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Unconventional electromagnetic properties of the graphene quantum dots
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Quantum dots based on the graphene stripes show unconventional optical properties in the THz frequency
range. The graphene quantum dot (GQD) is made of an electrically gated stripe with zigzag edges. Inside the
active region (AR), which is enclosed between the source and drain electrodes, there are two sharp energy
(±) levels, whose separation 2� is controlled with Stark effect by applying the lateral dc electric field.
Such edge states determine the unique nature of elementary excitations, chiral fermions, that are responsible
for the nonlinear optical response revealing a potential for many applications. They are, e.g., the frequency
multiplication and self-focusing of two-dimensional solitons. Furthermore, when injection of the nonequilibrium
electrons causes an inverse population of the levels localized in AR, the subsequent recombination of electrons
and holes leads to a coherent emission of the THz waves.
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Unconventional optical properties of graphene in the THz
range with frequencies f = 0.5–100 THz attract significant
attention of many researchers [1–7]. Interest in the THz
waves (T rays) is motivated by a variety of potential appli-
cations in medicine, information technology, communication,
and security. One example of the T-ray application is the
remote sensing of chemical and biological substances that
requires powerful THz lasers and high-resolution spectral
analyzers. There are also suggestions of quantum dot THz de-
tectors [5,6], frequency multipliers [8–10], and self-focusing
of two-dimensional solitons [11] in the electrically tunable
metastructures. Recently reported [5,6] carbon nanotube THz
receivers and spectral analyzers exploit the field-induced
single-electron tunneling and transitions between the quan-
tized electron levels. Furthermore, unique plasmonic charac-
teristics of graphene allow building the tunable THz lasers
[7]. The surface plasmons (SP), whose spectrum changes
versus the applied gate voltage, have been observed in several
experiments [12–22] on graphene.

One remarkable feature of graphene is that the carrier
concentration, the electrochemical potential μ, and hence its
conductivity σ can be appropriately tuned, e.g., by apply-
ing appropriate electric potentials to the gate electrodes [12,
23–25]. Hence, optical properties of the 2D atomic monolay-
ers are readily tunable in the terahertz (THz) spectral region
[12,26], enabling their application in the compact electrically
controllable THz optical devices [27]. These open new oppor-
tunities as compared to the noble metals that are typically used
in THz devices [23]. Hence, the SP spectrum in the 2D atomic
monolayers is altered in situ, without any changes in the
device’s design while optical and plasmonic characteristics of
the 2D materials are tunable in the terahertz (THz) spectral
region [12,26].

Currently, there are several concepts of the THz emitters
made of the carbon nanotube and graphene [12–15]. A lot of
attention is paid to the solid state laser involving localized
quantum states arising in systems with reduced dimension-
ality, e.g., 2D (quantum wells) or 1D (quantum dots). One

example is the quantum cascade lasers (QCL) based on lay-
ered semiconducting superlattices where a series of quantum
wells with 2D electron spectrum is created. A “proof of
concept” tunable THz laser based on the gain modulation by
graphene plasmons in an aperiodic lattice and exploiting the
unique properties of graphene plasmons was built and tested
in Ref. [7]. However, despite their remarkable performance,
such quantum cascade lasers (QCL) have serious setbacks.
A basic problem is that the energy dissipation caused by
electron-phonon and electron-electron collisions leads to con-
siderable intrinsic Joule heating raising the internal local
temperature far above the temperature of the external envi-
ronment. Such local Joule heating causes an adverse negative
effect on the QCL performance. To reduce the negative effect
of the local heating, one should decrease the bias current
below some threshold value and also cool down the QCL
structure below 200 K. The above measures complicate the
QCL design and limit the QCL system power and efficiency.
Also there are several concepts of the THz emitters made
of the carbon nanotube and graphene [12,13]. A “proof of
concept” tunable THz laser based on the gain modulation by
graphene plasmons in an aperiodic lattice and exploiting the
unique properties of graphene plasmons was built and tested
in Ref. [7].

A possible fundamental solution to the above issue of
overheating represent systems with lowered dimensionality,
e.g., with 1D or even 0D instead of 2D. The electron bands
in the 1D and 0D systems are much narrower than in the
2D systems, which also means that the phase space where
the electron-phonon scattering occurs is reduced and most
of the electron-phonon scattering processes are eliminated.
Hence, in the 1D and 0D systems, the intrinsic energy dis-
sipation due to suppression of the electron phonon scattering
is considerably lowered as well. This motivates the interest
to electromagnetic properties of low-dimensional comprising
quantum dots. Promising examples are the novel 2D atomic
monolayers like graphene and its allotropes. The graphene
stripes and carbon nanotubes represent 1D systems, whose
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dimensionality is reduced further to 0D by introducing an
additional confinement by placing electrodes and local gates.
Basically, quantum dot QD lasers are good candidates for the
next generation high-speed communication and already are
more promising than quantum well lasers with respect to im-
portant features like threshold current, temperature stability,
chirp, and feedback insensitivity [28–31]. However, there is
a need to understand what limits the performance and how
it can be improved. This requires a better understanding of
the underlying dynamics on a microscopic level. Below we
study a graphene quantum dot using microscopic approach for
calculating the optical susceptibility.

In this work we consider an all-electrically controlled
0D quantum dot based on the graphene stripe with zigzag
edges [42] that comprises a plasmonic THz microcavity. The
motivation for this work is the recent success in synthesis
of graphene stripes with perfect zigzag edges [32] where
according to Refs. [33–36] the topologically protected, sharp,
and voltage-controlled edge energy levels emerge. Below
we will see that exploiting such stable, voltage-controlled
edge energy levels opens new opportunities for designing the
tunable THz devices. We utilize the unique intrinsic properties
of graphene that allow for building various devices with novel
remarkable properties. The study is focused on the ability
of graphene quantum dot (GQD) to dynamically modulate
round-trip modal gain values and shows potential for forming
the laser emission. Such gated 2D monolayer material serves
as a powerful tool to control the optical properties of GQD.
The GQD device is instantly tunable and is all electrical in
nature, with minimal electrical power demands.

The goal of this work is to compute the optical suscepti-
bility of the graphene quantum dots (GQD) that describe their
unconventional electromagnetic (EM) properties. The efforts
are focused on the all-electrically controlled GQD fabricated
using the graphene stripes with atomic zigzag edges. The
knowledge of how the optical susceptibility of GQD depends
on the frequency and electrochemical potential allows bet-
ter understanding of the physical mechanisms related to the
electrically controlled absorption and emission of the elec-
tromagnetic field. Furthermore, the computation results allow
finding, e.g., the conditions to the THz waves emission by the
all-electrically controlled GQD. Furthermore our study also
focuses on finding the nonlinear electromagnetic response
of GQD. We will see that the physical mechanism of such
nonlinearity originates from the unconventional properties of
chiral fermions in graphene stripes with atomic zigzag edges.

I. THE MODEL

Geometry of the proposed device is shown in Fig. 1(a)
where the central part is the graphene stripe, whose properties
are controlled by the source drain and gate electrodes. The
active region represents the graphene quantum dot containing
two sharp (±) levels originating from the edge states and
spaced by 2�. Since the edge states are topologically pro-
tected [35], the (±) levels are very sharp and robust, even if
the edge roughness and impurities are present. The magnitude
of the level spacing 2� is controlled using the Stark effect
by setting the electric voltage between the split gates [36].
Besides, the energy level positions En in the left (L) and
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FIG. 1. (a) Geometry of the all-electrically controlled quantum
dot (GQD) made of the graphene stripe with zigzag edges. The
split gates form a transversal electric field Esg, which due to Stark
effect splits the energy 0 level into the upper (with energy +�)
and lower [with energy −�, see sharp peaks in the electron density
of states in Fig. 2(d) that originate from the (±) levels], whose
inverse population is created when a finite bias VSD � 2� is applied
between the source and drain electrodes provided that the electron
electrochemical potentials μL,R in the left and right banks of the
graphene stripe are set, respectively, as μL = E−

gL and μR � E−
gR − �

using the back (±) gates. (b) Energy diagram of GQD.

right (R) side sections of the graphene stripe are controlled by
applying electric potentials VGL,R to the left and right side bot-
tom gate electrodes, respectively. Furthermore, by applying
a finite bias voltage between the source and drain electrodes
one injects the nonequilibrium electrons into the upper level
with energy E+ = +�, thereby creating an inverse population
of the upper (+) level in the active region. The electrons
residing on the upper (+) level then recombine to the lower
(−) level by emitting THz photons. Hence, the subsequent
recombination of the electrons into the lower level with E− =
−� leads to an emission of the T rays with frequency f =
2�/h. The interaction between light and material is controlled
by the shape of the electromagnetic density of states (DOS) in
the microresonator [37,38]. These mean that the magnitudes
of lasing frequency f and the amplification of resonant modes
are set by applying the split-gate voltage VSG across the active
region of the laser and/or by the source drain and bottom
gate voltages as shown in Fig. 1. The latter mechanism is
studied in detail below in Sec. V. We will see that the resonant
frequency of THz emission depends not only on the split gate
voltage VSG as mentioned above but also it varies versus the
electrochemical potential μ, which is controlled by applying
voltage to the gate electrodes. This enables flexible all-electric
manipulations of the lasing emission parameters [39–41].
Understanding the mechanisms determining the optical prop-
erties of GQD is accomplished using solutions to the Dirac
equation complemented by appropriate boundary conditions
(see Refs. [4,33–36,42] for details).
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FIG. 2. (a) One side of the Nb/Al2O3/Pd/G gate which is de-
posited on the graphene stripe to form the GQD active region shown
in Fig. 1. (b) The energy diagram at the graphene/gate boundary.
(c) Electron spectrum showing the subband structure of GQD made
of the graphene stripe enclosed between two timberlike split gate
electrodes to form the active region with effective zigzag edges
shown in Fig. 1(a). (d) The local electron density of states D(ε) inside
the GQD active region. The transversal dc electric field Esg due to
the Stark effect splits the zero-energy peak into two separate peaks
forming an energy gap 2�.

II. SUSCEPTIBILITY OF GRAPHENE

Initially we consider the simplest case of the two-
dimensional (2D) electron gas in the atomic monolayer repre-
senting a suspended pristine graphene. A general expression
for the optical susceptibility of free carriers in graphene that
are chiral fermions (HF) takes the form

χ (q, ω) = |dcv|2
L2

∑
s,s′=±1

∫
d2k

(2π )2

f (εs,k+q) − f (εs′,k )

ω − εs,k+q + εs′,k + iη

(1)

where dcv is the electric dipole matrix element, whose indices
c, v are attributed to the conducting/valence bands, L is the
size of a square-shaped 2D sample, η is the damping parame-
ter associated with the electron energy dissipation during the
inelastic collisions, k is the 2D electron momentum, q and
ω are the respective electron momentum and energy change,
f (εs,k ) is the HF distribution function that depends on the
HF excitation energy εs,q, which for the pristine graphene
conforms to the continuous dispension law

εs,q = svF |q| (2)

where s and s′ = ±1 are the HF branch indices, and vF is
the Fermi velocity in graphene. The damping parameter η in
Eq. (1) actually plays the same role as a parameter of the
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FIG. 3. Optical susceptibility: (a) �χ (ω) for D = 1...3 (respec-
tive curve labels are 1, 2, and 3), δ = 1, μ = 0.5, and � = 36.
(b) �χ (ω) for D = 1...3 (respective curve labels are 1, 2, and 3),
δ = 1, μ = 0.5, and � = 16. (c) and (d) The real (curve 1) and
imaginary (curve 2) parts of the pristine graphene susceptibility
χ (ω) [see (c) for μ = 1] and χ (μ) [see (d) for ω = 3], respectively,
versus the frequency ω and electrochemical potential μ for η =
0.02, � = 6. (e) The real (curve 1) and imaginary (curve 2) χ (n)
for the pristine graphene for η = 0.2, � = 6, μ = 1. (f) The HF
excitations concentration n(μ) versus the electrochemical potential
μ for pristine graphene.

adiabatic switch-on. For the HF spectrum (2), the density of
states is [42]

DG(ε) = 3
√

3a2

πv2
F

|ε|, (3)

where a is the lattice constant in graphene.
The calculation details of the optical susceptibility are

given in Appendix. Results of the calculation are illustrated in
Fig. 3 where we show the real χ ′ = �χ and imaginary χ ′′ =
�χ parts of the optical susceptibility versus the frequency ω

and electrochemical potential μ. As an illustration, we also
show results for a conventional semiconductor with dimen-
sionalities D = 1, 2, 3 [see Figs. 3(a) and 3(b)]. Parameters
of the calculations, whose details are given in Appendix,
are indicated in the caption. Respective results for �χ (ω)
(curve 1) and �χ (ω) (curve 2) of the pristine graphene are
shown in Fig. 3(c) while Fig. 3(d) illustrates results for �χ (μ)
(curve 1) and �χ (μ) (curve 2). Figure 3(e) shows the results
for χ versus the charge carrier concentration n, as indicated
in the caption. The last Fig. 3(f) shows dependence of the
HF charge carrier concentration n versus the electrochemical
potential μ for pristine graphene.
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At finite temperatures and in the nonequilibrium condi-
tions, the respective calculations of χ (ω,μ) are conducted
numerically. Numeric solutions are also useful when con-
sidering graphene-based structures with more complicated
excitation spectrum. Below we study the optical properties of
the graphene stripe with zigzag edges and nonlinear optical
properties of GQD when a strong ac field is present.

III. ZZ STRIPE OF GRAPHENE

For graphene stripes, whose width W is finite, one should
also consider quantization of the HF excitations in the lateral
direction. Below we compute optical susceptibility of the
graphene stripe with atomic zigzag edges. We use units with
h̄ = 1 and kB = 1 if not stated otherwise. The edge states
[4,33–36,42] emerging in the graphene stripe change the
HF excitation spectrum significantly. This happens because
the chirality of excitations in graphene imposes additional
constrains on reflection processes due to conservation of two
pseudospins. A transverse d.c. electric field E = {0, Ey, 0}
is applied perpendicular to the graphene stripe axis utilizing
the split gate electrodes shown in Fig. 1(a). When Ey = 0,
the electron reflections at the atomic zigzag edges [33,34,36]
cause a crisp narrow energy level to arise at the energy
ε = 0. When the transverse electric field is finite, Ey �= 0,
such the zero-energy level experiences Stark splitting, whose
magnitude is 2� = 2eEyW (see Refs. [4,35,36,42]). Then, the
Stark splitting of the sharp singularities at energies ε = ±�

emerging in the electron density of states [see Fig. 2(d)] is
controlled by the electric field Ey �= 0. Below we will see
that such the electrically controlled HF spectral singularities
are responsible for the remarkable optical properties of the
graphene quantum dots. The effect is described in terms of
the susceptibility χ (ω,μ), which we compute below. An
additional control of χ (ω,μ) is introduced with the top (or
bottom) local gate electrodes [see Fig. 1(a)]. Thus, the respec-
tive local gate voltages control the both, the Stark splitting �

along with the HF electrochemical potential μ. Below we will
see that the shape of χ (ω,μ) depends on both μ and �.

There is no simple analytical expression for the HF exci-
tation energy in the graphene stripe with atomic zigzag edges
[4,33–36,42]. The HF dispersion law [4,33–36,42] is given by
the two equations

εk = μ ±
√

�2 + k2
y v

2
F + k2

x v
2
F (4)

ky = kx

tan(W kx )
(5)

that describe the constrain due to the pseudospin conservation
during elastic reflections of the HF excitations on atomic
edges. The electron energy in graphene stripe (4) depends on
the two components of the electron (HF) momentum, ky (lon-
gitudinal) and ky (transversal), which are related by Eq. (5). In
an infinitely long stripe by width W , ky is continuous while kx

discrete, because the transversal momentum is quantized. In
the geometry in Fig. 1(a), the active region length La is La �
W , therefore the quantization along the y axis is negligible.
We will see that such the constrain allows reducing the
dimensionality of the system from 2D as in pristine graphene
to 1D for the stripe. In Eqs. (4) and (5), εk is the HF energy

variable, μ is the electrochemical potential, � = eEyW is
the Stark splitting of the zero-energy level posing as the
“energy gap” in Eq. (4). In such a case, the splitting energy
also depends on the gate efficiency α. Magnitude of μ is
controlled by the bottom (or top) gate electrodes, while � is
controlled by the split gate electrodes depicted in Fig. 1(a)
as illustrated by the energy diagram in Fig. 1(b). The HF
dispersion law is computed by solving Eqs. (4) and (5).
The HF excitation energy ε(ky) in the graphene stripe with
zigzag edges is shown in Fig. 2(c) versus the longitudinal
momentum ky. Technically, the electron density of states
shown in Fig. 2(d) is computed as

DZZ(ε) =
∣∣∣∣dky(kx )

dεk

∣∣∣∣ =
∣∣∣∣dky(kx )

dkx

/dεk

dkx

∣∣∣∣, (6)

which gives an analytical expression

DZZ(ε) =
∣∣∣∣εk

kx

tan kxW − kxW (tan2 kxW + 1)

tan2(kxW )

∣∣∣∣, (7)

where according to Eqs. (4) and (5), kx depends on the energy
variable ε. To compute χ (ω,μ) for the quasi-1D graphene
stripe with atomic zigzag edges, we again use the general
expression Eq. (1). The calculation is simplified for the direct
interband transitions (q = 0). Then we get

χ (ω) = |dcv|2
2πa2

∫
[ f (εk − μ) + f (εk + μ) − 1]

ω ± 2εk + iη
dkydkx

= |dcv|2
2πa2

∫ kmin

kmax

DZZ(kx )[1 − f (εk − μ) − f (εk + μ)]

×
(

1

ω − 2εk + iη
− 1

ω + 2εk + iη

)
dkx, (8)

where we use

f (εs,k ) − f (εs′,k ) = f (−μ + εk ) − f (−μ − εk )

= ± [ f (εk − μ) + f (εk + μ) − 1] (9)

and

dky = DZZ(kx )dkx. (10)

When integrating (8) in infinite limits, the respective integral
diverges. Therefore we introduce cutoff by setting the lower
kmin and upper kmax limits of integration in Eq. (8), which,
respectively, are found as solutions of the equations

k2
min = μ2/v2

F − [ky(kmin)]2 − (�/vF)2 (11)

and

k2
max = �2/v2

F − [ky(kmax)]2 − (�/vF)2. (12)

Above we have used that the respective change of the HF
excitation energy is −εs,k + εs′,k = ±2εk , where εκ is defined
by Eq. (4). The above Eqs. (5), (11), and (12) serve as the
closed system of transcendental equations allowing to finding
kmin and kmax. From Eq. (6) one can see that in contrast
to pristine graphene, whose HF density of states (3) is a
smooth function of the energy variable E , the respective
density of states DZZ(ε) given by Eq. (6) for the graphene
stripe with zigzag (ZZ) edges shows dramatically different
behavior, as illustrated in Fig. 2(d). Namely, owing to the

075404-4



UNCONVENTIONAL ELECTROMAGNETIC PROPERTIES OF … PHYSICAL REVIEW B 100, 075404 (2019)

appearance of ZZ edge states in the graphene stripe, the
respective singularities in the density of states (6) arise when
tan2(kxW ) = 0 in the denominator of Eq. (7) provided

kx = π

W
m (13)

where m is integer. One can notice the mentioned sharp
singularities at energies ε = ±� (in units of Stark splitting
�) in the plot of DOS in Fig. 2(d), while the singularities are
smoothed at energies, ε > � and ε < −�. The number of
excitations in the ZZ graphene stripe is computed as

N = 2
∑

k

fk → 12
√

3a2

πv2
F

∫ kmin

kmax

DZZ(kx ) f (εk − μ)dkx, (14)

where the lower and upper integration limits are again
determined by solution of Eqs. (5), (11), and (12).

The relevant energy scale in the above formulas (8)–(14) is
determined by the atomic edge geometry and by the graphene
stripe width W . Other energy scales in Eqs. (8)–(14) are
related to ω, �, μ, and η. Typical magnitudes of interest here
are ω ∼ 2π f , where for the electromagnetic field frequency
f = 1 THz, the respective photon energy is h f = 4 meV.
Then, μ ∼ 2� ∼ h f = 4 meV, and we also use η ∼ 0.1�.
Essentially, the last parameter η, which also determines the
width of quantized levels localized in the active region de-
pends on coupling of GQD to the substrate and also by the
inelastic collisions, which also depend on the temperature and
GQD geometry.

IV. ELECTROMAGNETIC EMISSION FROM GQD

A fundamental problem when designing the laser for the
frequency region 0.5–100 THz is that the THz photon energy
ET

ν is relatively low, ET
ν ≈ 4–0.4 eV, as compared to a visible

light photon for which EL
ν ≈ 1.8–3 eV. Therefore, to ensure a

monochromatic THz emission, the width η of quantized levels
localized in the active region is required to be much narrower
than �. This problem is solved by a proper designing the
active region, which is the key element of any solid state laser.
Parameters of the active region must satisfy to a number of
requirements, which have to be observed in order to get the
T-ray emission out of it. In conventional visible light lasers,
η is typically much smaller than the level spacing between
the e/h levels, i.e., η � �. Then, the photon energy EL

ν is
precisely equal to the level spacing energy �, i.e., EL

ν ≡ �

while the emitted light beam is fairly monochromatic and
coherent. The situation is different in the THz lasers where at
the bottom part of the THz domain the condition η � � might
fail if the level broadening η exceeds �, which is relatively
small, � ≈ 4 meV. In the latter case, the spectrum of photon
emission acquires the finite width (line broadening) while the
photon energy distribution becomes dependent also on the
width η of the electron energy level Eν . Then the finite η

causes an extra decoherence and broadening the THz laser
emission spectrum. In a worst case scenario one can even
get η � �, which causes complete violating of the condition
ET

ν ≡ �. The latter example illustrates why creating the THz
lasers is so difficult. Other sources of the T-beam deco-
herence and the line broadening consist of the temperature

fluctuations and noises which also strongly impact the THz
device performance. Using graphene suggests several possible
solutions of the mentioned decoherence problem. (i) One
is able to form very narrow electron energy levels in the
active region of the THz laser where η � �. Very sharp
and narrow e/h levels are obtained inside a narrow stripe of
graphene with zigzag (ZZ) edges polarized by a transverse
electric field as suggested in Refs. [4,33–36,42]. (ii) One
can significantly reduce impact of phonons which essentially
contribute into the level width η. It is accomplished when
using a narrow stripe having a definite orientation in respect to
crystallographic directions of the graphene lattice. The lattice
symmetry and the atomic edges impose additional selection
rules on the scattering probability involving just phonons with
certain polarization and wave vector on one hand and elec-
trons with one-dimensional dispersion law on the other hand.
Such restriction rules out many inelastic scattering processes
as irrelevant. Furthermore, due to narrow width δ of the elec-
tron bands in GQD, the high-energy phonons with frequency
fph > δ/h do not participate in the electron-phonon scattering
as well. The other mechanism involving the electron-electron
collisions is less significant for graphene in the THz frequency
range. The above results in very low energy dissipation in the
graphene stripes with zigzag edges. (iii) The levels originate
from the topologically protected edge states [35], hence they
are robust in respect to the lattice imperfections and thermal
excitations.

Here we consider the limit of high density of the charge
carriers, whose energy recombination time τHF is much
shorter than the change in polarization of the electromagnetic
wave. The polarization relaxes very fast and is governed by the
carrier-carrier and carrier-phonon scattering causing the relax-
ation to its quasiequilibrium value, which is determined by the
momentary magnitudes of the field and the carrier density.
This ensures the simplest quasiequilibrium conditions of a
stationary excitation when the carriers are in equilibrium with
themselves while the graphene stripe is out of equilibrium.
In the quasiequilibrium approximation, the field intensity is
a slow function of time. We disregard all the effects causing
deviations from the quasiequilibrium assumption, such as
spectral, spatial, or kinetic hole burning. This enables using
the electron-hole-pair rate equation complemented with laser
specific terms. The rate equation for generating of N photons
takes the form

Ṅ = rp − rst − rsp − rnr , (15)

where rp is the pumping rate, rst is the stimulated emission
rate, rsp is the spontaneous emission rate, and rnr is the nonra-
diative transitions rate. The pump rate due to injection current
density j is rp = jηQE/(eW ) where ηQE is the quantum effi-
ciency, and W is the transverse dimensions of the laser’s active
region (i.e., the stripe width). The stimulated emission loss rate
is rst = −χ ′′(ω)E2

0 /(2h̄) where ω = 2π f . The quasiequilib-
rium susceptibility χ (ω) contains the factor 1 − fe,k − fh,k =
(1 − fe,k )(1 − fh,k ) − fe,k fh,k that is conveniently separated
in the two terms as χ ′′(ω) = χ ′′

a (ω) − χ ′′
e (ω). Here fe(h),k is

the distribution function of electron(hole)like HF excitations
and the term χ ′′

e (ω) ∝ fe,k fh,k describes the emission while
the other term χ ′′

a (ω) describes the absorption, χ ′′
a (ω) ∝ (1 −

fe,k )(1 − fh,k ). The imaginary part of susceptibility χ ′′
e (ω) is
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related to the gain g(ω) as

ge(ω) = − 4π

nbc
ωχ ′′

e (ω), (16)

where ge(ω) is the probability per unit length to emitting
a photon and the background refractive index is nb � √

ε0.
Thus −gec/nb is the emission probability of a photon per unit
time. The spontaneous emission rate into the continuum of all
photon modes with the frequency ω = ωq,λ where q, λ are the
photon wave vector and polarization is

rsp = 4

πε0

∫
dqq2ωqχ

′′
e (ωq) (17)

or

rsp = 1

2πε0

∫ ∞

0
dω

(
2ωnb

c

)3

χ ′′
e (ω). (18)

The dependence ∼ω3 indicates that the spontaneous emission
losses dominate at higher laser frequencies. The nonradiative
emission rate is computed as rnr = N/τ + CN3 where the first
term corresponds to the multiphoton emission involving deep
trap levels while the second term might contain a significant
contribution from the Auger processes in the THz lasers.

The T-ray laser emission is described in terms of the
semiclassical electric field equation for spatial eigenmodes

[1 + 4πχ (N )/ε0]Ën + (κc/nb)Ėn + ω2
nEn = 0 (19)

where ωn is the eigenfrequency of the nth resonator mode and
we have introduced the cavity loss rate as κc/nb = 4πσ/ε0

where σ is the electric conductivity. For Eq. (19), there are two
regimes of the steady state solutions: (i) When the gain g(ω =
0) is less than the cavity losses, the laser field vanishes, i.e.,
for κ > g(N0, ωm) one gets the magnitude of time-averaged
(i.e., at ω = 0) electric field E0 = 0 and rp = N0/τ , where
N0 is the time-averaged number of photons. (ii) If the gain
becomes equal or exceeds the cavity losses provided κ =
g(N0, ωm), one gets the finite magnitude of laser field, i.e.,
E0 �= 0. Namely,

E2
0 = 2h̄

χ ′′(N0)

(
N0

τ
− rp

)
(20)

and

ω2
m = ω2

n

1 + 4πχ ′(N0)/ε0
, (21)

where ωm is the lasing frequency and χ ′ and χ ′′ are the real
and imaginary parts of the optical susceptibility in the active
region, ε0 is the background dielectric constant. The above
formula for ω2

m suggests that the pulling of the laser mode is
caused by the refractive index changes due to the increased
carrier density that is controlled by the gate voltages.

V. STEADY STATE SUSCEPTIBILITY OF GQD

Below we consider the effect of the electrochemical poten-
tial μ on the optical susceptibility of the graphene quantum
dot (GQD), which is controlled by applying electric potentials
to the back (or top) gate electrodes. The calculation results for
the steady state optical susceptibility χ (ω) are presented in
Figs. 4, 5, 7, and 8.
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FIG. 4. The steady state optical susceptibility �χ (ω) (top panel)
and �χ (ω) (bottom panel) as a function of frequency ω = 2π f
in GQD computed for the stripe width W = 2hvF/�, temperature
T = 1.4 (in units of �/kB, kB is Boltzmann constant), the inelastic
collision rate η = 0.15 and the level spacing (Stark splitting) 2� = 2
(all in units of �). Here ω = 2π f , f is the frequency and μ is the
electron electrochemical potential. The respective values of μ are
shown in the figure.

The real �χ (ω) and imaginary �χ (ω) parts are shown in
Fig. 4 as functions of frequency ω = 2π f for different values
of the electrochemical potential μ, whose respective values
are indicated in the figures. One can see that the frequency
dependence of χ (ω) dramatically changes as μ varies. Physi-
cally, this reflects the drastic change of the GQD optical prop-
erties since the magnitude of μ determines the quantization
conditions at the graphene stripe edges. Remarkably, as μ

changes, the signs and magnitudes of the real and imaginary
parts of χ (ω) alter. In Fig. 5, we detail the instability regions
in the narrower frequency intervals. One can see that in certain
frequency intervals the real part vanishes, �χ (ω) = 0, while
�χ (ω) < 0 remains negative. An important conclusion drawn
from Figs. 4 and 5 is that there is a set of resonant frequencies
�p determined by the condition �χ (ω)|ω=�p = 0 provided
�χ (ω) < 0. Remarkably, the �p magnitude depends on μ

and �, so in experiments it can be controlled by applying
appropriate electric potentials to the gate electrodes. Hence,
based on the data presented in Figs. 4 and 5, one concludes
that lasing conditions are fulfilled at 6.93 < ω < 7.03, 6.96 <

ω < 7.09 and 7.14 < ω < 7.22 (in units of �). However,
when �χ (ω) becomes positive [see peaks of �χ (ω) in Fig. 5],
the lasing condition fails.
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FIG. 5. Blowup �χ (ω) (top panel) and �χ (ω) (bottom panel)
shown in the former Fig. 4 in the narrower frequency interval. The
instability regions corresponding to the conditions �χ (ω)|ω=�p =
0 provided �χ (ω) < 0 are marked by arrows (the arrow colors
correspond to the curve colors). They correspond to a set of resonant
frequencies �p determined by the mentioned conditions.

At first sight it seems there is a problem with generating
the coherent THz radiation with the resonant frequency �p ∼
6�/hbar when �p < 3 THz, which requires the minimum
level spacing � < 3 THz/6 = 0.5 THz. Such narrow level
spacing ∼2 meV corresponds to kBT ∼ 20 K, which is far
below the room temperature Troom ∼ 300 K. Deceptively,
it seems that at T = Troom ∼ 300 K, the large temperature
broadening η ∼ 30 meV smears the spectral singularities at
ε = ±� out because it largely exceed the level spacing 2� =
4 meV, thereby making the levels nondistinguishable. How-
ever, according to detailed calculations (see e.g., Ref. [43]) for
the narrow levels in the graphene stripes with zigzag edges,
the actual level broadening due to the inelastic scattering is
two orders of magnitude lower than for conventional electrons
with continuous dispersion law. The physical reason is that the
localized HF excitations interact with phonons very weakly,
because the respective phase space is confined. Therefore,
the actual broadening of the (±) levels is very low and is
below 3 meV even at T = Troom ∼ 300 K. Thus, for narrower
separation down to 2� ∼ 3 meV in GQD that corresponds
to f ∼ 0.7 THz, the levels remain well defined even at room
temperature.

To further illustrate the capability of the graphene quantum
dot to forming the favorable lasing conditions we plot the
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FIG. 6. The steady state susceptibility �χ (μ) (top panel) and
�χ (μ) (bottom panel) as a function of electrochemical potential
μ. The other parameters of GQD are the same as in Fig. 4. The
respective values of ω are shown in the figure. Physically, the sharp
switching occurs when μ hits the quantized level positions, which
are dense for the relatively broad stripe.

dependencies �{χ (μ)} and �{χ (μ)} on the electrochemical
potential μ in Fig. 6. From Fig. 6 one can see that by
changing μ, one alters the shape of the susceptibility curves
χ (μ) considerably, thereby enabling the flexible control
over the coherent T-ray emission. Furthermore, the fast
switchings of �{χ (μ)} and �{χ (μ)} take place when μ hits
the quantized level positions, which have narrow spacing
and are dense for the relatively broad stripe W = 2hvF/�.
The gain versus frequency is shown in Fig. 7 (top panel).
We also present a more detailed plot in a narrower frequency
region Fig. 7 (bottom panel). From this Fig. 7 one can see
that for the listed GQD parameters (i.e., the stripe width
W = 2hvF/�, temperature T = 1.4�/kB, the inelastic
collision rate η = 0.15� and the Stark splitting 2�), the gain
exceeds the cavity loss. Provided �{χ (ω,μ)} ∼ 0, which is
the case in certain intervals of μ, one achieves the necessary
conditions for the coherent T-ray emission.

A general insight into the sign switching of the optical
susceptibility for the graphene quantum dot versus ω and
μ is given in the contour plot of �χ (ω,μ) as shown in
Fig. 8 (top panel) where the green regions correspond to
�χ < 0 while yellow areas to �χ > 0. Interestingly, the
sign switch does not happen for much narrower stripes with
W = 0.2hvF/� where the level spacing is wide, although
the whole dependence �χ (ω,μ) becomes much smoother as
shown in Fig. 8 (bottom panel).
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FIG. 7. Top panel: Gain as a function of frequency ω = 2π f in
GQD computed for the stripe width W = 2hvF/�, temperature T =
1.3�/kB, the inelastic collision rate η = 0.15�, the level spacing
(Stark splitting) 2�, and the ac field amplitude E (0)

ac = 2.3�/eW .
The respective values of electrochemical potential μ inside the
active region are shown in the figure. Bottom panel: Blowup of the
frequency region denoted by red in the top panel that detail the fine
structure of the gain function near the lowest resonant frequency.

When designing the graphene THz lasers, there are other
potential issues as follows. (a) Pumping of nonequilibrium
electron and hole excitations into the active region of the THz
laser causes not only inverse population of the e/h levels. An
adverse side effect is that the nonequilibrium electrons and
holes eventually transfer their excessive energy to the lattice
oscillations and to other excitations in the system. This leads
to an overall heating of the active region during the induced
emission process. Excessive Joule heating of the active region
might change its properties and can even adversely impact the
overall performance of the THz laser. Therefore, one should
pay attention to reducing the unwanted heating. The adverse
heating can be diminished by implementing the active region
with an appropriate geometry, crystallographic orientation,
and dimensions. In this way one eliminates certain electron-
phonon scattering processes, e.g., by using a stripe-shaped
active region with zigzag edges. Similarly, one excludes the
indirect interlevel transitions which cause the acoustic phonon
emission. The remaining contribution originates solely from
the direct interlevel electron-hole recombination processes
providing emission of the THz photons out of the active

FIG. 8. Top panel: Contour plot illustrating the sign switching
of �χ (μ,ω) for the graphene quantum dot versus the frequency ω

and electrochemical potential μ (both in units of �) on the larger
scale. Here the green regions correspond to �χ < 0 while yellow
areas to �χ > 0. The GQD parameters are the same as in Fig. 7.
Bottom panel: Contour plot �χ (μ,ω) for much narrower stripe W =
0.2hvF/�. The dependence is much smoother but the sign does not
change.

region. (b) Forming an optimal energy spectrum inside the
active region. An increased width of the electron energy
levels restricts the device performance, widens overall fre-
quency interval, and causes line broadening of the generated T
beam. One solution is to design an active region with narrow
(η � �) quantized energy levels. It can be accomplished
by placing the appropriate split gates right on the top of
the graphene sheet [see Fig. 2(a)]. An example of the en-
ergy diagram of the gate/open graphene region boundary is
sketched in Fig. 2(b). The electric potential penetrates from
the gate region into the open graphene on the Debay screening
length 0.5–2 nm, depending on the temperature and the charge
carrier concentration. Figures 2(c) and 2(d) show the electron
subband structure and the local electron density of states in
the active region, respectively. (c) A distinguished feature of
graphene is anisotropy of the microscopic transport. There-
fore one should design the active region with appropriate
dimensions and orientation. In this way, the major THz laser
parameters can be well defined during the fabrication process.
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There are several reasons why the graphene THz lasers
have a remarkable potential as compared to their conventional
semiconducting counterparts. (i) The intrinsic coherence in
graphene is preserved far better than in other nonsupercon-
ducting electronic materials. It happens due to so-called pseu-
dospin conservation which is an intrinsic feature of graphene.
In particular, the good intrinsic coherence helps to reduce
the intrinsic noises. (ii) The energy relaxation in graphene
is typically much slower than in other conductors. It allows
achieving a considerable degree for the inverse level popula-
tion. (iii) Technically, the energy dependence of the election
density of states in the 2D graphene enables manipulating of
their properties by mere applying electric potentials to the gate
electrodes. Furthermore, the 2D geometry is well suited to
fabricating the bottom, top, and side gate electrodes. Owing
to (i)–(iii), GQD comprises a system with the robust, voltage-
controlled narrow quantized energy levels, a considerable
inverse level population, good accumulation of the pumped
energy, which generates a very strong THz monochromatic
beam.

The dissipative processes inside the active region cause
fluctuations that can be approximately described in terms of
the quantum mechanical Langevin equations. In this way one
finds that the noise terms due to spontaneous emission is ∝ rsp

and the nonradiative transition noise is ∝ rnr .

VI. NONLINEAR ELECTROMAGNETIC
PROPERTIES OF GQD

The unconventional excitation spectrum of the chiral
fermions in the graphene stripe results in nonlinear electro-
magnetic properties of the two-dimensional atomic monolayer
material. In particular, graphene has remarkable nonlinear
properties in the terahertz (THz) frequency range. These cre-
ate many suggestions for novel photonic devices, such as THz
devices [44], optical modulators [45], photodetectors [46],
and polarizers [47]. One promising direction is exploiting the
nonlinear electromagnetic response of the graphene stripe to
an ac electromagnetic field. Such a nonlinear effect might
be used for the frequency multiplication or for self-focusing
of two dimensional Townes-like solitons in the electrically
tunable metastructure shown in Fig. 1. Doping graphene by
applying the electric potentials to the gate electrodes allows
fine tuning the nonlinear properties of the metastructure.
Total internal reflection at the boundaries of the dielectric
waveguide causes the confinement of the E field along the
lateral x direction. As the y coordinate is varied along the
stripe axis, the normalized E field cross section along the x
direction changes. Such change, which is larger than in planar
nonlinear waveguides, corresponds to a significant nonlinear
optical current supported by the 2D graphene stripe. Below
we find that the third-order susceptibility in the graphene
stripe is large enabling us to form the TE and TM spatial
optical solitons. Stable Townes-like spatial solitary waves
propagating in the longitudinal direction originate from the
intraband current dominating the electron dynamics for THz
excitations of doped graphene. Significant magnitudes of the
nonlinear optical susceptibilities in the 2D graphene sheets
were theoretically predicted in Refs. [8,9]. They have been

experimentally observed for third-order nonlinear effects by
the authors of Ref. [10].

A nonlinear effect utilized to control light propagation at
the micro- and nanoscales is the formation of temporal and
spatial EM solitons [11]. We analyze the respective nonlinear
contribution for the graphene strip in the geometry shown
in Fig. 1. Consider a classical 2D particle with the charge
−e and the energy spectrum (4), (5) as for a chiral fermion
in the graphene stripe with zigzag edges exposed to the
time-dependent harmonic y-polarized electric field Eac(t ) =
E0

ac cos �t . The relevant excitations are electrons in the vicin-
ity of one gap edge while taking into account the presence
of two nonequivalent gap regions in the Brillouin zone by
introducing the valley-degeneracy factor gv = 2. According
to the Newton equation of motion

dky

dt
= − e

h̄
Eac(t ) (22)

where we assume that the ac field is polarized along the stripe
y axis. In Eq. (22), the momentum ky(t ) is given by

ky(t ) = k0(t ) = ε sin �t , (23)

where ε = eE0
ac/h̄�.

In conventional 2D electron systems with the parabolic
energy dispersion, the velocity vy, and hence, the current
jy = −ensvy are proportional to h̄ky, so that the normal 2D
system responds at the same frequency where ns is the areal
density of change carriers. This is different for the graphene
stripe where the velocity

vy = 1

h̄

∂Ep

∂ky

= vF
ky√

k2
x + k2

y (t ) + (�/vF)2

= vF
ε sin �t√

k2
x + ε2 sin2 �t + (�/vF)2

(24)

is not merely proportional to ky. In the extreme limit, when
kx and �/vF in Eq. (24) are close to zero, vy is proportional
to sgn(px ) and the ac electric current jy = −ensvy has anhar-
monic contributions

jy(t ) = ensvF
4

π

{
sin �t + 1

3
sin 3�t + 1

5
sin 5�t + ...

}
.

(25)

Both the gate voltage and chemical doping can shift the
chemical potential μ of electrons in graphene to the upper Ep2

or to the lower Ep1 band. Let us assume that the chemical
potential μ lies in the upper band Ep2 = vF p, the tempera-
ture is small, kBT � μ, and the system is subjected to the
time-dependent ac electric field Eac(t ). Then the momentum
distribution function of electrons fp(t ) is described [8] by
Boltzmann equation

∂ fp(t )

∂t
− ∂ fp(t )

∂p
eEac(t ) = 0, (26)

where we have disregarded collisions of electrons with
impurities, phonons, and other lattice imperfections. Equation
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(26) has the exact solution

fp(t ) = F0(p − p0(t)), (27)

where

F0(p) = 1

exp
(

vF p−μ

T

) + 1
(28)

is the Fermi-Dirac function, and

p0(t) = −e
∫ t

−∞
dt ′Eac(t ′) (29)

is the solution of the single particle classical equation of
motion. Thus, the former equations derived in previous sec-
tions remain valid provided we replace p → p − p0(t ) in the
respective distribution functions.

The nonlinear regime (25) is achieved at |p0| � pF , or at

E ≡ eE0
acvF

�μ
� 1. (30)

According to Eq. (30), the nonlinear effect becomes essential
already at E0

ac � 1.4 kV/cm provided f = �/2π = 1 THz
and μ = 0.06 eV. The meaning of the above relationship (30)
is that the energy, gained by electrons from the ac field during
the oscillation period, should be large as compared to their av-
erage equilibrium energy. In the low-field limit, the response is
linear [i.e., the j(t ) dependence has a sinusoidal form], while
at strong fields the time dependence of the current tends to
that given by Eq. (25). The strong-field condition (30) can be
rewritten as

E0
ac � 2�

√
πns

e
√

gsgv

(31)

which means that the required ac electric field grows linearly
with the electromagnetic wave frequency and with the square
root of the electron density.

There are following limitations on applicability of the qua-
siclassical method to describing the electromagnetic response
of graphene stripe. Physically, using the Newton equation
(22), one takes into account contribution the intraband tran-
sitions to the ac electric current while ignoring the interband
transitions between the lower quasihole and the upper quasi-
electron bands. This is only possible if the frequency of the
electromagnetic radiation satisfies the inequality

� � max{μ, T }. (32)

At room temperature and for the electric charge carrier den-
sities ns � 1011–1012 cm−2 the above inequality limits the
frequency band to ∼10–30 THz.

We estimate the third-order susceptibility χ (3)
gr by comput-

ing the relevant Fourier coefficients of the time-dependent
χ (t, Eext (t )) as

χ (n)
gr

(
�, E0

ext

) = �

2π

∫ 2π/�

0
χ (t ′, Eext (t

′))e−i�nt ′
dt ′, (33)

where � is the ac field frequency, n is the integer number.
Likewise, we also expand the electric current density in
graphene stripe jgr in powers of ψ = eA/pF (where A is the
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FIG. 9. Top panel: The �χ (n)
gr (�, E0

ext ) for the harmonics n =
0, 1, 3 as functions of the ac field frequency �. The GQD parameters
are as follows: The stripe width W = 2hvF/�, temperature T =
1.2�/kB, the inelastic collision rate η = 0.12�, the level spacing
(Stark splitting) 2�, and the ac field amplitude E (0)

ac = 2.3�/eW .
Bottom panel: Respective plots for �χ (n)

gr (�, E0
ext ). One can see that

the magnitudes of all the harmonics are comparable with each other.

vector potential) up to the third order:

jgr � ψ√
1 + ψ2

� ψ − ψ3

8
, (34)

finding the nonlinear third order intraband current density j (3)
gr .

Harmonics of the ac field-dependent nonlinear susceptibil-
ity χ (n)

gr (�, E0
ext ) are computed numerically using the above

formulas. In Fig. 9 we show the Fourier components of
the current versus the field parameter E given by Eq. (30).
When E becomes larger than � 4, the Fourier amplitudes
saturate and one gets in the ultimate nonlinear regime. From
the plots of susceptibility harmonics �χ (0,1,3)

gr (�, E0
ext ) and

�χ (0,1,3)
gr (�, E0

ext ) illustrating the nonlinear effects in graphene
stripe with zigzag edges shown in Fig. 9 one can see that the
zeroth, first, and third harmonics of χ (t ′, Eext (t ′)) are about
the same order of magnitude, which suggests the significance
of nonlinear phenomenon in the GQD system under consider-
ation. In conclusion of this section, due to the unconventional
dispersion law (4), (5) of the chiral fermions, the response of
graphene stripe to an ac electromagnetic field is intrinsically
nonlinear.
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VII. TIME EVOLUTION OF SUSCEPTIBILITY

An accurate estimation of the time required to reach the
steady state regime represents a tedious task involving a self-
consistent solution of a complex system of the Boltzmann
equations complemented by equations for the HF excitation
spectrum. Besides, the equations must be complemented by
respective boundary conditions defining the geometry and ini-
tial state. In this work we provide just the simplest insight into
how the optical susceptibility χ ′′(ω, t ) evolves in response
to a pulse of injection current incurring a sharp change of
the effective electron temperature T ∗ of GQD. Let us assume
that the pulse of injection current heats GQD, whose effective
temperature increases up to T ∗. Basically, after the pulse ends,
the time evolution of the HF distribution function f (ε, t ) is
found as a solution of the Boltzmann equation. For the sake
of simplicity, we use the effective temperature approximation
that gives

f (ε, t ) = 1

exp
(

ε−μ

T ∗(t )

) + 1
, (35)

where the time dependence of T ∗ is determined by the en-
ergy relaxation of the HF distribution function. In the above
approximation we use

T ∗(t ) = T exp

[(
− t − t0

τp

)n]
, (36)

where we take n = 100 and t0 = τp = 2.5 ns. When the
energy recombination time τHF of the HF excitations is very
short, τHF � min{τp, t0} (typically τHF ∼ 10−12 s), the time
evolution of T ∗(t ) immediately follows the change of injec-
tion current, T ∗(t ) ∝ j(t ). However, the scenario becomes
different when τHF ∼ {τp, t0}. In the last case, when the injec-
tion current pulses are sufficiently short, the optical suscep-
tibility reaches the steady state on the timescale ∼ τHF. Such
time evolution of �χ (ω, t ) is illustrated in Fig. 10 by using the
above simple model (35) and (36) allowing us to determine
the behavior of the graphene “particle” from the time that the
injection current pulse ends (t = 0 ps) until reaching steady
state at t = 2 ps. The graph in Fig. 10 helps us to understand
and evaluate the role of nonequilibrium effect in GQD.

VIII. CONCLUSIONS

Obtained results suggest that the considered design of the
graphene quantum dot (GQD) allows the all-electrical control
of the optical susceptibility χ (ω,μ). This becomes possible
because the magnitude and sign of both the real and imaginary
parts of χ (ω,μ) depend on the electrochemical potential μ

and on the frequency variable ω. Technically, in the GQD
structure one can change the magnitudes of � and μ by
applying appropriate electric potentials to the local gates as
depicted in Fig. 1, thereby enabling the flexible control of the
GQD optical properties.

Furthermore, like the pristine graphene, the GQD structure
has remarkable nonlinear electromagnetic properties stem-
ming from the unconventional dispersion law of the chiral
fermions in the graphene stripe with zigzag edges. A strong
nonlinear effect arises because the optical susceptibility de-
pends on the ac field intensity. The magnitude of high-order
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FIG. 10. The imaginary part of optical susceptibility �χ (ω, t ) as
functions of the frequency ω at time moments t = 0 ps, 1 ps, and 2 ps
after the injection current pulse ends. Here we used the GQD stripe
width W = 2hvF/�, the steady state temperature T = 0.5�/kB, the
level spacing (Stark splitting) 2�, and the energy relaxation time
τHF = 1 ps. One can see that the steady state of GQD is achieved at
t ∼ 2 ps, after the injection current pulse ends and the HF excitations
recombine in the energy. Inset shows the time dependence of the
effective temperature T ∗(t ) (solid blue line) that achieves its steady
state value T = 0.5�/kB at t ∼ 2 ps, after the injection current pulse
(red dash) ends at t = 0.

harmonics is significant even in relatively weak ac fields,
causing the appearance of a variety of the nonlinear effects.

In experiments, the THz radiation is detected in several
ways. For instance, one can form a Josephson junction in
an adjacent area on the same substrate, which will serve as
a THz detector. Another option is to deposit a GQD THz
detector on the same substrate next to the GQD THz emitter.
Furthermore, one can use metallic co-planar strip lines as
THz antennas to detect the T rays. Special attention must
be paid to creating the sharp and narrow electron quantized
levels formed between two timberlike multilayered gate elec-
trodes deposited along the ZZ direction. The energy levels
are robust in the presence of lattice defects and imperfections
remaining are very narrow and sharp since they are topolog-
ically protected [4,35,42]. In the active region of the THz
emitter, the coherent monochromatic THz waves originate
from the quantum transitions between the sharp localized
levels. The energy level splitting is readily controlled by
the voltage difference between the gate electrodes having a
multilayered structure as depicted in Fig. 1.

The unconventional electromagnetic (EM) properties of
the graphene quantum dots (GQD) have a promising poten-
tial for practical applications. Experimentally, it would be
interesting to fabricate the all-electrically controlled GQD
based on the graphene stripes with atomic zigzag edges. The
calculation results of the optical susceptibility indicate strong
dependence on the frequency and electrochemical potential,
which can be exploited for experimental observing of the
tunable THz emission. Another result is the nonlinear elec-
tromagnetic response of GQD, whose mechanism is related to
the unconventional properties of chiral fermions in graphene
stripes with atomic zigzag edges. The obtained data allow
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better understanding of the physical mechanisms related to the
electrically controlled GQD showing remarkable electromag-
netic properties.

APPENDIX: APPENDIX

Susceptibility of pristine graphene

Here we provide technical details concerning the optical
susceptibility of pristine graphene. We use Eq. (1), which is
written for indirect interband transitions accompanied by the
absorption/emission of a phonon with the finite momentum
q �= 0. Here we use units with h̄ = 1 and kB = 1 if not stated
otherwise. When the absorption/emission process is accom-
panied by the photon instead of the phonon, the interband
transitions become direct and the above Eq. (1) is simplified.
For the photons, whose absorption creates the electronlike HF
(below for brevity we call them electrons) in the conductive
band while the holelike HF (we call them holes) in the valence
band (direct interband transitions), we set q = 0. Then, using
ss′ = −1 we get the respective energy change as εs′,v − εs,c =
±2ε and from Eq. (1) we get

χ (ω) = −6
√

3|dcv|2
πv2

F

∫ vF�

0
dεε( f (−ε) − f (ε)) (A1)

×
(

1

ω + 2ε + iη
− 1

ω − 2ε + iη

)
, (A2)

where � ≈ 1/a is the cutoff momentum and a is the lattice
constant.

In the beginning we find how the steady state functions
χ (ω) and χ (μ) depend, respectively, on the photon frequency
ω and the HF electrochemical potential μ. In the above
formulas we set

f (ε) = 1

e(ε−μ)/T + 1
. (A3)

In the zero-temperature limit T = 0 we simply set f (ε) =
θ (μ − ε) and f (−ε) = 1 for electron doping with μ > 0,
where μ is the electron electrochemical potential. Respec-
tively, for the hole doping we get μ < 0 . Then

χ (ω) = −6
√

3|dcv|2
πv2

F

∫ vF �

μ

×
(

1

ω + 2ε + iη
− 1

ω − 2ε + iη

)
εdε , (A4)

where ζ 2 = (η2 − 2iηω − ω2)/4 and we have used

f (−ε) − f (ε) = 1 − θ (μ − ε) =
{

0 for ε < μ

1 for ε > μ

∣∣∣∣. (A5)

An immediate integration of Eq. (A4) gives a simple analyti-
cal expression in the form

χ (ω,μ) = − i

π

3
√

3|dcv|2
2πv2

F

[
� − μ + ω + iη

2

×
(

tanh−1

(
2μ

ω + iη

)
− tanh−1

(
2�

ω + iη

))]
.

(A6)

The above calculations are illustrated in Fig. 3 where we
show the real χ ′ = �χ and imaginary χ ′′ = �χ parts of the
optical susceptibility versus the frequency ω and electrochem-
ical potential μ.

χ (ω,μ) = −6
√

3|dcv|2
πv2

F

[
vF � − μ + ω

4

×
(

ln

∣∣∣∣ω + 2μ

ω − 2μ

∣∣∣∣ + iπθ (ω − 2μ)

)]
. (A7)

It is also instructive to find the number of excitations n(μ) in
the 2D graphene. For the equilibrium case we find

n = N

L2
= −12

√
3

πv2
F

∫ vF �

0
ε f (ε)dε

= −12
√

3

πv2
F

∫ vF �

0
ε

1

eβ(ε−μ) + 1
dε

− 12
√

3

πv2
F β2

∫ βvF �

0
ε

1

e(ε−βμ) + 1
dε.

Then one gets

n(μ) = −(
12

√
3T 2/πv2

F

)[
Li2

( − e− μ

T
) − Li2

( − e
�−μ

T
)

+ �(� − 2T log
(
e

�−μ

T + 1
)
)/T 2

]
. (A8)

In more realistic conditions, e.g., when the temperature is
finite while the graphene sheet is deposited on a substrate
and its electronic states are controlled by gate electrodes, one
finds the optical susceptibility numerically, as described in
the main text. Likewise, numeric solutions are also used for
studying the nonstationary and nonequilibrium properties of
the graphene samples [48–52].
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