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Topological two-parameter charge pump in a one-dimensional semiconductor nanowire superlattice
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We study a possible topological charge pump in a traditional two-parameter pump device, which is based
on a one-dimensional (1D) semiconductor nanowire with Rashba spin-orbit interaction. The 1D nanowire has a
superlattice structure through periodic folding and the pumping parameters are the two time-dependent Zeeman
fields with a phase lag ϕ between them. It is shown that the Zeeman field can open an energy gap of the
nanowire superlattice and the system enters into a topological state. There are two electron charges pumped
out adiabatically in a pumping cycle if the Fermi energy resides in the energy gap and ϕ is not close to nπ

(n, an integer). This originates from the topologically protected interface state forming between the two pumping
sources, which evolves with time, resulting in electron charges from one end transported to the other end of the
wire. The quantized current direction can be modulated by some system parameters such as the Fermi energy,
pumping phase, and the local potential of the device via gate voltage.
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I. INTRODUCTION

Adiabatic charge pump is a quantum transport phe-
nomenon in mesoscopic electron systems and has been at-
tracting considerable theoretical and experimental interest for
decades [1–9]. When some parameters of the system are
changed periodically with time, a finite charge may be trans-
mitted through the system at the end of the pumping cycle
without any external bias. Much effort has been devoted to the
quantized pump in which an integer number of charges are
pumped out in a cycle, because the pumping quantization is
quite desirable in building a standard of electric current [4–6].
The Coulomb blockade effect as a usual routine to acquire
the pumping quantization was extensively studied [10–14] in
quantum-dot systems and this has been successfully demon-
strated in both theoretical and experimental research. In the
noninteracting electron system, the quantized charge pump
mostly refers to the Thouless topological pump [15], in which
a one-dimensional (1D) moving potential can pump out in-
tegral charges in a cycle when the Fermi energy lies in the
energy gap opened by the moving potential. This 1D periodic
system is topological and the pumped charge number in each
cycle equals the topological invariant of the system [16–20].
Recently, several research groups [21–24] have independently
observed such quantized pump in 1D optical superlattice or
cold-atom systems. However, it is still a challenge in solid
electron systems since one needs to precisely control the
moving potential felt by electrons.

For a general two-parameter pump device where the two
time-dependent potentials have a phase lag ϕ between them,
it is hard to obtain the pumping quantization in the non-
interacting electron systems even from a theoretical aspect.
Brouwer [3] pointed out that the pumped current in the
adiabatic limit is proportional to the geometric area circled by
time-dependent parameters and, in the bilinear approximation,

the current has the formation, I ∼ sin ϕ, which seems far from
quantization. Some harsh requirements were concluded in
literature [25–28] to realize a quantized pump, which is based
on the resonant tunneling effect of electrons, i.e., electrons
can perfectly tunnel through the pumping device in a narrow
parameter region with the transmission T = 1 but surrounded
by zero transmissions, T = 0.

In a previous work [29], two authors presented a pump-
ing protocol to realize the pumping quantization in a two-
parameter pump device that is based on the Dirac electrons
of graphene: If the pumping potentials (the staggered lattice
potential in graphene) could make the original system enter
into a topological phase, a topological interface state forming
between the two pumping sources would lead to the pumping
quantization. Whether such a pumping protocol is valid in the
non-Dirac electron systems or in the traditional semiconduc-
tor systems is an open question and this motivates us to further
study the possible quantized two-parameter charge pumping
based on non-Dirac electrons of semiconductor materials.

Given the fact that a perpendicular Zeeman field can break
the crossing of the two spin bands of a Rashba spin-orbit
interaction media [30,31], we consider in this paper a 1D
nanowire superlattice (NWS) as the pumping device model
and the two time-dependent Zeeman fields as the pumping
potentials. The Zeeman field can directly make the NWS
open an energy gap and the system enters into a topological
insulating phase from a metallic phase. We will show that
the quantized pump is possible with integral charges pumped
out in a cycle as long as the Fermi energy is located in
the opened energy gap. The integer-charge moving is due to
the time evolution of the emergent interface state forming
in real space between the two pumping sources. The quan-
tization can also be modulated by some system parameters
such as the pumping phase and the local potential via gate
voltage.
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FIG. 1. Schematic of a two-parameter pump device. A folding
one-dimensional semiconductor nanowire superlattice is immersed
within the two separated time-dependent Zeeman exchange fields,
which can be from either magnetic proximity effect or a direct mag-
netic field, h1(t ) = [0, 0, hz cos(ωt )] and h2(t ) = [0, 0, hz cos(ωt +
ϕ)]. hz represents the z-directed Zeeman field magnitude while the
whole device lies in the xy plane. The pump device is connected
with electrodes through the left (L) and right (R) leads. The two
Zeeman region lengths are assumed L and the distance between them
is L0.

The remainder of the paper is laid out as follows. In
Sec. II, we present the pump device model and analyze
the possible topological phase of the NWS under a Zeeman
field. In Sec. III, we will focus on the calculation of the
pumped current and discuss the physics origin of the pumping
quantization. In the final section, we will discuss possible
measurement of the proposed two-parameter quantized pump
and draw a brief conclusion.

II. TOPOLOGY OF NANOWIRE SUPERLATTICE

We consider a 1D semiconductor nanowire with a strong
Rashba spin-orbit interaction as the base material of the pump
device. The nanowire is assumed to be periodically folded
or bent to form a NWS structure as shown schematically
in Fig. 1. The two time-dependent Zeeman fields, h1(t ) and
h2(t ), are taken as the pumping parameters separated in real
space by a normal region L0 (without any applied Zeeman
field). The whole pumping setup connects with the outside
world via the left and right leads, and there is no bias applied
onto the device. The possible current can merely come from
the perturbation of time-dependent Zeeman fields. The system
Hamiltonian in a lattice representation reads

H = H0 + V (t ), (1)

H0 = −γ
∑
nσ

C†
n+1,σCn,σ + itso

∑
nαβ

C†
n+1,α (σn)αβCn,β + H.c.,

(2)

V (t ) =
∑
nαβ

C†
n,α[h1(t )	1(n) + h2(t )	2(n)] · σCn,β . (3)

Here, H0 describes the time-independent NWS system and
V (t ) is the pumping-source term. The first term of H0 is the
electron hopping between the nearest-neighboring sites, γ is
the hopping energy, C†

nσ (α,β )(Cnσ (α,β ) ) is the creation (annihi-
lation) operator of electrons at the nth site with spin σ (α, β ).

The second term of H0 stands for the Rashba spin-orbit
interaction with its strength tso, σn = σx sin θn + σy cos θn is
the local Rashba field direction with θn being the bond direc-
tion. As is known, the Rashba field direction is perpendicular
to the momentum direction of electrons, and it shall be site
(n) independent in the 1D straight NW case. The V (t ) term of
Eq. (3) represents the time-dependent Zeeman fields, which
are simply assumed along the z direction perpendicular to
the NWS plane because this magnetization direction can lead
to a sizable energy gap of the NWS electron band, 	1(n) =
	(n)	(L − n) and 	2(n) = 	(n − L − L0)	(2L + L0 − n)
with 	 being the Heaviside step function, so the two Zeeman
fields are limited to the separated space as shown in Fig. 1.
h1(t ) = [0, 0, hz cos(ωt )] and h2(t ) = [0, 0, hz cos(ωt + ϕ)],
ω is the pumping frequency and, in the adiabatic limit, it
is assumed to be infinitely small (ω → 0); t is the time
argument, ϕ is the pumping phase difference, and hz is the
strength of the Zeeman field. For simplicity, the two pumping
strengths and pumping source sizes are set the same, hz and L,
respectively.

The periodic folding of nanowire here is assumed to merely
cause variation of the local Rashba field direction θn as well
as the reduction of the original Brillouin zone of a straight
wire. It was argued in literature [32,33] that the folding can
also cause the so-called quantum geometric potential, which
in turn can make the folded nanowire enter into a topological
phase and even generate a quantized charge pump with the
help of a rotating magnetic field [34]. Oppositely, we neglect
the quantum geometric potential in this paper so the folded
NWS itself without any applied hz is still in a metallic phase.
Because it is believed that such a quantum geometric potential
tends to disappear in a realistic sizable device.

We first present a typical NWS to illustrate the electronic
structure as well as the possible topological phase within
a uniform static Zeeman field hz. In Fig. 2(a), we choose
a NWS of the rectangular wave shape with its periodicity
NT = 4, in which the local bond direction is set as θn =
(π/2, 0,−π/2, 0). The electronic structure of such an in-
finitely long wire is shown in Fig. 2(b). There is no energy
gap forming in the case of hz = 0 and the band simply
comes from the 1/NT Brillouin-zone folding of a straight
nanowire. However, the nontrivial structure is the emergent
band crossings at ±K as marked in dashed red circles, where
only the lowest crossings are noted. The crossings are due to
the Rashba spin-orbit interaction and are similar to the original
band crossing at the band center ka = 0. Around the crossing
points, ±K , electrons have a linear energy dispersion and can
be approximately described as

HK (K ′ ) = ±h̄v f σθk + hzσz, (4)

where σθ is the eigenspin of electrons around ±K but it always
lies in the xy plane, v f is the velocity of electrons, k is the 1D
momentum expanded around ±K , and ± indicates the differ-
ent chirality of electrons around +K and −K , respectively.
Here, the ± chirality represents the opposite spin-momentum
dependence around ±K . The +K and −K degeneracy may
also be referred to as the twofold valley degeneracy. The first
term of the formula above is the same as the low-energy Dirac
equation of graphene [35] but the difference is also clear: σθ

is a real spin lying in the xy plane whereas, in graphene, σ
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FIG. 2. Electronic band structures of the infinite-long 1D NWS with two different periodicities NT = 4 (a)–(c) and NT = 5 (d)–(f). (a) A
rectangle NWS is considered with the bond direction set as θn = (π/2, 0, −π/2, 0). The energy dispersion E -ka is plotted without (b) or with
(c) a single static Zeeman field applied onto the system, where a is the lattice constant. The circle points ±K stand for the valley degeneracy
due to the folding of the 1D NW. (d) The NT = 5 NWS setup is plotted with the bond direction as (θn = π/3,−π/3, −π/3, π/3, 0) and the
band structures are plotted in (e) and (f). The rightmost insets near (c) and (f) are the lowest energy gaps opened by hz. The spin-orbit coupling
strength is set as tso = 0.5γ and γ = 1 in calculations.

denotes the lattice pseudospin. If a perpendicular exchange
field is present like the second term of the above equation,
hzσz, the energy band is expected to exhibit an energy gap and
the system enters into a topological phase. This is confirmed
by the electronic band in Fig. 2(c) within a nonzero hz and the
original crossing points besides the marked ±K are all opened
now. The lowest energy gap is enlarged for clear viewing in
the right inset of Fig. 2(c).

In fact, other NWSs of different folding shapes can lead
to the same effect like the band crossing as well as the
energy gap opened by the hz field. In Figs. 2(d)–2(f), a
similar situation is shown for the shape of NWSs with NT = 5
[see Fig. 2(d)] and the local lattice bond direction is set as
θn = (π/3,−π/3,−π/3, π/3, 0). As long as the folding of
NWS exists, the local spin rotates in real space due to the
Rashba spin-orbit interaction. When we choose the local spin
direction as the quantum spin axis instead of the hz direction,
the 1D electrons could feel a spatially modulated spiral mag-
netization, which necessarily gives rise to a topological phase
of the system.

As stated above, the linear energy dispersion around ±K as
well as the energy gap opened by hz in Fig. 2 are superficially
the same as the Dirac electrons in a staggered graphene [29].
However, the spin operator here is a real electron spin (mea-
surable quantity) and, thus, the topological state can exhibit
the bulk-edge (end) correspondence in a finite-size system.
Oppositely, there is no edge state for the staggered graphene
where the carbon A and B sites have the opposite static

potentials, even though the system is actually in a quantum
valley hall insulator state [36,37].

In Fig. 3(a), we calculate the energy levels of a finite-length
NWS as a function of the eigenstate index i and here the wire
parameter is the same as that in Fig. 2(c) except for the finite
size. There are two isolated energy levels appearing in the
original bulk gap of the NWS as clearly shown in the inset of
Fig. 3(a). The corresponding wave-function distributions are
also plotted in Fig. 3(b) and their localization at the two ends
of wire is clearly seen. This indicates that the system is in
a topological phase. The fraction-charge state [16,17], which
occurs in periodically modulated 1D NW, does not appear
here, because both the time reversal symmetry and the central
inversion symmetry of the system are broken by the Zeeman
field and Rashba spin-orbit interaction, respectively.

Similar to the staggered potential term in graphene systems
[37], the hz term in Eq. (4) here will determine the sign
of the topological invariant as well, sgn(hz ). Therefore, the
+hz and −hz terms will lead to the different topological
phases with the opposite topological invariants. A topological
interface state may appear in a nonuniform NWS within an
existing domain wall (actually, which is a point in the 1D case)
when the system consists of the neighboring +hz and −hz

regions.
In Fig. 4(a), we carry out the same computation of the

energy band of a finite NWS within a half static −hz and
a half static +hz applied on the NWS. It can be seen that
in the original bulk gap, four isolated energy levels appear
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FIG. 3. (a) Eigenvalues E -i of a finite NWS within a nonzero
hz field. The circled energy gap is enlarged in the inset and two
isolated energy levels appear. (b) Spatial distribution of the wave
functions |�(n)|2-n of two isolated levels. The two wave functions
are separated and localized conspicuously in either end of the NWS.
hz = tso = 0.5γ , L(NT ) = 120, and NT = 4.

[see the enlarged inset of Fig. 4(a)] and two emergent ones
should denote the possible interfacial states localizing around
the domain wall (point). To confirm this, we plotted the
corresponding wave-function distributions of the four isolated
energy levels in Fig. 4(b). It is clearly shown that there are two
wave functions localizing in the middle of the NWS where the
domain wall stands and the other two wave functions are the
end states—same as those in Fig. 3(b). Such interface states
in the energy gap should be protected by the topology of the
system and are expected to exert an effect on the pumping
event.

III. PUMPED CURRENT

In this section, we shall calculate the possible pumped
current flowing through the device in Fig. 1, which reads in
the adiabatic limit [29] as

Is = e

2πT

∮
dtTr[�GrV̇ Ga]ss, (5)

where e is the electron charge, T is the period of the pumping
cycle, s = L, R stands for the left or right lead through which
the current is flowing toward the electrodes, Gr = [EI −
H̃ (t ) − r

L − r
R]−1 is the retarded Green’s function while

Ga = (Gr )† is the advanced one, I is the unit matrix, ˜H (t )
is the pumping device Hamiltonian not including the leads,
V̇ = dV (t )/dt , r

L,R is the self-energy of the left (right) leads,
� = i[r − (r )†], and they are time independent. The self-
energy here is computed by using a usual recursion method

FIG. 4. (a) Eigenvalues E -i of the finite NWS within a half +hz

and the other half −hz field applied. The circled bulk energy gap is
enlarged in the inset and four isolated energy levels appear. (b) Spa-
tial distribution of the wave functions |�(n)|2-n of four isolated-
levels in the energy gap. The two wave functions are localized in
either end of the NWS while the other two wave functions are
localized at the center of the NWS where the domain interface resides
exactly between +hz and −hz. hz = tso = 0.5γ , L(NT ) = 120, and
NT = 4.

in the lattice model [38]. It is noted that the left and right
electrodes can be assumed to be the NWS itself or a normal
wire without spin-orbit interaction and periodic folding; the
results will stay the same, especially for the quantized pumped
current as we will present below.

In the model calculations, we take the hopping energy
γ = 1 as the energy unit and a zero ambient temperature is
considered. The NWS with the periodicity NT = 4 is shown
to illustrate the pumping current as an example since the other
folding-shape NWSs will exhibit the same qualitative results.
In Fig. 5(a), the pumped current IL is presented as a function
of the Fermi energy E . Here, the E -axis span represents the
bulk energy gap �0 of the NWS and its size is approxi-
mately from −1.69γ to −1.39γ estimated around ±K in
Fig. 2(c).

One can see that IL exhibits a clear quantization platform
inside the bulk energy gap, I = ±2e/T , i.e., an integer num-
ber of electron charges (2e) are pumped out adiabatically in a
pumping cycle. 2 stems from the spin degeneracy but, directly,
it is related to the two cross points or valley degeneracy
(±K) as shown in the electronic bands (Fig. 2). Outside the
platforms, the pumped current is nonquantized and its value
may exceed the quantized one ±2e/T . Although each pump-
ing source (a single lattice point associated with a pumping
potential) contributes to the current necessarily smaller than
2e/T , the total contribution of multiple pumping sources may
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FIG. 5. Pumped current (IL) as a function of energy E within
different spin-orbit and Zeeman field strengths. Here, the energy
axis (E ) is exactly limited in the bulk energy gap of the NWS
opened by a single uniform hz. Other parameters are L0 = 0 and
ϕ = π/2.

exceed 2e/T , especially when there is not any collective
behavior from the pumping sources like the insulating phase
from the pumping potential, the hz field.

The energy region for the pumping quantization in Fig. 5(a)
is a little smaller than the bulk gap, which is defined for the
NWS within a single uniform and static hz field. Obviously,
this uniform hz is not the case for our studied pump device,
where two time-dependent Zeeman fields are involved. The
quantization of IL necessitates that E should keep inside the
so-called effective energy gap or transport gap in the whole
pumping cycle. In other words, the system is insulating and
no electron can directly transport through the device instantly.
Obviously, the pumping potential phase ϕ between h1(t )
and h2(t ) should play an important role in determining the
effective gap energy δ, since neither of them can individually
keep gap opening consistently in a cycle T . From the linear
Dirac equation [Eq. (4)], one can find an approximate formula,
δ = �0

√
(1 − | cos ϕ|)/2, by assuming �0 to be the original

bulk energy gap opened by a single field hz.
As long as E lies in this effective gap, the pumping current

would be quantized no matter how small δ is. This can be
seen from Fig. 5(b) where the quantization is still clear for
the case of a weak tso and hz, tso = hz = 0.1γ . From another
perspective, the energy interval for the pumping quantization
is crucially related to the magnitudes of tso and hz. Beside
them, the bulk energy gap is also influenced by the ∂θn/∂n
magnitude, especially when NT a is in the atomic size. How-
ever, ∂θn/∂n approaches zero as NT a is above the order of

FIG. 6. Quantized pump results of IL in the parameter (E -hz)
space. Outside of two self-closed circles, the pumped currentIL is
nonquantized. Parameters are the same as those in Fig. 5(a).

magnitude of 10 nm so it will not heavily affect the bulk
energy gap of the NWS. In the calculation of Fig. 5(b), a
smaller bulk energy gap will cause difficulty in numerical
convergence of the integration [Eq. (5)], so a larger pump-
ing region is assumed as L = 400NT in our calculations of
Fig. 5(b). This is due to the quantum tunneling effect of
electrons through the small energy gap, resulting in nonzero
transmission. The opposite case of a larger hz may be invalid
for generating the pumping quantization.

In fact, there is no quantized IL when hz is large enough.
From the band structure in Fig. 2(c), one can see that the two
crossing points (±K) should merge together at the band center
ka = 0 in a very large hz and even the system may be in the
half-metal state. Subsequently, the valley degree of freedom
due to the superlattice structure will disappear and no possible
interface state can form to generate the possible quantized IL.
The corresponding quantized-pump region in the parameter
space is plotted in Fig. 6, where inside the two circles, the
pumping values are ±2e/T while the outside is the nonquan-
tized pump region. It is seen that for a stronger hz, the region
of IL = +2e/T is much larger than that of IL = −2e/T . In
Fig. 2(c), the valley degree below the crossing points ±K
seems to vanish more easily since it almost converges with
the band center point (ka = 0). This case is also clearly seen
in Fig. 2(f) as well as its right inset. However, the valley degree
is still conspicuous when the energy E is above the crossing
points ±K from Figs. 2(c) and 2(f). Thus, the quantized value
of IL = +2e/T seems to survive in the case of higher Fermi
energy, shown in Fig. 6.

From the IL-E relationship, the current is alternate from
IL = +2e/T to IL = −2e/T and this is a typical property of
the two-parameter pumping device, i.e., the pumped current
satisfies the electron-hole antisymmetry since the pumping
mechanism is related to the excitation of the electron-hole
pairs from time-dependent perturbations. This is very different
from the Thouless topological pump in which the pumping
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FIG. 7. Quantized pump current as a function of the pumping
phase IL-ϕ for two different Fermi energies. Other parameters are the
same as those in Fig. 5(a).

results remain unchanged as long as the Fermi energy resides
in the energy gap, because it equals the topological number
of the whole insulator band below the Fermi energy that
keeps unchanged within simply shifting E in the energy
gap.

Another important characteristic of the two-parameter
pump is the fact that the pumping depends crucially on phase
ϕ. Based on the perturbation approximation, the formula [3]
of an adiabatic pump is given by IL ∼ ∂S

∂X1

∂S
∂X2

sin ϕ where S
and X1,2 are the scattering coefficients and the two pumping
parameters, respectively. The current-phase relationship of the
studied device is shown in Fig. 7 and it severely deviates
from the normal sine function behavior. Instead, it displays
a step-function formation: The pumped current can rapidly
reverse its direction with variation of ϕ from the positive one
(2e/T ) to the negative one (−2e/T ) or vice versa. The sine
current-phase dependence of I (ϕ) usually assumes that the
system should be in a metallic phase and the transmission of
electrons is nonzero in the cycle t ∈ (0, T ]. This is clearly not
the case we study here and, moreover, Eq. (5) is from the more
rigorous Büttiker-Prěre-Thomas (BPT) formula [39] of the
adiabatic pump. As ϕ = nπ (n, integer), the pumping result
deviates from the quantized one because, in this situation, the
effective energy gap δ due to ϕ will be extremely small and E
can easily locate outside the effective energy gap.

For the two-parameter pumping device studied above, it
can be regarded as a two-domain device of +hz and −hz

but not a uniform one. Therefore, the quantized pump cannot
correspond to a topological invariant of a single phase. How-
ever, it is believed that the quantization of the system has its
topological origin and should be protected by the topology of
the each uniform hz or −hz phase. As stated in Fig. 4(b), the
topological interface states may arise in the energy gap and
localize at the domain wall when h1 and h2 domains have the
opposite sign or direction. They shall be robust against some
moderate perturbations. Oppositely, as h1 and h2 point along
the same direction (with the same sign) at some moments t ,
the interface state shall disappear. The time-evolution of this
state can transport charges adiabatically from one end to the
other end of the device; the physics is in nature similar to

FIG. 8. Time volution (ωt) of energy levels (E ) in a self-closed
NWS within a half h1(t ) and a half h2(t ). Only the levels around
the bulk energy gap are plotted and the (red) solid line represents
the interface states. Parameters are hz = tso = 0.5γ , L = 120NT ,
ϕ = π/2, and L0 = 0.

the end-state pumping charge in the Thouless topological
pump.

In Fig. 8, we present the time evolution of the possible
interface state in our device. It is seen that in some time
intervals, this midgap state (red solid line) appears whereas
it can evolve into the bulk state in other time region. The
appearance or disappearance of the interface state with t in
the bulk energy gap resembles a topological phase transition.
Here, the calculation of the energy-band evolution is based
on a self-closed device without leads, so the original end
states due to a single hz term in Fig. 4(b) are avoided in the
display, which is not contributing to the pumping current. It is
noted that the self-closed system is equal to the open device
connected with the left and right leads [40]. The two times of
crossing the bulk energy gap for the interface state (red solid
line) in Fig. 8 represent the process that charges are moved
from one end to the midinterface and then to the other end of
the device. This is very different from the end-state evolution
of the topological Thouless state where it crosses the gap only
one time in a pumping cycle.

As mentioned above, the pumping quantization could oc-
cur when E resides in the effective energy gap δ, so the
transmission through the device is prohibited T = 0. As a
result, the pumped charge in a cycle T is directly equal to
the winding number of the reflection coefficient R [42],

w = 1

2π i

∮
d{ln[Det(R)]}, (6)

where R is a 2 × 2 matrix and Det(R) represents the de-
terminant of R. One can directly use the continuum Eq. (4)
to establish the scattering events of electrons to estimate R.
Here, we directly employ Eq. (1) to calculate R by the Ando
formula [41],

Rαβ =
√

vα

vβ

[
U (−)−1

{
Gr

ss[G
r (ss)]−1 − I

}
U (+)

]
αβ

, (7)

where vα(β ) is the velocity of the α(β ) spin eigenfunction in
the lead, U (±) is the left-going or right-going eigenfunction
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FIG. 9. Winding number of the reflection matrix as a function
of the distance L0 between two pumping sources and local potential
eV0. Parameters are hz = tso = 0.5γ , E = −1.59, and L0 = 50NT

in (b).

matrix of the lead s (= L, R), I is the unit matrix, and Gr
ss

is the Green’s function—same as the one in Eq. (5)—and is
also dependent on the time t . Gr (ss) is the time-independent
Green’s function of a pure infinitely long lead s (not the half
infinitely long for calculating the lead self-energy), in which
no interaction like hz in the scattering region is taken into
account.

In Fig. 9(a), we present the winding number w as a function
of the length L0 between the two pumping potentials of the
device. As is expected, w is shown to vary from +2 to −2
directly, which means the pumped charge is ±2e in a period-
icity T . 2 comes from two spin modes (degeneracy) involved
in transport. Actually, when the phase of the reflection coeffi-
cient R in electrodes advances by 2π in a pumping cycle but
keeps its unit amplitude, the winding number of R represents
the charge number exiting from the device to the electrode and
the pumping is therefore topologically protected.

The oscillation of w in Fig. 9(a) is also a significant
property of the two-parameter pumping device, because the
quantum interference will crucially affect the pumping results.
However, the oscillation due to the quantum interference here
is just a simple alternation from one constant to another
constant. If there is a gate voltage V0 applied onto the normal
L0 region, which modulates the dynamic phase of electrons
transporting in the middle region where no hz is applied,
the pumping results shall display the similar step-function
behavior. In Fig. 9(b), the winding number is plotted as a
function of eV0 and the alternation between ±2 is indeed
very clear. Hence, the quantum interference effect can provide

abundant adjustments of the quantized two-parameter charge
pump unlike the Thouless topological pump.

IV. DISCUSSION AND CONCLUSION

We have discussed the possible charge-pump quantization
in a two-parameter pump device, which is vitally dependent
on materials with a strong spin-orbit interaction. A semicon-
ductor nanowire like InAs [43] with the Rashba spin-orbit
interaction is a suitable material candidate, since it has been
extensively and intensively investigated, especially for recent
research of Majorana fermions in experiments [44] where the
Zeeman field was also demonstrated to open the energy gap of
the nanowire. Although the InAs NWS has not been fabricated
in experiments yet, there are plenty of experimental works
[45–48] dedicated to the fabrication of other semiconductor
NWS structures like SiC, SnO2, and ZnO. For example, Xue
et al. [48] developed a standard procedure to engineer in-plane
silicon nanowire springs. This NWS with a spring structure is
very applicable to our NWS model. Therefore, the fabrication
of the InAs NWS is feasible in experiments with state-of-the-
art techniques. Moreover, the InAs nanowire was also found
to have significant flexibility [49], which is also suitable for
fabricating a fold or bent NWS.

As for the time-dependent Zeeman fields utilized in our
theory, one can use an AC electric field signal to control
the corresponding magnetization through which electrons in
our model feel the time-dependent Zeeman splittings, since a
purely electric method to control the magnetism is currently
mature in the multiferroic materials [50,51]. Besides, one
can also directly use the microsolenoid to generate the AC
magnetic field by controlling the AC electric current flowing
though it. This may require that the NWS should thread
through the microsolenoid and, meanwhile, the Zeeman field
is along the wire direction (the y axis in Fig. 1). However,
our model is also valid in this case, because the hy field is
the same as the hz field in opening the bulk gap of the NWS
and the average eigenspin direction of electrons in the NWS is
along the x axis in the studied device. For the current folding
NWS, the energy gap is estimated to about δ = 0.6 MeV
for the NT = 4 case with these parameters like the effective
mass of InAs m∗ = 0.023me, the Rashba spin-orbit interaction
strength 3 × 10−11 eV m, Lande g-factor g ∼ 15, and the
Zeeman field about 1 T.

Our study further confirms that if the pumping potentials
can cause a topological phase, no matter what topological
phase (with or without a boundary/end state) and no matter
what the electron type (Dirac non-Dirac), the two-parameter
pump device can generate an integer number of electron
charges transported outside the device as long as the Fermi
energy is devised in the effective energy gap δ. Moreover,
this pump can be accounted for by the emergent interface
state, which is protected by the bulk energy gap opened by
the pumping potentials. Therefore, the pumping quantization
should survive in moderate disorder or temperature effect, and
this is helpful for experimental observations.

In summary, we have investigated the possible quantized
pump in a traditional two-parameter pump device, which is
based on a 1D NWS with the Rashba spin-orbit interaction.
It is shown that the electronic structure of the system within
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a superlattice structure from periodic folding exhibits new
band-crossing structures, which can be gapped by a per-
pendicular Zeeman field. The two time-dependent Zeeman
fields with a phase lag between them will give rise to a
quantized pump: An integer number of electron charge can
be pumped out adiabatically when the Fermi energy of the
system lies in the energy gap opened by the Zeeman field. The
time evolution of the emergent interface state in the energy
gap is responsible for an integral charges pumped from one
end of the device to the other end. The current direction is
also sensibly dependent on system parameters such as the

Fermi energy, the pumping phase, and the dynamic phase of
electrons transporting between two pumping sources.
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