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Universal power law decay of spin polarization in double quantum dot
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We study the spin dynamics and spin noise in a double quantum dot, taking into account the interplay between
hopping, exchange interaction, and the hyperfine interaction. At short timescales the spin relaxation is governed
by the spin dephasing in the random nuclear fields. At long timescales the spin polarization obeys universal
power law 1/t independent of the relation between all the parameters of the system. This effect is caused by
the competition between the spin blockade effect and the hyperfine interaction. The spin noise spectrum of the
system universally diverges as ln(1/ω) at low frequencies.
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I. INTRODUCTION

The most fascinating discoveries in solid-state physics
in the 21st century are arguably related to the spin degree
of freedom of electrons. Intense studies of the spin-related
phenomena led to the formation of a new branch in solid-
state physics: spintronics [1]. The spin-related phenomena are
most pronounced in low-dimensional structures due to the en-
hanced role of the spin-orbit and hyperfine interactions [2–4].
From a practical point of view, the most promising for quan-
tum information processing are zero-dimensional nanosys-
tems, such as shallow impurities, color centers, and quantum
dots (QDs).

There are two complementary approaches to study spin-
related phenomena in QDs. The first one is based on optical
spin orientation, manipulation, and detection and is usually
applied to self-organized quantum dots [5–7]. The second
one is based on electrical spin injection and detection in
gate-defined quantum dots [8], which makes use of the ex-
ternal magnetic field. An interesting and promising system
for the latter approach is a double quantum dot [9,10], which
demonstrates the Pauli or spin blockade effect [11,12]. This
effect was studied in detail theoretically [13–18], but the spin
dynamics was investigated mainly in the presence of electric
current and external magnetic field.

In this work we study manifestations of the spin blockade
effect in the spin dynamics of a double quantum dot isolated
from the environment in the absence of external magnetic
field. Our theory can also be applied for an isolated pair of
donors which are close to each other but far enough from the
other donors.

The spin dynamics in quantum dots in zero magnetic
field is largely driven by the hyperfine interaction with the
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host lattice nuclear spins [19]. In a double quantum dot the
exchange interaction [20,21] and electron hopping [22,23] are
also important and affect the spin dynamics. We stress that
we consider only hopping between the QDs but not to the
contacts or substrate [24,25]. The interplay between exchange
interaction, hopping, and hyperfine interaction can hardly
be investigated for large spin ensembles. But the double-
quantum-dot system considered here allows for the exact
solution and gives some hints about spin dynamics in larger
spin systems.

In our study we focus on two effects: the spin relaxation
and spin noise. The first one assumes the spin orientation and
measurement of the spin polarization decay. The second one is
based on the continuous measurement of the dynamics of spin
fluctuations in thermal equilibrium [26,27]. We demonstrate
that in both cases the spin dynamics essentially consists of
the spin precession in a random nuclear field and a slow
power law relaxation. The latter effect is a consequence of
the interplay between the spin blockade and the hyperfine
interaction.

We demonstrate that the measurement of the spin dynamics
at short timescales or the high frequency spin noise spectra
allows one to determine the parameters of the spin dynamics
in the double QD. At the same time we find that the spin
polarization decays as 1/t at long timescales for any relation
between the hopping rates, the strength of the hyperfine inter-
action, and the exchange interaction. The revealed universality
suggests that this effect can be easily observed experimentally.
The practical importance of the power law spin relaxation
is determined by the possibility to preserve parametrically
more spin polarization at long timescales than for the usual
exponential spin relaxation.

This paper is organized as follows. In the next section
we present the model of the system under study. In Sec. III
we present our approach to calculate the spin dynamics and
spin noise spectrum. We show numerical results for the ar-
bitrary relation between the system parameters and stress the
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FIG. 1. Sketch of the double-QD system. The two electrons are
represented by the blue balls, and their spins are shown by the red
arrows. Orange arrows show the Overhauser field acting in each dot;
the magenta wavy line denotes the exchange interaction. The cyan
arrows show the possible hops of electrons between the QDs (green
transparent balls).

universality of the power law ∝1/t spin relaxation. Then in
Sec. IV we derive the analytical results in the limiting cases,
which explain the numerical results. Further, in Sec. V we
discuss the limits of applicability of our model, and finally,
we summarize our findings in Sec. VI.

II. MODEL

We consider a double QD with two electrons, as shown
in Fig. 1. We assume that the two electrons can be localized
either in different QDs or in the same QD and can hop be-
tween the QDs. We take into account the exchange interaction
between electrons and their hyperfine interaction with the host
lattice nuclear spins. The Hilbert space of the system under
study consists of six states: the two singlet states, when the
two electrons are localized in the same QD, plus another
singlet state and three triplet states, when the two electrons
are localized in different QDs.

The Hamiltonian of the system has the form

H =
∑
i,σ

Ein
σ
i +

∑
i

Uin
+
i n−

i + Js1s2 + h̄
∑

i

�isi. (1)

Here in the first term Ei are the localization energies of
electrons in the ith QD (i = 1, 2), and nσ

i (σ = ±) are the
occupancies of the states, characterized by the spin index σ .
The corresponding operators can be written using the Fermi
creation (annihilation) operators c†

iσ (ciσ ) as nσ
i = c†

iσ ciσ . The
second term in Eq. (1) describes the on-site electron repulsion
with the Hubbard energy Ui. The third term is the exchange in-
teraction, characterized by the constant J , which also includes
the tunneling-related contribution [8]. The spin operators can
be expressed as

si = 1
2σσσ ′c†

iσ ciσ ′ , (2)

where σ = (σx, σy, σz ) is the vector composed of the Pauli ma-
trices. Finally, the last term in Eq. (1) describes the hyperfine
interaction, with �i being the spin precession frequency in the
fluctuation of the Overhauser field of the host lattice nuclear
spins. In this study we assume the number of host lattice
nuclear spins in each QD is large, so that the Overhauser field
can be considered static (“frozen”) [28].

The electron hopping, being an inelastic process, cannot
be described solely by the electron Hamiltonian. One has to
consider the total Hamiltonian

Htot = H + Hph + V, (3)

which includes a phonon Hamiltonian Hph and an electron
phonon interaction V . The phonon bath energy is given by

Hph = h̄
∑

q

�qb†
qbq, (4)

where �q is the phonon frequency, corresponding to the
wave vector q, and b†

q (bq) is the phonon creation (annihi-
lation) operator. We assume the phonon polarization index
is included in q. The electron-phonon interaction after the
canonical (polaron) transformation [29,30] can be written as

V = V
∑
i,σ,q

γq(eiqRi bq − e−iqRi b†
q)c†

iσ cı̄σ + H.c., (5)

where V is the hopping constant; γq = vq/(h̄�q), with vq

being the electron-phonon interaction constant; R1,2 are the
coordinates of the QDs; and the symbol ı̄ denotes the quantum
dot other than i (ı̄ = 2 if i = 1 and ı̄ = 1 if i = 2). The
justification of this approach is given in the Appendix.

The spin dynamics in the system can be described using
the density matrix formalism. In the description of electron
hopping we assume that the first two terms in the Hamiltonian
(1) and the temperature exceed by far the two latter terms, so
the states where two electrons are in the different QDs have
nearly the same energy. In this case the off-diagonal matrix
elements between the states with essentially different energies
can be neglected. As a result the system is described by the
4 × 4 density matrix ρ in the basis of the four states of two
electrons in different QDs and the two probabilities Pi to find
the two electrons in QD i.

In the two lowest orders in the electron-phonon interaction
the total density matrix of the electron system ρtot satisfies the
equation

ρ̇tot = − i

h̄
[H, ρtot]

+ π

h̄
〈[2VρtotV − ρtotV2 − V2ρtot]δ(Ei − E f )〉ph, (6)

where the first line describes the coherent spin dynamics and
the second one describes the electron hopping. The angular
brackets denote averaging of the phonon creation and annihi-
lation operators over the phonon states. The energies Ei and
E f are the total energies of the system before and after the
hop, respectively, including the phonon energy.

From Eq. (6) we find that the electron density matrix ρ

obeys the master equation

ρ̇ = − i

h̄
[H, ρ] + 1

2

∑
i

∑
σ,σ ′

[2	iı̄c
†
iσ cı̄σ P̄ıc

†
ı̄σ ′ciσ ′

− γiı̄ (ρc†
ı̄σ ′ciσ ′c†

iσ cı̄σ + c†
ı̄σ ′ciσ ′c†

iσ cı̄σ ρ)], (7)

where we introduce the rates γiı̄ and 	iı̄ describing the
hopping from QD ı̄ to i when QD i is occupied or empty,
respectively. On the right-hand side of this equation Pi should
be treated as the corresponding operators multiplied by their
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average values, similar to ρ. The hopping rate with the change
of energy by 
E is [4,31]

γ (
E ) = 2π

h̄
V 22γ 2

q
E
D(|
E |)[N
E + θ (−
E )], (8)

where q
E is the phonon wave vector corresponding to a
phonon with energy |
E |; D(|
E |) stands for the density
of phonon states; N
E = 1/[exp(|
E |/kBT ) − 1] is the oc-
cupancy of the corresponding state, with T being the temper-
ature; and θ (x) is the Heaviside step function. The specific
hopping rates between the QDs are given by

γiı̄ = γ (Ei − Eı̄ + Ui ), (9a)

	iı̄ = γ (Ei − Eı̄ − Uı̄ ). (9b)

One can see that in the general case the relation 	iı̄ � γiı̄ holds
because of the electron Coulomb repulsion in the same QD.

In a way similar to Eq. (7) the probabilities Pi obey

Ṗi = 1

2

∑
σ,σ ′

[2γiı̄c
†
iσ cı̄σ ρc†

ı̄σ ′ciσ ′

−	ı̄i(Pic
†
iσ ′cı̄σ ′c†

ı̄σ ciσ + c†
iσ ′cı̄σ ′c†

ı̄σ ciσ Pi )]. (10)

The electron conservation rule for this system can be written
as

P1 + P2 + P12 = 1, (11)

where P12 = (n+
1 + n−

1 )(n+
2 + n−

2 ) = Tr ρ is the probability of
finding the two electrons in different QDs.

We recall that we assume the nuclear fields �i are frozen.
They are created by the nuclear spin fluctuations and are
described by the Gaussian distribution function

F (�i ) = 1

(
√

πδ)3
e−�2

i /δ
2
, (12)

with the parameter δ characterizing the dispersion. In order to
obtain experimentally observable spin dynamics, the solution
of the spin dynamics equations should be averaged over this
distribution function. In the next section we demonstrate that
this procedure ultimately leads to the spin decay ∝1/t at long
timescales.

III. SPIN RELAXATION AND SPIN NOISE

The master equation (7) can be rewritten in the form
of equations for the spin operators si and their correlation
functions sα

i sβ
j , where α and β are the Cartesian indices. Their

average values can be expressed through the density matrix as
〈si〉 = Tr(siρ) and 〈sα

i sβ
j 〉 = Tr(sα

i sβ
j ρ).

The electron spins obey

dsi

dt
= �i × si + J

h̄
sı̄ × si − γ

2
(si − sı̄ ), (13a)

where γ = γ12 + γ21 is the total hopping rate for the sin-
glet state of the two electrons in different QDs. The first
term on the right-hand side in this equation describes the
spin precession with the frequency �i. Similarly, the second
term describes the electron spin precession in the effective
exchange magnetic field of another electron. Finally, the last
term describes the electron hopping [32,33]. One can see

that this term vanishes in the case of s1 = s2 due to the spin
blockade. By contrast, the hopping rate equals γ when the two
electrons are in the singlet state, i.e., s1 = −s2. In the general
case s1 − s2 decays due to this term, while s1 + s2 does not.
We recall that the relation kBT,U1,2 � J, h̄δ is assumed, so
there is no spin polarization in the thermal equilibrium.

We stress that the term s1 × s2 in Eq. (13a) does not simply
reduce to the product of the two average values but should
be treated as a vector composed of spin correlators. The spin
correlation functions in general obey the equations

d

dt

(
sα

1 sβ

2

) = εαγ δ�
γ

1 sδ
1sβ

2 + εβγ δ�
γ

2 sα
1 sδ

2 + J

4h̄
εαβγ

(
sγ

1 − sγ

2

)
− γ

2

(
sα

1 sβ

2 − sβ

1 sα
2

)
+ δαβ

2
(γ Ps − 	21P1 − 	12P2), (13b)

where Ps = P12/4 − s1s2 is the occupancy of the singlet state
in the two different QDs. The first two terms on the right-
hand side of this expression describe the spin precession in
the nuclear field. The third term is related to the exchange
interaction and reduces to the first power of the spin operators
for the spin-1/2 particles. The rest of the terms describe the
hopping of electrons and deserve a longer discussion.

The hopping of two electrons to the same QD brings the
system to the singlet state with the zero total angular mo-
mentum. At the same time, the hopping does not change the
total angular momentum, so it is allowed only for the singlet
spin state, in agreement with the Pauli exclusion principle.
The correlators sα

1 sβ

2 can be combined in the groups, which
transform according to the representations D2, D1, and D0 of
the SU(3) group. The five correlators sz

1sz
2 − sx

1sx
2, sz

1sz
2 − sy

1sy
2,

and sα
1 sβ

2 + sβ

1 sα
2 , with α �= β, belong to the D2 representation

and do not decay because they require the two electron spins
to be parallel. The three combinations sα

1 sβ

2 − sβ

1 sα
2 belong

to the D1 representation and decay with the rate γ , which
is described by the second line of Eq. (13b). Finally, the
correlator s1s2 belongs to the D0 representation, and it couples
to the scalar occupancies P1, P2, and P12, which are described
by the last line. This term consists of two contributions:
hopping to the states, where the two electrons are localized
in the same QD with the rate γ , and hopping from these states
with the rates 	12 and 	21.

The above equations describe the spin dynamics and
should be accompanied by kinetic equations for the occupan-
cies of the states. Taking into account Eq. (11), it is enough to
write the two equations

Ṗi = −2	ı̄iPi + 2γiı̄Ps. (14)

The set of 18 equations (11), (13), and (14) is equivalent to
Eqs. (7) and (10) and completely describes the spin and charge
dynamics.

Below we assume the high-temperature limit (the thermal
energy is much larger than the Hubbard energies Ui), so that
γ12 = 	21 and γ21 = 	12. This assumption requires that the
size quantization energy is larger than the Hubbard energy,
which is true for QDs smaller than the exciton Bohr radius.
Moreover, we assume both these rates are equal to γ /2 for
simplicity, but these assumptions do not qualitatively change
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the results. Then it is convenient to introduce the parameter
X = P1 + P2 − 2Ps, (15)

which describes the deviation of the occupancies from their
steady-state values. This parameter simply obeys

dX

dt
= 2(�1 − �2)(s1 × s2) − 4γ X. (16)

Note that the same parameter also describes the dynamics
of the spin correlators in Eq. (13b). Thus, in this case one
can consider only 16 equations: Eqs. (13) and (16). The spin
dynamics can be calculated for the given initial conditions,
and the double-QD system is characterized in total by the
three parameters: J , δ, and γ .

To describe the spin relaxation we consider the initial con-
ditions s1(0) = s2(0) = ez/2 (triplet state), where ez is a unit
vector along some z axis. These initial conditions correspond
to the optical spin orientation, and they are opposite to what
is realized in an electrically controlled double-QD system
[16]. Figure 2(a) shows the evolution of the z component of
the total spin S = s1 + s2 in the most involved case, when
all the parameters are of the same order J/h̄ ∼ δ ∼ γ (their
values are given in the figure caption). The spin dynamics can
be separated into two contributions; below we describe them
separately.

(i) The total spin quickly decays from 1 to less than 0.1
and then increases again at tδ ∼ 5. This time dependence is
typical for the spin dephasing in a random Overhauser field
[28,34,35]. Notably, the spin polarization does not decay to
zero due to the conservation of the spin component parallel
to the Overhauser field in each QD. The exchange interaction
“exchanges” the electrons in the two QDs, so the direction of
precession of the given electron spin changes. This, however,
also does not lead to the complete spin relaxation [21]. Indeed,
in the limit of very strong exchange interaction the hyperfine
field does not mix the singlet and triplet states, so the com-
ponent of the total spin S along the average Overhauser field
� = (�1 + �2)/2 is conserved.

(ii) At long timescales the total spin slowly decays to zero
due to the hopping of electrons between the QDs. In fact,
this is a power law decay Sz(t ) ∝ 1/t , as shown by the red
dashed line in Fig. 2(a). This asymptote is more clearly shown
in the inset, where the longer timescales are shown in the
bilogarithmic scale. We checked numerically that this law of
spin relaxation is valid for an arbitrary relation between the
parameters J/h̄, γ , and δ. Moreover, this law will be derived
analytically in a number of limiting cases in the next section.
To understand the effect qualitatively we note that in the
exceptional case �1 ‖ ez and �2 ‖ ez the total spin does not
change, and the hopping is also forbidden [see Eq. (13a)].
So in this case the spin polarization (in our model) does not
decay at all. In the more probable situation, when �1 ‖ �2, the
component of the total spin along this direction does not decay
either because of the spin blockade. Finally, in the general
case of an arbitrary angle between �1 and �2 the smaller the
angle is, the slower the spin polarization decays. Averaging
over the Gaussian distribution of the Overhauser fields results
in the power law decay Sz(t ) ∝ 1/t at long timescales.

We note that for localized electron states in quantum
wires the power law spin relaxation appears when neglecting
the electron-electron interaction and is caused by the nearly

FIG. 2. (a) The spin relaxation for the initial conditions si(0) =
ez/2. The red dashed lines show the asymptote ∝1/t . (b) The spin
noise spectrum. The red dashed curve in the inset shows the asymp-
tote ∝ ln(1/ω). The parameters of the calculation are J = 0.9h̄δ and
γ = 1.1δ.

isolated localized states, which have a very small tunneling
rate [36]. Here, by contrast, we consider a finite hopping time
and take into account the spin blockade effect.

The slow spin decay can be conveniently revealed in the
frequency domain. Experimentally, the spin dynamics at low
frequencies can be studied by means of the spin noise spec-
troscopy [26]. This method is based on the measurement of
the correlation functions of the spin fluctuations in the thermal
equilibrium. The spin noise spectrum (δS2

z )ω is defined as a
Fourier transform of the autocorrelation function(

δS2
z

)
ω

=
∫ ∞

−∞
〈δSz(t )δSz(t + τ )〉 eiωτ dτ, (17)

where the angular brackets denote averaging over t . In the
equilibrium the spin polarization is absent, so 〈S(t )〉 = 0 and
δS = S in the system under study.

To calculate the correlation functions we note that
the correlators at τ = 0 can be simply found from the
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steady-state solution of the equations of motion. One finds that
the correlation functions of Sz with all the other operators in
Eqs. (13) and (16) are zero except for

〈
Szs

z
i

〉 = 〈P12〉
4

. (18)

In the thermal equilibrium 〈s1s2〉 = 0, so from Eqs. (14) and
Eq. (11) we find that

〈P12〉 =
(

1 + γ12

4	21
+ γ21

4	12

)−1

. (19)

In the case γiı̄ = 	iı̄ = γ /2 one has 〈P12〉 = 2/3, in agreement
with Eq. (16). So for the total spin we obtain〈

S2
z

〉 = 1
3 . (20)

The correlators define the initial conditions for the time corre-
lation functions.

Then the set of the correlators of δSz(t ) with the other
operators taken at time t + τ obeys the same equations of
motion, Eqs. (13) and (16), for τ > 0 [37]. Moreover, the spin
autocorrelation function is an even function of τ , which allows
us to find 〈δSz(t )δSz(t + τ )〉 and the spin noise spectrum
(δS2

z )ω after Eq. (17). We note that the spin noise spectrum
can also be calculated directly in the frequency domain by
replacing the time derivatives in the equations of motion with
the multipliers −iω [38].

The spin noise spectrum is shown in Fig. 2(b) for the same
system parameters as in Fig. 2(a). It again consists of two
contributions. (i) The first is a peak at frequency ω ∼ δ, which
corresponds to the spin precession in the Overhauser field
[39,40]. Its shape reproduces the distribution function of the
absolute values of the Overhauser field [39,41]. (ii) The other
is a peak at zero frequency, which corresponds to the slow spin
decay at long times. This peak corresponds to the divergence
(δS2

z )ω ∝ ln(1/ω) at ω → 0, in agreement with the asymptote
〈δSz(t )δSz(t + τ )〉 ∝ 1/τ in the time domain. The logarithmic
asymptote for the spin noise spectrum is shown in the inset in
Fig. 2(b).

Thus, the spin relaxation and the spin noise spectrum
essentially describe the same spin dynamics in the time and
frequency domains, respectively.

IV. LIMITING CASES

The main result of the previous section is the very slow
power law decay ∝1/t of the spin polarization despite all the
necessary ingredients for the spin relaxation in the model.
This result corresponds to the divergence of the spin noise
spectrum at zero frequency ∝ ln(1/ω). In this section we
derive these asymptotes in limiting cases when one of the
system parameters, δ, J/h̄, or γ , is much larger than the other
two.

A. Strong hyperfine interaction

The limit δ � J/h̄, γ corresponds to the two nearly inde-
pendent QDs, where the spins s1,2 precess around the corre-
sponding nuclear fields �1,2. As a result of this precession the
initial spin polarization on average decays three times on the
timescale ∼1/δ [34]. One third of spin polarization on average

is parallel to the static fluctuation of the Overhauser field and
does not decay at this timescale. The exchange interaction
only slightly changes the eigenfunctions and does not lead to
the complete spin relaxation. By contrast, the hopping, being
an incoherent process, leads to the complete decay of the spin
polarization. As a result the exchange interaction in this limit
can be neglected, while the hopping cannot.

The spin dynamics in this limit can be described by
Eqs. (13) with J = 0:

ṡi = �i × si − γ

2
· (si − sı̄ ). (21)

The last term of this expression was discussed after Eq. (13a).
One can separate the spin components parallel and perpendic-
ular to the nuclear field as

si‖ = nisi, si⊥ = si − nisi‖, (22)

where ni = �i/�i. These components approximately
obey [32]

ṡi⊥ = �i × si,⊥ − γ

2
si,⊥, (23a)

ṡi‖ = −γ

2
(si‖ − sı̄‖ cos θ ), (23b)

where cos θ = n1n2 and we neglected the mixing between
quickly oscillating components of si⊥ and slowly varying si,‖.
The solution of these equations gives

s1(t ) + s2(t ) =
∑

i

[si⊥(0) cos(�it ) + ni × si(0) sin(�it )]

+ n1 + n2

2
[s1‖(0) + s2‖(0)]e−tγ (1−cos θ )/2

+ n1 − n2

2
[s1‖(0) − s2‖(0)]e−tγ (1+cos θ )/2.

(24)

This expression should be averaged over the distribution of �i

[see Eq. (12)]:

〈s1(t ) + s2(t )〉

= [s1(0)+s2(0)]
2

3

{[
1− (δt )2

2

]
e−(δt )2/4+ e−γ t + γ t − 1

(γ t )2

}
.

(25)

This expression is shown by the red dashed curve in Fig. 3(a)
and agrees with the numerical calculations, shown by the
black solid curve. At t � 1/γ this expression yields the power
law decay [42]

〈s1(t ) + s2(t )〉 = 2

3γ t
. (26)

This expression is shown by the red dashed line in the inset in
Fig. 3(a).

Since the spin correlation functions also obey an equation
like Eq. (21), the spin noise spectrum can be found simply as
a Fourier transform of Eq. (25) with s1(0) + s2(0) = ez/3 [see
Eq. (20)]:

(
S2

z

)
ω

= 1

δ
f
(ω

δ

)
+ 1

γ
g

(
ω

γ

)
, (27)
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FIG. 3. Relaxation of the spin polarization Sz(t ) calculated numerically (black solid curves) and analytically (red dashed curves) for the
three limiting cases (a) J = 0.04h̄δ and γ = 0.2δ [Eq. (25)], (b) J = 0.2h̄δ and γ = 5δ [Eq. (34)], and (c) J = 5h̄δ and γ = 0.2δ [Eq. (41)].
The initial conditions are s1,2 = ez/2. The insets show the power law decay ∝1/t for the same parameters.

where we introduce the functions

f (x) = 8

9

√
πx2e−x2

, (28)

g(x) = 2
9 [π |x| + ln(1 + 1/x2) − 2(1 + x arctg x)]. (29)

The analytical expression for the spin noise spectrum in this
limit is shown in Fig. 4 by the blue dashed curve and agrees
with the numerical calculations (blue solid curve). At low
frequencies the spin noise spectrum diverges as

(
S2

z

)
ω

= 4

9γ
ln

(γ

ω

)
, (30)

as expected.

B. Fast hopping between QDs

In the limit γ � δ, J/h̄ one could expect that the spin
polarization quickly decays to zero because of the fast hops

FIG. 4. Spin noise spectra calculated numerically (solid curves)
and analytically (dashed curves) for the same parameters as in
Fig. 3(a) (blue curves), Fig. 3(b) (red curves), and Fig. 3(c) (black
curves); see Eqs. (27), (36), and (43), respectively.

of electrons into one QD, where the total spin is zero. This,
however, does not happen because of the spin blockade: when
the two spins are parallel to each other, the electrons do not
hop.

It is convenient to rewrite Eqs. (13a) as

Ṡ = � × S + 
� × 
S, (31a)


Ṡ = 
� × S − γ
S − 2
J

h̄
s1 × s2, (31b)

where 
S = s1 − s2, � = (�1 + �2)/2, and 
� = (�1 −
�2)/2. In the lowest order in J/(h̄γ ) the term with s1 × s2

can be neglected, while 
S in the second equation quickly
relaxes to the value


S = 
� × S
γ

. (32)

From Eq. (31a) one can see that S precesses around �,
while its projection on � decays due to the second term.
Therefore, one can solve separately the equations for these
two components and find

〈S(t )〉 = S(0)

〈
sin2(θ ) cos (�t )

+ cos2(θ ) exp

(
−
�2 sin2(θ ′)

γ
t

)〉
, (33)

where θ is the angle between � and S(0) and θ ′ is the angle
between 
� and �.

The frequencies � and 
� are normally distributed, simi-
lar to Eq. (12), but with δ being

√
2 times smaller. This allows

us to find

〈S(t )〉 = S(0)
2

3

[(
1 − (δt )2

4

)
e−(δt )2/8 + γ

2γ + δ2t

]
. (34)

This expression is plotted in Fig. 3(b). One can see that it is
very similar to Fig. 3(a) despite the opposite relation between
the parameters. At long timescales the spin polarization de-
cays as

〈S(t )〉 = S(0)
2γ

3δ2t
, (35)

in agreement with the general result of the previous section.
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Like in Sec. IV A, the spin noise spectrum can be derived
by simply performing the Fourier transform of Eq. (34):

(
S2

z

)
ω

=
√

2

δ
f

(√
2ω

δ

)
+ γ

δ2
h

(
2γω

δ2

)
, (36)

where we introduced

h(x) = 2
9 {sin(|x|)[π − 2 Si(|x|)] − 2 cos(x) Ci(x)}, (37)

with Si(x) and Ci(x) being the sine and cosine integral func-
tions, respectively. This expression is shown by the red dashed
curve in Fig. 4 and agrees with numerical calculations. At low
frequencies one finds

(
S2

z

)
ω

= 4γ

9δ2
ln

(
δ2

γω

)
, (38)

so the spectrum again diverges logarithmically.

C. Strong exchange interaction

In the limit J/h̄ � δ, γ the spins strongly couple into the
triplet and singlet. The hyperfine interaction weakly mixes
these states, while the electron hopping is possible only in the
singlet state because of the Pauli spin blockade.

The equations for spin dynamics in this limit can be
obtained from Eqs. (13) in the lowest order in h̄�1,2/J . Note
that the terms containing γ again cannot be neglected because
they lead to the complete spin decay at long timescales. As a
result we obtain

Ṡ = � × S + 
� × 
S, (39a)


Ṡ = 
� × S − γ
S − 2
J

h̄
s1 × s2, (39b)

(s1 × s2 )̇ = J

2h̄

S − γ s1 × s2. (39c)

One can see that 
S and s1 × s2 decay much faster than S, so
the time derivatives in the second and third equations can be
set to zero. This gives

s1 × s2 = J

2h̄γ

S, (40a)


S = h̄2γ

J2

� × S. (40b)

Substituting the last expression in Eq. (39a) and averaging the
solution over the nuclear fields, we find

〈S(t )〉 = S(0)
2

3

[(
1 − (δt )2

4

)
e−(δt )2/8 + J2

2J2 + h̄2γ δ2t

]
.

(41)

This expression is shown in Fig. 3(c), and one can see that
the spin polarization in this case decays particularly slowly.
Indeed, at long timescales one finds

〈S(t )〉 = S(0)
2J2

3h̄2γ δ2t
, (42)

so the prefactor of 1/t is parametrically large in the limit under
study, J/h̄ � δ, γ .

The spin noise spectrum in this limit again can be calcu-
lated like in Sec. IV A, and the result reads

(
S2

z

)
ω

=
√

2

δ
f

(√
2ω

δ

)
+ J2

h̄2γ δ2
h

(
2J2ω

h̄2γ δ2

)
. (43)

This expression is shown by the black dashed curve in Fig. 4
and again agrees with the numerical calculations. At low
frequencies one finds

(
S2

z

)
ω

= 4J2

9h̄2γ δ2
ln

(
h̄2γ δ2

J2ω

)
, (44)

which shows once again that the spin correlations decay
particularly slowly in this limit.

V. DISCUSSION

Despite the universality of the power law spin relaxation,
the spin dynamics at short timescales depends on the relation
between the system parameters. This is most clearly seen for
the spin noise spectra in Fig. 4. In particular, the maximum
shifts from the frequency δ to δ/

√
2 with an increase of

the exchange interaction constant [21]. This effect can be
observed for the gate-defined double QD, where the exchange
interaction can be tuned electrically.

At long timescales we demonstrated that the spin polariza-
tion decays as ∝1/t for any relation between the system pa-
rameters. Let us discuss the applicability limits of our model.
In typical GaAs-based self-assembled QDs the short timescale
is defined by 1/δ ∼ 1 ns [43,44]. At longer timescales a few
mechanisms of the spin relaxation can come into play, which
can limit the applicability of our model.

At zero magnetic field the on-site electron spin flip-flops
because the electron-phonon and spin-orbit interactions have
very low rates because of, e.g., a zero phonon density of states
with zero energy. Indeed, according to Refs. [45–50], the spin
relaxation caused by the direct spin-phonon coupling [51,52]
or spin admixture mechanisms [51,53] should exceed 1 s at a
magnetic field smaller than 1 T.

The spin-orbit interaction during the hops leads to the spin
rotations [54,55], which is not taken into account by our
model. However, this effect can be simply accounted for by
the rotation of the coordinate frames for the two QDs in spin
space [20]. Still, the small random deviations of the electron
hopping trajectory from the semiclassical one [56] cannot be
compensated in the same way.

Another possible effect disregarded in this work is the hop-
ping to a third remote localized state (QD) in the vicinity of
the double QD [57]. This state can be either empty or occupied
by an electron. In the former case the small tunneling rate to
the empty state quenches the 1/t asymptote. In the latter case
the spin blockade effect can also take place. Our estimations
show that the configurations where the Overhauser fields in
all three QDs are nearly parallel lead to the asymptote 1/t2

at timescales longer than the tunneling time to the third QD.
Moreover, one can expect that the spin polarization of N
electrons in N QDs decays as 1/tN−1, but this conjecture calls
for a separate study.
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The most probable limitations of our model are the external
excitation of the system, e.g., by optical pulses [58,59], and
the nuclear spin dynamics. The nuclear spin precession can
be caused either by the strain in the QDs and the quadrupole
interaction or by the Knight field created by electrons. These
effects take place at the microsecond timescales [60,61] and
quench ∝1/t asymptotic behavior. Nevertheless, we assume
that our theory will correctly describe the spin dynamics in
a double QD on submicrosecond timescales. In particular,
from a few nanoseconds to a few microseconds, the spin
relaxation should be described by the power law, which is
the three orders of magnitude in the time and frequency
domains.

VI. CONCLUSION

To summarize, we studied the spin dynamics in a double
QD, taking into account the interplay between the hyperfine
interaction, exchange interaction, and electron hopping. We
demonstrated numerically that for an arbitrary relation be-
tween the system parameters the spin relaxation consists of
the partial spin dephasing in a random nuclear field and a
universal power law decay ∝1/t at large timescales. The spin
noise spectrum of the system similarly consists of the two
contributions and diverges as ∝ ln(1/ω) at low frequencies.
We proved our results analytically in the limits when one of
the system parameters exceeds the others by far. Due to the
universality, we believe that these unusual asymptotes can be
easily observed experimentally.
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APPENDIX: ALTERNATIVE DERIVATION
OF THE HOPPING RATES

Here we justify our approach based on the Hamiltonian of
the electron-phonon interaction (5) [32]. To do this we start
from the usual Hamiltonian

H(0)
tot = H0 + Hph + He−ph. (A1)

Here the electron Hamiltonian is

H0 =
∑
i,σ

Ein
σ
i +

∑
i

Uin
+
i n−

i + Js1s2

+ V
∑

σ

(c†
1σ c2σ + c†

2σ c1σ ), (A2)

where we neglect the hyperfine interaction. The phonon
Hamiltonian is given by Eq. (4). The electron-phonon inter-
action Hamiltonian is

V =
∑
i,σ,q

υq(eiqRi bq + e−iqRi b†
q)niσ . (A3)

It is convenient to analyze the eigenstates of the Hamilto-
nian H0 in the basis of states |Tm〉, |S〉, |Si〉, where m = 0,±
denotes the projection of the total spin of the triplet state
on the z axis, |S〉 is the singlet state of the two electrons
in different QDs, and |Si〉 are the singlet states of the two
electrons in QD i. In this basis one has

H0|T 〉 =
(

E1 + E2 + 1

4
J

)
|T 〉,

H0|S〉 =
(

E1 + E2 − 3

4
J

)
|S〉 +

√
2V (|S1〉 + |S2〉),

H0|Si〉 = (2Ei + Ui )|Si〉 +
√

2V |S〉. (A4)

In the first order in V the eigenstates of H0 are |Tm〉 and

|S̃〉 = |S〉 −
√

2V

E12
|S1〉 −

√
2V

E21
|S2〉,

|S̃i〉 = |Si〉 +
√

2V

Eiı̄
|S〉, (A5)

where Eiı̄ = Ui + Ei − Eı̄ and we neglect J compared with
Eiı̄ . The matrix elements of ni = n+

i + n−
i between these states

are

〈S̃i|ni|S̃〉 = −
√

2V

E12
, 〈S̃i|nı̄ |S̃〉 =

√
2V

E12
. (A6)

Then from Fermi’s golden rule we find the hopping rates from
state |S̃〉 to |S̃i〉,

2π

h̄

4V 2

E2
iı̄

υ2
q NEiı̄ D(Eiı̄ ) = 2γiı̄, (A7)

which agree with Eqs. (8) and (14) since 
E = Eiı̄ . In the
same way we find that the hopping rates from |S̃i〉 to |S̃〉 equal
2	ı̄i. Thus, the hopping Hamiltonian (5) yields the correct
hopping rates.

We note also that in the second order of the perturbation
theory the energy correction to state |S〉 is −2V 2/E12 −
2V 2/E21, which can be included in the exchange interaction
constant J , as is usually assumed.
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