, J12 plateaus rather than rising
indefinitely.

IV. DISCUSSION

We find that a four-dot potential-independent Hund-
Mulliken model can accurately describe the behavior of the
results we obtain. For each qubit, we use the standard Hund-
Mulliken model of two detuned quantum dots considering
only the lowest-energy orbital of each dot. The potential can
be characterized by only two parameters: The detuning ε,
defined to be the energy difference between the lowest-energy
orbitals of the two dots; and the tunneling coefficient t , given
by the term in the Hamiltonian which mixes the two states.
Considering two electrons bound to these two states by the
Pauli exclusion principle, the triplet state can only consist of
one electron in each dot. The singlet state can occupy one
of three electron configurations: (0,2), (1,1), and (2,0). Since
the detuning will always favor one dot, we neglect the singlet
state with both electrons in the higher-energy dot [for exam-
ple, the (2,0) state]. The Hamiltonian for the singlet state is
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FIG. 4. Plots of J12 (top row) and the ratio J12/(J1J2) (bottom row) for negative dipole-dipole interaction energy D < 0 (left column) and
positive dipole-dipole interaction energy D > 0 (right column) as functions of ε1 and ε2. For these plots, U = 10E0. Taken together, these show
that, for the model that we are considering, the relationship J12 ∝ J1J2 holds only approximately. (a) Plot of the capacitive coupling J12 as a
function of the detunings ε1 and ε2 for D < 0. (b) Plot of the capacitive coupling J12 as a function of the detunings ε1 and ε2 for D > 0. (c) Plot
of the ratio J12/(J1J2) for D < 0. (d) Plot of the ratio J12/(J1J2) for D > 0.

then given by

HS =
(

0 t
t −ε′

)
, (8)

in the (S11, S02) basis, where ε′ = ε − C is the energy differ-
ence between the S11 and the S02 states, which depends on
the difference in Coulomb repulsion energy C and the bare
detuning ε. With this definition, the energy of the triplet state
is 0, and thus, the exchange splitting J is simply the absolute

1.0 1.5 2.0 2.5 3.0
c/b

0.002
0.004
0.006
0.008
0.010
J12/ 0

FIG. 5. Plot of J12 versus half-distance between qubits c for
ε1 = ε2 = 0.51E0.

value of the singlet ground-state energy,

ES = −J = −ε′

2
−

√(
ε′

2

)2

+ t2. (9)

To find J12, we consider two copies of this single-qubit
system and add a dipole-dipole interaction term. Since we are
concerned with the capacitive coupling strength, we will as-
sume that the two qubits are separated by an infinite potential
barrier so that there is no tunneling between the two qubits
and, hence, no interqubit exchange coupling. This means that
the qubits act as if they were isolated except that the total
energy is changed when both qubits possess a dipole moment.
Since the dipole moment of the triplet state is zero, the
|ST 〉 , |T S〉, and |T T 〉 states are all unaffected and are treated
as above. The |SS〉 state can be modeled by taking two copies
of the single-qubit Hamiltonian HS and adding a constant
dipole-dipole interaction energy D to the |S02S02〉 state as
performed in Ref. [29], yielding the following Hamiltonian:

HSS = HS (ε1) ⊗ 1 + 1 ⊗ HS (ε2) + D

4
(σz − 1) ⊗ (σz − 1)

=

⎛
⎜⎝

0 t t 0
t −ε′

2 0 t
t 0 −ε′

1 t
0 t t −ε′

1 − ε′
2 + D

⎞
⎟⎠. (10)
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For a system of two coupled singlet-triplet qubits J1, J2,
and J12 are defined such that the Hamiltonian in the logical
subspace, that is, the space spanned by the lowest-energy
states of each spin configuration (T T, T S, ST, SS) as given by
Eq. (7). Using this definition, the values of J1 and J2 remain
the same as given in Eq. (9), and the capacitive coupling
strength is given by

J12 = ESS + J1 + J2, (11)

where ESS is the lowest-energy eigenvalue of HSS defined
above. It is possible to represent ESS completely algebraically
as the zero of the fourth degree characteristic polynomial of
HSS , but the resulting expression is unwieldy, so we extract
the general behavior of the system by looking at several limits.
First, we look at the behavior of ESS in the limit where t → 0.
In this case, ESS is given by

ESS = min(0,−ε′
2,−ε′

1,−ε′
1 − ε′

2 + D). (12)

This divides the ε1ε2 plane into four regions, distinguished
by which of the four eigenvalues is smallest in each region as
shown in Fig. 6. On scales much larger than t , the transitions
between regions appear to be sharp corners, which then be-
come smooth avoided crossings on scales comparable to t . As
shown, the shape of the regions varies depending on whether
D is greater than or less than zero, and the behavior of the
system is significantly different in these two cases. When D
is negative, there is an extra incentive for both qubits to be in
the (0,2) configuration, and so the region characterized by the
S02S02 configuration (the top-right region of Fig. 6) becomes
larger, which is seen in our results in Fig. 4(a). Notably, this
means that if one qubit (for example, qubit 2) is in or near
the (0,2) configuration, the other qubit transitions at a lower
detuning than normal since the dipole-dipole attraction energy
helps to offset the intraqubit Coulomb repulsion energy. Thus,
in this region (near the top of Fig. 6), J12 and J1 transition
at different points with |J12| becoming large whereas J1 is
still nearly zero. Conversely, when D is positive, an additional
energy cost must be paid to force both qubits into the (0,2)
configuration simultaneously, meaning the transition for ESS

requires a larger detuning. However, J1 and J2 are unaffected
by D and still transition at ε′

1 or ε′
2 = 0, respectively, and thus,

for 0 > ε′
i > D, J12 is dominated by the J1 + J2 terms.

We can perform an expansion of the exact eigenvalues of
Eq. (10). In the limit where J2 � t , which corresponds to
−ε′

2 � t, |D|, we find the following form for J12:

J12 = DJ2
1 J2

2

t2
(
J2

1 + t2
) + O

[
J3

2

]
. (13)

Thus, we see that, for small J1 or J2, the coupling strength
acts like the product of the dipole moments of two isolated
qubits. When J2 � t , which corresponds to ε′

2 � t, |D|, we
find

J12 = D

2
+

√(
ε′

1

2

)2

+ t2 −
√(

ε′
1 − D

2

)2

+ t2. (14)

For D < 0, J12 transitions from near-zero behavior to lin-
ear growth in ε′

1 at the point ε′
1 = D, then transitions from

linear growth to a constant D at ε′
1 = 0. The case where D > 0

is similar except that the initial transition from near-zero to

1'

2'

ESS=0

ESS=− 1'

ESS=− 2'
ESS=

− 1'− 2'+D

0D

D

D 1'

D

2'

ESS=0 ESS=− 1'

ESS=− 2'
ESS=

− 1'− 2'+D

0

FIG. 6. A diagram showing ESS as a function of ε ′
1 and ε ′

2 for t =
0, which is given by Eq. (12) for D < 0 (top) and D > 0 (bottom).

linear behavior occurs at ε′
1 = 0, and the transition from linear

behavior to a constant happens at ε′
1 = D. Interestingly, since

the transition between the (1,1) and the (0,2) configurations
happens at the second transition point when D > 0, the cou-
pling strength J12 reaches close to its maximum value whereas
qubit 1 is still almost entirely in the (1,1) configuration. In
comparison, for D < 0, |J12| only begins to grow quickly
after both qubits have transitioned to the (0,2) configuration.

This model explains the behavior of the coupling strength
J12 as a function of distance between qubits. The dipole-dipole
interaction energy D decreases with increasing distance. We
plot a region where ε′

1, ε
′
2, D > 0, and so, for large D, J12

simply falls off with increasing distance as well. However,
when D is made large enough, the values of detunings chosen
transition from the region characterized by ESS ≈ −ε′

1 − ε′
2 +

D to the regions −ε′
1 and −ε′

2. Since the energy of these
regions does not depend on D to lowest order, J12 should be
constant for large D.
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V. CONCLUSION

We simulated a system of two capacitively coupled singlet-
triplet qubits and numerically calculated the coupling strength
J12 using an extended Hund-Mulliken approach where we
numerically diagonalize the projection of the Hamiltonian
onto a finite subspace. We then show that our results can be
approximated by a generic minimal model.

In our simulation, we assume for simplicity that the qubits
may be modeled as two-dimensional square wells with a
potential barrier of width b and height U separating two
semifinite square wells with width 2a, all bounded by infinite
walls along the x direction and a simple infinite square well of
width 2a in the z direction. We also add detuning ε, defined
as the difference of the potential in the two dots. Although
this choice is motivated somewhat by experiment, it is not
an exact model—we are only interested in general qualitative
features, not in a precise simulation of actual experimental
systems. Carefully choosing the subspace allows for a quickly
converging energy spectrum to be calculated from which we
determine the values of J1, J2, and J12. We do not expect
that a more detailed analysis, using a more realistic model,
would produce results much different from those presented in
this paper. If we considered a fully three-dimensional system,
for example, giving our system a small thickness along the
y direction, then this only introduces additional very high-
energy states in comparison to those that we are concerned
with in our system. Even if our numerical results may differ
from what is seen in actual experimental systems, our results
should still serve as a useful guide for experiments, showing
what general features one should expect to find in actual
systems.

Our generic model is independent of the qubit geometry
and potential in that these only affect the model through the
values of two constant parameters: the tunneling strength t and
the dipole-dipole interaction energy D. Our model consists of
two pairs of quantum dots where tunneling is allowed between
the two dots within of each pair but where some infinite
potential barrier separates the two pairs so that there is no
tunneling from one pair to another. This ensures that there
is no exchange coupling between the qubits as is our goal
to examine only the capacitive coupling strength. We define
the detunings ε1 and ε2 to be the energy difference between
dots in the first and second pairs, respectively, and adjust these
detunings by the energy cost of having two electrons in a
single dot so that ε′

i = 0 at the (1,1) to (0,2) transition point of
an isolated qubit. We construct a Hamiltonian over the space
spanned by the lowest-energy states of each dot and from this
Hamiltonian determine the behavior of J12.

For a system of two qubits, a naive approach is to treat J12

as the product of two isolated single-qubit dipole moments;
however, we find that this only holds far from the transition
points. Close to the transition, a more complex structure
appears and is dependent on the sign of D. For D < 0, we find
a shift in the J12 transition boundary so that the singlet-singlet
state transitions from the (1,1) configuration to (0,2) at a lower
detuning than does the singlet-triplet state. This disparity
means that the system cannot be quantitatively treated as a
product of two individual dipole moments and is evidenced in
our numerics by the fact that the ratio J12

J1J2
varies by over six

orders of magnitude in the vicinity of the transition point. For
D > 0, we find a similar behavior where the singlet-singlet
transitions at a higher detuning than the singlet-triplet state,
which causes J12 to grow very large whereas one qubit still
remains in the (1,1) configuration. Thus, a more quantitatively
accurate relationship than a simple dipole-dipole model is
needed for many applications. For example, our previous
work on error correction in coupled singlet-triplet qubits
[35,38] assumes this proportionality and presents tables of
parameters defining pulses which dynamically correct cross-
talk errors under this model. Since the basic proportionality
relationship used for J12 differs from realistic systems, the
exact pulses we initially presented will not be applicable.
However, the method presented for deriving these pulses
is quite general and can be used to generate new pulse
sequences using a more accurate system-dependent model
for the strength of J12. In fact, our dynamical decoupling
technique developed in Refs. [35,38] for correcting ST qubit
errors would still apply formally exactly in the same manner,
but the detailed pulses would have to be tailored to the specific
ST interqubit coupling (which no longer can be assumed to
be proportional to J1J2 in all of the parameter space) relevant
for the specific experimental system by first carrying out
calculations along the line of what is presented in the current
paper. This would obviously make realistic quantum error
correction rather costly in terms of computational demand, but
we see no way out of such detailed numerical calculations if
one is serious about developing fault-tolerant semiconductor
spin qubits in the future. Error correction depends crucially on
a knowledge of the system Hamiltonian. We do, however, find
that the proportionality of J12 to J1J2 holds over a wide range
of parameters, away from transitions of one or both qubits
from a (1,1) state to a (0,2) state, or vice versa.
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