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Ridge reflection of surface plasmon-polaritons in a one-dimensional plasmonic cavity
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Reflection characteristics of surface plasmon polariton (SPP) by a rectangular ridge on the silver surface were
examined theoretically and experimentally. The amplitude and phase shift of the SPP reflection by the rectangular
ridge were calculated by SPP scattering theory using Green’s tensor method and expressed in terms of ridge width
and SPP energy. It was found that this calculation result can be reproduced well by a simple model expressed by
superposition of reflections by the two steps constituting the ridge. A one-dimensional cavity composed of a pair
of rectangular ridges was fabricated, and the characteristics of the SPP standing wave mode (cavity mode) was
clarified for the first time using the scanning transmission electron microscope (STEM) - cathodoluminescence
(CL) method and was used to evaluate the theoretical calculations of the reflection coefficient. The cavity mode
energies are derived from the angle-resolved spectral (ARS) pattern, and the phase shift of the SPP reflection
can be deduced through the cavity condition. We successfully explained the resonance energy of the cavity mode
and the spatial distribution of the SPP standing wave by using the SPP reflection coefficient of the rectangular
ridge derived by the theory.
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I. INTRODUCTION

Surface plasmon polariton (SPP) is a longitudinal electro-
magnetic wave mode propagating at the interface between
metal and dielectric (vacuum). SPP combines with photons
due to surface irregularities such as steps and ridges, and a part
of it is released as light into free space [1,2]. Various applica-
tions have been proposed utilizing the properties of SPP such
as surface localization and field enhancement to plasmonic
laser [3], plasmonic cavity [4] nanophotonics [5,6], etc. It is
important to elucidate basic characteristics of the interaction
between SPP and light through such surface nanostructures in
plasmonics technology aiming for application to SPP cavity
and waveguides. Experimental and theoretical studies on the
reflection and light emission of SPP due to the nanostructure
of the metal surface have been conducted with the surface
protrusions [7], surface steps [8–10], ridges, and grooves
[11–16]. However, even for basic structures such as rectan-
gular ridges and rectangular grooves, only few studies have
systematically investigated the shape and size dependence of
reflection and light emission efficiency. The reason for this is
that the experimental method that can excite SPP and detect
simultaneously emitted light is limited.

We have developed a cathodoluminescence (CL) method
using a scanning transmission electron microscope (STEM)
[10,17] as a powerful experimental method to observe SPP-
light conversion by surface nanostructures. A high-energy
electron accelerated in STEM excites SPP together with tran-
sition radiation when incident on the metal surface. Light
converted from SPP by surface nanostructure is detected by
the CL system and spectroscopic analysis is successively per-
formed. Recently, angle-resolved measurements have become
possible by combining a parabolic mirror for light collection
and a pinhole mask. We have applied this technique to single
step [9,10], plasmonic crystal [18–20], cavity in plasmonic

crystal [21–23], and waveguide [24], and studied the prop-
erties of SPPs peculiar to these structures from angle-resolved
measurements of light. The STEM-CL method typically pro-
vides an angle-resolved spectral (ARS) pattern by moving a
pinhole mask, and also a beam-scan spectral (BSS) image
produced from the radiation spectra recorded while scanning
an electron beam.

In this study, we treat a rectangular ridge as a typical
surface nanostructure. Then we examine a cavity which is
composed of a pair of parallel ridges. Such cavities resonate
strongly when the ridge has a larger SPP reflectance. There-
fore, to design an efficient one-dimensional (1D) plasmon
cavity, information on the SPP reflection coefficient (ampli-
tude and phase shift) is important. The cavity can be designed
to resonate well at the required wavelength by providing the
reference data of the SPP reflection coefficient depending on
the shape of the ridge and wavelength (or energy). However,
the SPP reflection coefficient by the ridge depends compli-
catedly on ridge shape and energy, and there are few studies
systematically investigated so far. We applied the STEM-CL
method to this cavity structure for the first time, and exper-
imentally clarified the characteristics of the cavity composed
of the rectangular ridges with various widths from the analysis
of the ARS pattern and the BSS image.

Here we consider the case that SPP propagates perpendic-
ular to the ridge of the cavity and is radiated to the direction
in the two-dimensional plane subtended by the surface normal
direction and that normal to the ridge. The paper is organized
as follows. In Sec. II, the reflection coefficient Reiφ of SPP by
a single rectangular ridge is derived from the SPP scattering
theory using the Green’s tensor method, and the dependence
on the ridge width w and the energy E is shown. In Sec. III,
in order to physically understand the dependence of R and φ

on w and E, we propose a simple model that approximates the
theoretically obtained reflection coefficient in Sec. II. Next,
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we fabricate a cavity in which two ridges are arranged in
parallel on the silver surface, and investigate the property
of radiation from the cavity by the STEM-CL method. In
Sec. IV, we briefly describe the sample of cavity and the
experimental arrangement used in the STEM-CL. In Sec. V,
we use an approximation to replace the ridge with a single
wall of reflection coefficient Reiφ and derive an equation
which presents the angular distribution of the radiation from
the cavity. Here, the cavity length is L, and the SPP standing
wave of the mode n formed in the cavity has a wave number
kp satisfying the following resonance condition [21,25]:

kpL + φ = nπ, (1)

where the wave number can be derived from the dispersion
relation of SPP propagating on a flat silver surface, i.e., kp =
(E/h̄c)

√
ε(E )/(ε(E ) + 1), and mutually converts with SPP

energy. That is, the resonance energy of the cavity is directly
related to the phase shift φ of the reflection coefficient by
Eq. (1). Here, ε (E ) is the dielectric function of silver, � is
the Planck’s constant divided by 2π , and c is the velocity of
light in vacuum. In the ARS pattern, a characteristic radiation
distribution appears at the position of the energy satisfying
Eq. (1), so that the energy dependence of the phase shift φ can
be derived using Eq. (1) and compared with the theoretical
one. The BSS image directly visualizes the SPP standing
waves in the cavity, and the magnitude R of the reflection
coefficient can be estimated from the intensity. From these
results, we check the validity of applying the SPP reflection
coefficient to explain the radiative properties of the cavity
consisting of the ridge pair. Finally, we summarize the main
conclusions in Sec. VI.

II. THEORY OF SPP REFLECTION
BY RECTANGULAR RIDGE

Reflection and radiation of SPP by a rectangular ridge on a
metal surface were recently treated theoretically by Brucoli
and Martin-Moreno [15,16]. They calculated the transmit-
tance, reflectance and radiation of SPP by the ridge as a
function of wavelength when the SPP is incident perpendic-
ularly on the rectangular ridge for some shape parameters
(ridge width, ridge height). However, since the phase shift
of reflected SPP has not been investigated, it is difficult to
deal with the resonance property of cavities composed of
the rectangular ridge. Here we examine in detail how the
reflection coefficient of the SPP due to the rectangular ridge
changes with respect to the ridge width and the SPP energy.
The calculated reflection coefficient is used for analysis of the
cavity radiation observed by the STEM-CL method.

We calculated the amplitude and phase shift of SPP reflec-
tion by rectangular ridges using the Green’s tensor method
[26,27]. Assuming that the direction perpendicular to the
rectangular ridge is the x axis and the direction perpendicular
to the surface is the z axis, SPP wave vector kp and position
coordinates are all treated as a two-dimensional problem
on the x − z plane. As shown in Fig. 1(a), a space of an
appropriate size is divided into sufficiently small cells, and
positions are designated by consecutive numbers from 1 to N.
Given the background field Eb in the background medium of
the dielectric function εb, the μ component of the scattered

FIG. 1. Discretization of an area containing a rectangular ridge
for the calculation of SPP reflection coefficient.

electric field E on a silver surface with a silver ridge of the di-
electric function ε = εb + �ε is calculated by the discretized
Lippmann-Schwinger equation:

Eμ(xi ) = Eb, μ(xi ) + k2
0

∑
j �=i

∑
ν

G0,μν (xi − x j )�εEν (x j )Aj

+ k2
0

∑
ν

Mμν�εEν (x j ) −
∑

ν

Lμν

εb
�εEν (x j )

+ k2
0

∑
j

∑
ν

GR,μν (xi − x j )�εEν (x j )Aj, (2)

where the suffix indicates the cell number (i, j = 1,

2, · · · , N ), Aj is the area of the jth cell, k0 is the wave number
in the air, G0 and GR are the homogeneous and reflected
Green’s tensors, (Lμν ) and (Mμν ) are the polarization tensor
and its compensative tensor for the discretized Lippmann-
Schwinger equation (μ, ν = x, z). The tensor (Lμν ) has ele-
ments of Lμν = δμν/3 for square lattices [27].

G0 and GR are obtained by using the SPP field on the
metal surface as the background field [27]. By sequentially
calculating the scattering field and the Green’s tensor at each
cell, a scattering field due to the entire ridge can be obtained.
We approximated the scattering field using an iterative algo-
rithm [28,29]. First, we rewrite Eq. (2) using G(0) = G0 + GR

and obtain

E (k)
μ = E (k−1)

μ +
∑

ν

G(k−1)
μν;ilk

Vlk Alk E (k)
νlk

. (3a)

The scattering field and the Green’s tensor were iteratively
calculated over all lattice points labeled lk (lk = 1, 2, · · · , N )
as

G(k)
μν;i j = G(k−1)

μν;i j +
∑

ξ

G(k−1)
μν;ilk

Vlk Alk G(k)
μν;lk j . (3b)

Here, Vlk is a potential represented by Vlk = k2
0�ε(xlk ).

Equations (3a) and (3b) can be solved algebraically in an
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FIG. 2. Amplitude R and phase shift φ of the reflection coefficient of SPP as a function of ridge width w calculated for various energies:
[(a) and (b)] ridge height of h = 50 nm and [(c) and (d)] h = 100 nm.

incremental manner of k, and the scattering field is approx-
imately obtained.

For the calculation of the reflected SPP, we used the fact
that the Green’s tensor represents the excitation of the back-
ward SPP at the poles kx = −kpx as dealt with in Ref. [27]. We
can obtain the reflected SPP by summing all the excitations
from the polarization P = �εE in the ridge of the height h
and width w placed under the already calculated scattering
field, as shown in the following equation:

E (R)
p (x) = −ε

√
ε

(1 − ε2)k2
0

∑
x j in ridge

ei{−kpx (x−x j )+kpz (z+z j )}

×
(

(kpz )2 kpzkpx

−kpzkpx −|kpx|2
)

�εA jE(x j ). (4)

The incident SPP and the reflection SPP are in the form
of ei(kpxx+kpzz) and Reiφei(−kpxx+kpzz), and the amplitude R and
phase shift φ of the reflection coefficient were calculated by
setting the origin of the x-axis at the outer end of the ridge.
Figure 1(b) shows, as an example, the electric field distribu-
tion calculated for a ridge width of 150 nm and a ridge height
of 100 nm at 1.88 eV. In the calculation we take an area of
800 nm × 400 nm and a cell size of 16 nm square, and then the
total number of cells is N = 1250. It is seen that the antinode
of the SPP produced by the interference between the incident
SPP and the reflection SPP is located near the outer end of the
ridge but slightly shifted from there.

The dependence of SPP reflection coefficient on the rectan-
gular ridge width was investigated from calculation by the the-
ory. The size of the discretization cell was set to 5 nm square
and the total number of cells N = 12800. The ridge width was
varied from 50 nm to 400 nm at a fixed height of 50 nm in

steps of 25 nm for calculation. The range of SPP energy was
selected according to the experiment. For calculation, we refer
to the optical constants of silver by Johnson and Christy [30].
Figures 2(a) and 2(b) show the dependence of R and φ on the
ridge width w calculated with several energies from 1.88 eV
to 2.75 eV. The amplitude R in this energy range becomes
maximum at w = 100 to 150 nm and w = 300 to 400 nm, and
becomes minimum around w = 200 nm. The maximum value
of R increases as the energy of SPP increases. The phase shift
φ decreases with increasing w, but it changes abruptly near
w = 200 to 250 nm where R is minimized. Both amplitude
and phase shift oscillate quasiperiodically as the ridge width
increases. Figures 2(c) and 2(d) show the dependence of R and
φ when the ridge height is 100 nm. Comparing the curves of
the same energy for the amplitude R in Figs. 2(a) and 2(c), R
is larger when h = 100 nm, and the maximum and minimum
positions are shifted to the smaller w. Similarly, it can be seen
from Figs. 2(b) and 2(d) that the phase shift φ also oscillates
more largely at h = 100 nm, and the curve of φ of the same
energy shifts to the smaller side of w.

III. SIMPLE MODEL OF SPP REFLECTION
BY RECTANGULAR RIDGE

We propose a simple model to understand intuitively the
dependence of the amplitude R and the phase shift φ on the
ridge width w shown in Fig. 2. As schematically shown in
Fig. 3, the reflection due to the rectangular ridge is represented
by the interference of the reflected waves of the SPP by the
two steps. Let rueiφu and rd eiφd be the reflection coefficients
of the up step at the front side of the rectangular ridge and
the down step at the outer end, respectively. The reflection
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FIG. 3. Reflection model of SPP by rectangular ridge.

coefficient of the ridge is expressed as

Reiφ = ruei(φu−2kpw) + tutd rd eiφd /
(
1 − rd

2ei(2φd +2kpw)). (5)

The position of the down step is taken as a reference of
the phase of the reflected wave as in the previous section.
Therefore the phase difference −2kpw is added to the phase
of the reflected wave of the up step with respect to the down
step. In addition, tu and td are the transmission coefficients for
the SPP crossing the up step from left to right and vice versa,
respectively. The last factor in the second term of Eq. (5)
represents the effect of multiple reflection of SPP on the ridge.
Equation (5) shows that the reflection coefficient of a specific
energy E oscillates with respect to w, and its period becomes
2π/2kp(E ) = λp/2.

Figure 4(a) shows the relation between the ridge width w

and the energy, which gives the maximum and the minimum
reflection amplitude (R), extracted from the calculated result
of Fig. 2(a). Our preliminary experiments of the reflection of
SPP by a single step suggested that up step approximately
acts as a fixed end (φu ∼ π ) and down step acts as an open
end (φd ∼ 0). As schematically shown in Figs. 4(b) and 4(d),
when the ridge width w is λp/4 and 3λp/4, the reflected waves

by the two steps are in phase. Therefore it is expected that
the reflected waves cooperatively interfere with each other
and R becomes large. On the other hand, when w is λp/2,
the phases of the two reflected waves differ by π as shown
in Fig. 4(c), so that the two waves distractively interfere
so as to cancel each other, and R becomes minimum. The
relation between the ridge width and energy expected from
this simple consideration is represented by the solid lines
in Fig. 4(a) using the dispersion relation of SPP on silver
surface.

The ridge width giving the theoretically calculated maxi-
mum and minimum R shows the w dependence similar to the
simple model in the whole energy range of the figure, but its
value is about 40 nm smaller than the solid line. This indicates
that the up and down steps at both ends of the ridge do not act
as perfectly fixed end and open end, respectively, i.e., φu and
φd deviate from π and 0. Furthermore, as shown in Fig. 2,
the position of w at which R becomes maximum or minimum
also depends on the ridge height. Figure 2 shows that the
curves of R and φ shifts to the smaller w as a whole when
the ridge height increases from 50 to 100 nm. This behavior
can be expressed by replacing the first term of Eq. (5) with
ruexp[i{φu − 2kp(w + ηh)}]. Here, η is a fitting parameter
taking a value between 0.0 and 1.0.

Here we describe how to select parameters that approxi-
mate the calculation results of the amplitude and phase shift
of the ridge at h = 50 nm [Figs. 2(a) and 2(b)]. Since the
minimum value of R is close to 0, the amplitudes of ru

and tutd rd should have nearly the same values. Also, from
the maximum value of R, it is required that their values
should be around 0.2 to 0.25. Regarding the phase, we started
from φu = π and φd = 0, and changed them until they ap-
proached the proper values to reproduce the theoretical curves
in Fig. 2. These phases make the curve in Fig. 2(b) to shift
in the vertical direction. Furthermore, the parameter η and

FIG. 4. (a) Relation between ridge width and energy giving maximum and minimum reflection amplitude (h = 50 nm): Plots are extracted
from the calculated values in Fig. 3, and solid lines indicate λp/4, λp/2, and 3λp/4 lines against energy. [(b)−(d)] Schematic diagram of the
SPP reflection by ridges of various widths; (b) D = λp/4, (c) D = λp/2, and (d) D = 3λp/4.
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FIG. 5. (a) Amplitude R and (b) phase shift φ of the reflection coefficient of a rectangular ridge with a height of 50 nm calculated using
(Reiφ )h=50. [(c) and (d)] Profiles of R(w) and φ(w) at energy of 2.5 eV, respectively.

the phase difference between φu and φd shift the curve in
Figs. 2(a) and 2(b) in the horizontal direction. These parame-
ters were adjusted so as to reproduce all the theoretical curves
in Figs. 2(a) and 2(b). In addition the wave number kp of SPP
was approximated by a function of energy E derived from the
dispersion relation using the optical constant data of silver by
Johnson and Christy [30], though its imaginary part is very
small in the relevant energy range.

Finally, the reflection coefficient of the ridge at h = 50 nm
[Figs. 2(a) and 2(b)] is qualitatively well reproduced by set-
ting ru = 0.2, φu = 1.15π, tutd rd = 0.25, φd = 0.15π, and
η = 0.3 in Eq. (5). Here we simply denote this function as
(Reiφ )h=50. It is difficult to match the theoretical curves accu-
rately over a wide range of w and E because the theoretical
curve is not a periodic function, and some deviation occurs
near the region where the phase shift changes rapidly. A two-
dimensional maps representing R(E ,w) and φ(E ,w) calcu-
lated using (Reiφ )h=50 are shown in Figs. 5(a) and 5(b), respec-
tively. Figures 5(c) and 5(d) show the profiles of R and φ as a
function of w at E = 2.5 eV for comparison with the curves in
Figs. 2(a) and 2(b). Next, the reflection coefficient of the ridge
with h = 100 nm [Figs. 2(c) and 2(d)] is well reproduced by
setting ru = 0.3, φu = 1.15π, tutd rd = 0.35, φd = 0.15π,

and η = 1.0, which is denoted as (Reiφ )h=100. In addition, we
prepare the reflection coefficient (Reiφ )h=70 of the ridge with
h = 70 nm because it will be needed for simulation in the later
section. Unfortunately, we did not calculate it by the theory,
but it is expected that (Reiφ )h=70 can be roughly approximated
by interpolating between (Reiφ )h=50 and (Reiφ )h=100. Then
we set the parameters for (Reiφ )h=70 as ru = 0.25, tutd rd =
0.3, η = 0.6 and with the same values of φu and φd . We will

use these reflection coefficients, (Reiφ )h=50 and (Reiφ )h=70, for
the simulations in the later section.

IV. ANGLE-RESOLVED MEASUREMENT
OF 1D-CAVITY BY STEM-CL

The properties of radiation from a cavity consisting of
two rectangular ridges were investigated by the STEM-CL
method. The experimental setup is schematically shown in
Fig. 6. The details of the angle-resolved CL experiment with
STEM are described in our previous paper [10,17]. For the
cavity sample, a pair of rectangular ridges of width (w) were
arranged in parallel at a distance (d ). Ridge height was set
to h = 50 or 70 nm, and ridge length 50 μm. Here, the
cavity length (L) is defined by the interval between the outer
down steps of the cavity, i.e., L = d + 2w. Cavity samples

FIG. 6. Setup of angle-resolved measurement using a parabolic
mirror.
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were prepared on InP substrates by electron beam lithography
and coated with 200-nm-thick silver layer. The sample was
scanned with an electron beam having energy of 200 keV and
a probe size of about 10 nm using a STEM (JEM2000FX).
The cavity length was measured from SEM mode observa-
tion of the STEM. An electron beam irradiating inside the
cavity excites an SPP and forms an SPP standing wave of
a specific energy satisfying the cavity condition. The SPP
standing wave is converted into light by ridges on both sides
of the cavity. The STEM-CL measurement was performed
to provide the angle-resolved spectral (ARS) pattern and the
beam scanning spectral (BSS) image. In the measurement of
the ARS pattern, the emission spectrum of s polarized light
was recorded with moving a pinhole mask horizontally while
scanning the electron beam over the inner flat region (width
d) in the cavity. The diameter of the pinhole is 0.5 mm, which
corresponds to 1.2 × 10−2 str in the surface normal direction.
In the measurement of the BSS image, the emission spectrum
of s polarized light was recorded while moving an electron
beam across the cavity with the pinhole fixed.

In the STEM-CL measurement, a sample is placed at the
focal position of the parabolic mirror inside the STEM (Fig. 6)
so that the rectangular ridge is parallel to the axial direction
of the parabolic surface. In the measurement of the ARS
pattern, the sample is tilted about 5 ° around the direction
perpendicular to the rectangular ridge (X direction) and pin-
hole mask is set at the position corresponding to the surface
normal direction (Z direction) [17,21]. This slightly tilts the
incident beam direction from the surface normal direction,
though it does not affect the symmetry in the X direction.
The pinhole mask was moved from this position horizontally.
This corresponds to limiting the radiation direction to be
detected approximately in the plane (X -Z plane) formed by
the direction perpendicular to the ridge and the surface normal
direction. That is, the wavevector K of the emitted photons is
always within the X-Z plane.

V. ANGULAR DISTRIBUTION OF SPP INDUCED
RADIATION FROM 1D CAVITY

In order to explain the mechanism of the ARS pattern
and the BSS image, we propose a simplified cavity model
replacing the rectangular ridge with a single wall, setting the
cavity length to L and the reflection coefficient of the side wall
to Reiφ . When the SPP wave is reflected by the side wall,
a part of it is converted into light. As shown in Fig. 7(a),
the radiation efficiency from the sidewall in the direction of
SPP progression side is Seiδ , and the efficiency radiated to the
opposite side is S′eiδ′

. Therefore S = S′ in the surface normal
direction (θ = 0) and S(θ ) �= S′(θ ) in the inclined direction. It
was theoretically suggested that the radiation by a small ridge
can be approximated by dipole radiation from a dipole formed
in the ridge [15]. Considering the case that the electric dipole
formed by the SPP reflection is nearly parallel to the surface
plane, the direction of the dipole arising on the right side is
opposite to that of the left side, so the phase difference π

exists between these radiations. When an electron is incident
on position X in the cavity, the excited SPPs propagate in the
positive and negative directions of the X axis and are reflected
by the side walls. Consequently radiations with amplitudes of

FIG. 7. (a) Schematic diagram of SPP reflection and simultane-
ous radiation from the ridges in the 1D cavity. (b) Projection of polar
coordinates of the tilted sample onto the parabolic mirror and pinhole
movement trajectory for ARS measurement (line AB). (c) Observed
ARS pattern from the cavity and (d) simulated ARS pattern.

ψ+ and ψ− are generated, respectively. In addition, transition
radiation ψTR which is generated when electrons are incident
on the metal surface is added to this [31,32]. By taking the
sum of these, the amplitude of total radiation from the cavity
is expressed by the following equation:

ψ = ψ+ + ψ− + ψTR

= T (θ )e−iωt + 2B[e−ikpX (Seiδ − S′eiδ′
Rei[(kp−K sin θ )L+φ] )

− eikpX (S′eiδ′ − SeiδRei[(kp−K sin θ )L+φ] )]

× 1

1 − R2e2i(kpL+φ)
eikp

L
2 e−iωt . (6)

Here, T and B are the transition radiation and the SPP exci-
tation amplitude, respectively, K is the wave number of the
emitted light, and θ is the emission angle measured from the
surface normal direction.

The resonant energy of the standing wave mode in the
cavity can be obtained from the ARS pattern. The phase shift
φ associated with the SPP reflection can be extracted through
the cavity condition of Eq. (1) using the wave number kp

corresponding to the resonant energy. The cavity used for
the experiment was composed of two ridges with a width
(w) of 330 nm and a height (h) of 50 nm and was placed
at a distance (d ) of 870 nm so that the cavity length L
became 1530 nm. The pinhole mask was scanned along the
line AB in Fig. 7(b) so as to intersect the surface normal
direction (P) to obtain the ARS pattern in Fig. 7(c). The bright
spotlike contrasts appear at the energies of 1.93, 2.21, and
2.55 eV. The bright contrast appearing at θ = 0 corresponds
to radiation by an antisymmetric standing wave (n = odd)
mode with a node at the cavity center, while the other one
corresponds to a symmetric standing wave (n = even) mode
with an antinode at the center. It is known that the wave
number of SPP in the cavity follows the dispersion relation of

075406-6



RIDGE REFLECTION OF SURFACE … PHYSICAL REVIEW B 100, 075406 (2019)

FIG. 8. Phase shift of the reflected SPP as a function of energy:
open circles are the calculated values of Fig. 2 and red solid circles
are experimental values derived from the ARS patterns of the cav-
ities. The ridge width is 330 nm in the experiment and 325 nm in
the calculation, respectively. The blue line indicates the phase shift
of (Reiφ )h=50 at w = 325 nm.

SPP propagating on a flat silver surface [21]. Using the SPP
dispersion relation of silver surface, the corresponding wave
number kp of each energy is obtained, and we found from the
cavity condition that n = 5, 6, and 7 for the observed cavity
modes. At the same time, from these values of n, the phase
shifts at these energies E5, E6, and E7 are obtained to be
φ5 = 0.089π, φ6 = 0.30π, and φ7 = 0.27π .

The relation between the phase shift and energy with the
330-nm ridge width thus obtained is plotted in red dots in
Fig. 8. Values obtained from other cavities with the same
ridge width and different cavity lengths are also plotted. For
comparison, a plot of the theoretical value at w = 325 nm
extracted from Fig. 2 is shown by an open circle in Fig. 8.
Experiments and theoretical plots show good agreement with
each other. This result proves that the theoretical calculation
of the SPP reflection coefficient obtained in Sec. II is suffi-
ciently correct. Therefore this ensures the validity of using the
approximate function (Reiφ )h=50 of Eq. (5) as the reflection
coefficient. The phase shift of (Reiφ )h=50 at w = 325 nm is
indicated by the blue line in Fig. 8. The deviation of this
function from the theoretical phase shift and the observed one
is about 0.1π or less in the energy range of 2 to 3 eV. A
simulated ARS pattern is shown in Fig. 7(d) that is calculated
by using Eq. (6) with (Reiφ )h=50 and the other appropriate
parameters. The radiation intensity depends on the beam
position and is integrated over the cavity to compare to the
observed ARS pattern. It is seen that the simulation pattern is
in good agreement with the experimental result in Fig. 7(c).
The characteristics of strong contrast such as the bright dots
in the ARS pattern are mainly determined by the reflection
coefficient (Reiφ )h=50.

Here we mention the other parameters used for the simu-
lation, i.e., T (E , θ ), B(E ) and S(E , θ ), which give a broad
background contrast of the ARS pattern. The transition ra-
diation is polarized parallel to the reflection plane, the ex-
pression of which is given in Refs. [31,32]. The angular
distribution can be approximated as T (θ ) ∝ sinθcosθ , so T
is zero at θ = 0 ◦ and is maximum around θ = 45◦. Also,
the intensity decreases approximately in inverse proportion to

FIG. 9. (a) Schematic diagram of the BSS image measurement,
and (b) pinhole mask position (red circle) on the parabolic mirror
image. (c) BSS image taken using the radiation in the surface normal
direction. (d) Simulated image calculated using Eq. (7).

E as the energy E increases [17]. The excitation amplitude
B of SPP is determined from the theory of electron energy
loss spectroscopy (EELS) [33]. On bulk silver surfaces, B
has a broad maximum over the range of 2.0 to 2.5 eV. As
for the radiation S by the ridge, since the ridge width is
close to 300 nm, referring to the result of Ref. [15,27], S(θ )
can be approximated by the dipole radiation of the dipole
tilted by a small angle α from the surface. That is, S(θ ) ∝
sin2(θ + π/2 + α), and S′(θ ) = S(−θ ). The phases of S(θ )
and S′(θ ) are taken as δ(θ ) = δ′(θ ) because the radiations are
from the same type of oscillator to the directions of θ and −θ .
Then, the radiation by S becomes maximum at θ = ±α. Since
T , B, and S are slowly changing functions with respect to
energy in the relevant energy range, the energy dependencies
of T , B, and S were ignored for simplicity in the simulation.
Also, it was found from the actual calculation that the phase
difference between BS and transition radiation T has little
effect on the ARS pattern. The smaller the BS/T , the weaker
the contrast of the ARS pattern. After all, only two parameters
are required for the simulation, which is BS/T and α. We set
these parameters as BS/T = 0.4 and α = π/9 to match the
observed ARS pattern [Fig. 7(c)], and use them also for the
other simulation.

The BSS image using radiation in the surface normal di-
rection reflects the real space distribution of the SPP standing
wave in the cavity. As schematically shown in Fig. 9(a),
the BSS image was obtained by detecting radiation in the sur-
face normal direction while scanning the electron beam across
the cavity. The red circle in Fig. 9(b) represents the radiation
angle range detected by the pinhole mask around the position
P on the mirror corresponding to the surface normal direction.
The measured BSS image is shown in Fig. 9(c). Only standing
waves in the antisymmetric mode (n = odd) contribute to this
BSS image. There are five nodes in the contrast of energy E5 ,
which means that n = 5 mode, and similarly the contrast of E7

with seven nodes means n = 7 mode. Both are antisymmetric
standing waves with nodes at the center. It was confirmed that
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the spacing between nodes in the inner planer region of the
cavity coincides with the half period of the SPP wavelength
derived from the dispersion relation of the SPP propagating
on the flat surface. This is the same as the case of the cavity
of a one-dimensional plasmonic crystal [21].

Using T (0) = 0 and Seiδ = S′eiδ′
for θ = 0, Eq. (6) can be

rewritten as

IBSS(X ) =
∣∣∣∣2BS

(
1

1 − R

)
sinkpX

∣∣∣∣
2

. (7)

This expression represents the square modulus of the z com-
ponent of the electric field of the cavity eigenstate on the
surface, |Ez|2, or the electromagnetic local density of states
projected on the electron trajectory (z axis) (zEMLDOS)
[34–36]. However, this equation cannot be applied near the
steps at both sides of the ridge because of the complex electric
field distribution near the step. It can be seen from Eq. (7)
that the intensity of the BSS image becomes stronger as
the amplitude R becomes closer to 1. From the results in
Fig. 2(a), at the ridge width of 325 nm, R is as small as
0.1 at E5 = 1.93 eV and as large as 0.4 at E7 = 2.55 eV.
Correspondingly, it can be confirmed that the contrast in the
inner region between the two ridges is weak at E5 and strong
at E7 . However, the contrast of E5 is strong at the step on
the side of the ridge. This strong radiation is considered to be
due to the local standing wave formed on the ridge. Looking
at the intensity distribution of the contrast of the standing
wave of E7 in detail, the spacing between the antinodes of
the contrast changes discontinuously at the inner up step. In
addition, the outer down step is not completely located at
the position of the antinode. These contrasts clearly reveal
the spatial distribution of the phase of the standing waves
in the cavity and give the validity to introduce the parameters
of ηh and φd to the reflection coefficient. Figure 9(d) shows
a simulated BSS image calculated by Eq. (7) where the same
parameters as in Fig. 7(d) were used. The intensity distribution
in the cavity is well reproduced in the simulated image except
near the steps.

Finally, we examined the range of sizes of the cavities in
which the above model approximating the ridge as a single
wall is valid. Cavities with varying width L were used, of
which ridge height is 70 nm and ridge widths are (a) w =
265 and (b) 337 nm. Figures 10(a) and 10(b) show the ARS
patterns from these cavities. The corresponding simulation
patterns are presented under each ARS pattern. Regarding
the parameters for the simulation, we used the reflection
coefficient (Reiφ )h=70 mentioned in Sec. III and the same
values of α and BS/T as before.

When the cavity length is larger than 1000 nm, there is
a slight difference in the intensity distribution between the
observed and simulated ARS patterns, but a good match is
obtained. Therefore this means that the model we used is
valid for L > 1000 nm at w ∼ 300 nm. For L < 1000 nm, the
simulation results cannot well reproduce the observed ARS
pattern. In this case, the distance between the ridges is of
the same order as the ridge width so that the radiation from
the cavity cannot be approximated as the interference of the
dipole radiations from the two ridges. In this small L region,
the radiation intensity is occasionally enhanced as seen in the
pattern of L = 857 nm in Fig. 10(a). To find such enhancement

FIG. 10. ARS patterns from 1D-cavities with different cav-
ity length. Simulated pattern is under each ARS pattern. The
ridge height is 70 nm and the ridge widths are (a) w = 265 and
(b) 337 nm, respectively.

condition can be important to the application, so a further
theoretical approach is expected.

VI. CONCLUSION

Reflection characteristics of surface plasmon polariton
(SPP) by rectangular ridge on silver surface were investigated
from theory and experiment. The amplitude and phase shift
of the reflection by the ridge were calculated by the SPP
scattering theory using the Green’s tensor method for various
ridge widths and energies. This theoretical result can be well
reproduced by a simple model expressing the superposition of
reflections by the two steps constituting the ridge. The param-
eters in the expression of the reflection coefficient are properly
determined to fit the theoretical curves, and two-dimensional
maps representing R(E ,w) and φ(E ,w) are obtained using
these parameters. The SPP radiation characteristics from the
cavity consisting of rectangular ridge pairs was clarified for
the first time using the STEM-CL method and was used to
evaluate the theoretical calculations of the reflection coeffi-
cient. It was confirmed that the amplitude and phase shift of
the ridge reflection of the SPP standing wave satisfying the
cavity condition are in good agreement with the theoretical
ones. The simulation of the ARS pattern using the simple
model of the reflection coefficient agreed well with the exper-
imental result. However, this treatment is valid for the cavity
whose inner distance d between the ridges is sufficiently
larger than the ridge width w. The present results indicate
that the STEM-CL method is a powerful tool for studying
the radiation characteristics of the plasmonic cavity and the
nature of the SPP standing wave mode (cavity mode). These
results can provide useful information in the design of nano-
plasmonic devices using rectangular ridges such as cavities.
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