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Motivated by the results of recent transport and optical conductivity studies, we propose a semi-infinite
two-dimensional lattice model for interacting massive Dirac electrons in the pressurized organic conductor
α-(BEDT-TTF)2I3, and address the problem of domain wall conductivity in a charge-ordered insulating phase
under realistic experimental conditions. Using the extended Hubbard model at a mean field level, we present
results of extensive numerical studies around the critical region of the model, reporting on the resistivity and
optical conductivity calculated by means of the Nakano-Kubo formula. We find that the activation gap extracted
from the resistivity data can be much smaller than the optical gap in the critical region, which is induced by
metallic conduction along a one-dimensional domain wall emerging at the border of two charge-ordered
ferroelectric regions with opposite polarizations. The data are consistent with the observed transport gap in real
α-(BEDT-TTF)2I3 samples that is reduced remarkably faster than the optical gap upon suppressing charge order
with pressure. Our optical conductivity also reveals an additional shoulderlike structure at low energy inside the
gap, which is argued to be directly relevant to the metallic bound states residing on the domain wall.
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I. INTRODUCTION

The quasi-two-dimensional (quasi-2D) electron system in
the layered organic salt α-(BEDT-TTF)2I3 has a unique
pressure-temperature (P-T ) phase diagram in which a 2D
massless Dirac electron phase appears at high P [1–7] which
an insulating phase is stabilized at low P showing charge
ordering. In the high-P phase the space and time inversion
symmetry guarantees the stability of the (spin-degenerate)
Dirac points in the momentum space, and the 3

4 filling of
the electronic band fixes the Fermi energy at the band-
crossing points. In contrast, the inversion symmetry is sponta-
neously broken in the low-P insulating phase where electrons
are localized and form a stripe-type charge-ordering pattern
along the crystalline b axis [8–11]. At ambient pressure
the charge-ordered phase appears below a transition temper-
ature of TCO = 135 K. An application of a hydrostatic pres-
sure linearly reduces TCO and eventually suppresses the phase
transition above a critical pressure Pc � 12 kbar, stabilizing
the massless Dirac electron phase at low temperature.

A narrow energy bandwidth characteristic for this type of
organic conductors gives rise to strong electronic correlation
effects in both phases [1,2,12]. As theoretically predicted and
also experimentally confirmed, the electron-electron Coulomb
interaction plays a significant role in the stripe-type charge-
ordered phase at low P. For example, recent NMR and
Monte Carlo studies point to a spin-excitation nature that is
consistent with one-dimensional (1D) alternating Heisenberg
spin chains [8,9,13,14]. Moreover, a novel charge-ordered
phase accompanied by massive Dirac electrons has been
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predicted in the vicinity of the critical region of the phase
diagram (P � Pc), which is induced by the short-range part of
the Coulomb interaction. (This charge-ordered massive Dirac
electron phase can be distinguished from the ordinary charge-
ordered phase at lower P in terms of the valley Hall effect
since the former has a finite valley Chern number, whereas
the latter has none [4,5,15–23].) In the high-P massless Dirac
electron phase, not only the short-range repulsive interac-
tions but also the long-range part of the Coulomb interaction
(appearing due to the absence of metallic screening at the
Dirac point) induce various anomalies in the NMR spin sus-
ceptibilities: A ferrimagnetic spin polarization, a logarithmic
suppression of the Knight shift, and orders of magnitude
enhancement of the Korringa ratio [24,25]. Moreover, at low
temperature signatures of inter-valley excitonic spin fluctua-
tions were reported as a precursor to the excitonic transition
by the long-range part of the Coulomb interaction [24–27].

Recently, a surprising transport property under pressure has
been reported by resistivity measurements [28]. The transport
gap �ρ estimated by Arrhenius plots turns out to have a
much smaller value compared to the optical gap �O extracted
from optical conductivity measurements [29]. The resistivity
gap �ρ is strongly suppressed as pressure is increased and
becomes zero at P ∼= 7 kbar while TCO and the optical gap
�O remain finite until the pressure reaches Pc. As a candidate
of a possible dc conduction mechanism in this critical region
(7 kbar � P � Pc), a 1D conduction scheme has been pre-
dicted along a gapless bound state on a domain wall formed
between two kinds of charge-ordered domains with differ-
ent polarization [15–17]. Interestingly, the charge ordering
in α-(BEDT-TTF)2I3 is also found to be accompanied by
ferroelectricity [30–32] as well as 180◦ polar domains having
a domain size of several hundred micrometers [31]. However,
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it remains unclear how the formation of these domain walls is
related to the observed contrasting pressure dependence of �ρ

and �O. To construct a realistic theory in this critical region,
one is therefore motivated to start with a minimal model that
has a single domain wall formed between two ferroelectric
domains possessing opposite electric polarization.

In this paper we develop a numerical approach which
accounts for the distinct pressure dependence of �ρ and
�O in the pressurized α-(BEDT-TTF)2I3, using a cylindrical
boundary condition that naturally introduces a domain wall
in a space-dependent mean-field theory [15–17,33,34]. The
interaction between electrons is treated within the extended
Hubbard model, where the canonical onsite interaction and
the nearest-neighbor interactions are included. In our recent
mean-field studies with semi-infinite [15–17] and 2D peri-
odic [18] boundary conditions, indications were found that
the influence of pressure can be parametrized by the strength
of the nearest-neighbor Coulomb interaction along the crys-
talline a axis Va, which varies most sensitively upon changing
the applied external pressure [35,36] and plays dominant roles
in stabilizing the stripe-type charge order [9]. Following this
hypothesis, we utilize Va as our control parameter in this
study. Periodic boundary conditions are considered in the a
direction but edges are placed in the b direction to introduce
a domain wall in the model. We present extensive numerical
calculations of the dc resistivity and the optical conductivity
using the T -matrix approximation combined with the Nakano-
Kubo formula [16,18,37–40]. This approach provides us a
novel way to understand the anomalous behavior of the ex-
perimentally reported transport and optical gaps (�ρ��O

around P ∼ 7 kbar [28,29]) by domain wall conduction along
the a direction in the model’s critical region. We also find an
unexpected shoulderlike structure in the optical conductivity
at low energy, which is discussed in terms of a 1D metallic
bound state on the domain wall.

The remainder of this paper is organized as follows.
In Sec. II A, we lay out the extended Hubbard model for
α-(BEDT-TTF)2I3 subjected to two kinds of cylindrical
boundary conditions either symmetric or asymmetric in the b
direction [15–17]. We also present a summary of earlier works
in this section, putting particular emphasis on geometrical
mechanisms behind the formation of a single domain wall
and showing its energy spectrum. In Sec. II B, we present
the formalisms of dc and optical conductivities within the
T -matrix approximation using the Nakano-Kubo formula.
Details of their formulations are summarized in the Appendix.
Our numerical results are shown in Sec. III. In Sec. III A,
we first focus on the temperature dependence of the spatially
resolved electronic states for the two types of boundary con-
ditions with and without a domain wall. We also present the
interaction-temperature (Va-T ) phase diagram which, for the
symmetric-edge case, confirms the presence of a domain wall
in a wide parameter region in the charge-ordered phase. In
Sec. III B, results for the temperature-dependent dc resistiv-
ity are shown for various sizes of Va, in which Arrhenius
fits to the data reveal a transport gap �ρ that is strongly
dependent on the fitted temperature range. In Sec. III C, we
evaluate the optical conductivity as a function of energy and
boundary types, which provides the optical gap 2�O for a
range of interaction sizes. We summarize our findings for the

domain wall conduction in Sec. VI and also try to associate
our proposed conduction mechanism to the results in real
α-(BEDT-TTF)2I3 by considering realistic experimental and
materialistic conditions.

II. MODEL AND FORMULATION

A. Models and summary of previous studies: Emergent domain
wall by geometrical constraints

Before presenting the main results of this paper, let us
first introduce our semi-infinite models that require special
cares on the treatment of edges. We then proceed to show
the Hamiltonian and summarize previous key findings derived
from these models; in particular, we focus on the geometry-
necessitated mechanism of domain wall formation between
two different charge-ordered domains [15–17].

To begin with, the model we rely on aims to describe
conduction mechanisms in α-(BEDT-TTF)2I3 in a realistic
situation where cylindrical boundary conditions are employed
in the conducting 2D plane. More specifically, we assume
a periodic boundary condition along the crystalline a axis,
whereas edges are introduced along the b axis, as presented
in Figs. 1(a) and 1(b). The 2D unit cell in the (low-P)
charge-ordered state contains four nonequivalent molecular
sites (dubbed A, A′, B, and C) [12,41] which form two distinct
columns in the a direction, labeled as AA′ and BC (see
Fig. 1). Because of these two column types, there are three
ways to introduce edges at the two ends in the b direction:
AA′-AA′, AA′-BC, and BC-BC. Among these, AA′-AA′ and
BC-BC have symmetric edges and lead to similar results
within this theory. Therefore, we will not distinguish them
hereafter and will only focus on the two edge types of
AA′-BC and AA′-AA′ that are either asymmetric (AA′-BC)
[Fig. 1(a)] or symmetric (AA′-AA′) [Fig. 1(b)] in the b
direction.

The electronic structure in α-(BEDT-TTF)2I3 is somewhat
involved due to a complicated 2D intermolecular network of
hopping integrals. Figure 1(c) shows the nearest- and next-
nearest-neighbor hoppings in the conducting phase used in
this study, where the system has inversion centers between the
molecules A and A′ as well as on the molecules B and C [11].
Note that the sizable hopping integrals [in particular b1 and
b2 in Fig. 1(c)] form a zigzag network along the a direction
[shown by solid lines in Figs. 1(a) and 1(b)].

As we reported previously, the molecules at the edges
residing off these zigzags are close to charge neutral (i.e.,
closed shell), whereas the other molecules residing on the
zigzags are positively charged reflecting the hole 1

4 filling
(electron 3

4 filling) of the electronic bands [16]. That kind
of charge-neutral molecules isolated from the zigzags ap-
pear only in the AA′ column locating at the edges; for the
(AA′-AA′) symmetric-edge pattern, the isolation occurs at the
molecule A on one edge while it takes place at the molecule
A′ on the other [Fig. 1(b)]. Because of this and the fact that
the charge carriers (i.e., holes) are localized either on the
molecule A or A′ (plus B) in the stripe-type charge-ordered
state [11], the (AA′-AA′) symmetric-edge pattern inevitably
acquires at least one domain wall on a BC column neces-
sitated by the geometry [16] [Figs. 1(b) and 2(d)]. For the
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FIG. 1. Semi-infinite boundary condition in a model system of
α-(BEDT-TTF)2I3, which is periodic in the a direction and has edges
in the b direction. The rectangles indicate A, A′, B, and C sites
corresponding to the nonequivalent BEDT-TTF molecules in the 2D
unit cell (in the charge-ordered phase). Two edge structures are con-
sidered in this study: (a) an asymmetric-edge pattern having either
AA′ or BC columns at each edge (AA′-BC) and (b) a symmetric-
edge pattern having AA′ columns on both edges (AA′-AA′). (For
the sake of simplicity, only a minimum number of AA′ columns
needed to introduce a domain wall is illustrated.) The black bold
lines stand for the network of largest hopping integrals forming a
zigzag chain along the a axis. The red filled rectangles indicate
the A or A′ molecules where the mean electronic density becomes
large in the charge-ordered phase, while the black ones represent
B and C molecules that constitute a domain wall [16], as shown
in Fig. 2(d). (c) The 2D network of nearest-neighbor and next-
nearest-neighbor transfer integrals in the conducting phase (solid
arrows), ta1, ta2, . . . , ta4′ , tb1, . . . , tb4. The nearest-neighbor Coulomb
repulsions (dashed arrows) Va and Vb are also indicated.

FIG. 2. The energy spectrum near the Fermi energy at Va = 0.21
and T = T ∗ = 0.0075 plotted as a function of the wave vector in the
a direction (ka) for the (AA′-BC) asymmetric-edge pattern (a) and
the (AA′-AA′) symmetric-edge pattern (b). The corresponding mean
electron charge density at each molecule in the unit cell ib is also
presented in (c) and (d), respectively. The green solid curves in
(a) and (b) specify those bands that are important for the arguments
of domain wall, labeled as ν = 180 for the (AA′-BC) asymmetric
edge (a) and ν = 179 for the (AA′-AA′) symmetric edge (b).

(AA′-BC) asymmetric-edge pattern, by contrast, no domain
walls are required as there is only one AA′ column at an edge,
and the charge-ordering pattern can be uniquely determined
[Fig. 1(a)]. Generally speaking, charge-ordered domains are
accompanied by spontaneous electric polarization [30,31],
causing multiple domain walls at the boundaries of several
ferroelectric domains, as is the case for conventional ferro-
electric materials. To make the story simple, however, we
will omit these additional domain walls in this study and
concentrate only on the one required from the geometrical
arguments.

Next, so as to the Hamiltonian, we consider a 2D Hubbard-
type model serving as a standard framework to study interact-
ing electrons on a lattice. In the orthodox Hubbard model one
only considers a repulsive onsite interaction between electrons
of opposite spin, but in this study we incorporate the nearest-
neighbor interactions playing one of the most essential roles in
driving the charge-ordering transition in α-(BEDT-TTF)2I3,
as theoretically suggested [9] and experimentally confirmed
by NMR [14]. We also introduce edge potentials following
Ref. [16] to treat the effects of surface charge recombination.
(In addition, we note that the interactions between BEDT-TTF
molecules and I3 anions would also play some roles in charge
order as argued in Ref. [42]. Although we do not exclude
that possibility, these interactions are assumed to have only
minor influences on our arguments and are thus neglected.)
The Hubbard-type model used in this study is described by
the Hamiltonian H = Hkin + Hint which is given by a sum of
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the kinetic term

Hkin =
∑
〈l,l ′〉

∑
σσ ′

(tl,l ′a
†
lσ al ′σ ′ + H.c.) (1)

and the interaction term

Hint =
∑

l

Unl↑nl↓ +
∑
〈l,l ′〉

∑
σσ ′

Vl,l ′nlσ nl ′σ ′ +
∑
edge

Vedgenl . (2)

Here, l = (ia, ib, α) represents a molecule α = A, A′, B,
and C in the (ia, ib)th unit cell, for the space slices in
the a direction ia = 1, . . . , Na and in the b direction ib =
1, . . . , Nb, respectively. tl,l ′ is the nearest-neighbor or next-
nearest-neighbor hopping integral between sites l and l ′.
U is the (molecule-independent) onsite interaction, and Vl,l ′

represents the nearest-neighbor repulsive interaction between
electrons at sites l and l ′, for which one can consider two
types, dubbed Va and Vb as shown in Fig. 1(c). alσ

† (alσ )
creates (annihilates) an electron of spin σ =↑,↓ at site
l , nlσ = alσ

†alσ stands for the density of electrons with
spin σ at site l , and the density nl = ∑

σ nlσ at site l is
summed over all spin projections. Following recent analyses
of the high-pressure NMR data [24,25], we use the values
of tl,l ′ given by a first-principles calculation in Ref. [43]:
ta1 = −0.0267, ta2 = −0.0511, ta3 = 0.0323, tb1 = 0.1241,
tb2 = 0.1296, tb3 = 0.0513, tb4 = 0.0152, t ′

a1 = 0.0119, t ′
a3 =

0.0046, t ′
a4 = 0.0060 [in eV; see Fig. 1(c)]. The interaction pa-

rameters are set to literature-accepted values U = 0.4 eV and
Vb = 0.05 eV [15–17], and, again, Va is the control parameter
of the model. The third term in Hint [Eq. (2)] represents an
edge potential Vedge that only acts on the electrons residing
at the edge sites; following Ref. [16], we assume Vedge = 4Vb.
The system size is set as Na = 200 and Nb = 60, and a Fourier
transformation is performed along the a axis using the opera-
tor alσ = N−1/2

a

∑
ka

akalbσ eikaia defined for lb = (ib, α) and the
wave-number vector ka. Within the Hartree approximation we
get a mean-field Hamiltonian HMF that is diagonalized in the
band representation and has an energy eigenvalue Eνσ (ka), as
described by

HMF =
∑
kaνσ

Eνσ (ka)c†
kaνσ

ckaνσ + const, (3)

Eνσ (ka)dlbνσ (ka) =
∑

lb
′

ε̃lblb
′σ (ka)dlb

′νσ (ka), (4)

where ν indicates the band index and ckaνσ is defined
using a unitary matrix dlbνσ (ka) [which is the eigenfunc-
tion in Eq. (4)] as ckaνσ = ∑

l ′b
d∗

l ′bνσ
(ka)akal ′bσ . The charge

carrier density at the site lb is calculated as 〈nlb〉 =
N−1

a

∑
kaσ

∑
ν |dlbνσ (ka)|2〈c†

kaνσ
ckaνσ 〉. Throughout this paper,

eV is used as the unit of energy.
Finally, let us show that an emergent gapless state naturally

appears on the the domain wall in the above model [15–17].
Figures 2(a) and 2(b) show the mean-field energy eigenvalue
Eν (ka) around the Fermi level at the transition temperature
to the charge-ordered state (hereafter referred to as T ∗) for
the (AA′-BC) asymmetric- and (AA′-AA′) symmetric-edge
patterns, respectively. [Note that T ∗ is defined from the point
where a discontinuous jump occurs in the second derivative of
the Helmholtz Free energy ∂2F (T )/∂T 2.] A gapless energy
spectrum arising from the domain wall bound state crosses EF

for the (AA′-AA′) symmetric edge [green curve in Fig. 2(b)],
whereas there is no gapless states for the (AA′-BC) asym-
metric edge such that the system remains fully gapped [see
Fig. 2(a), where the green curve represents the top level in
the valence band]. In Figs. 2(c) and 2(d) the corresponding
mean electron density 〈nlb〉 at site lb = (ib, α) is plotted for
the (AA′-BC) asymmetric-edge [Fig. 2(c)] and (AA′-AA′)
symmetric-edge [Fig. 2(d)]patterns. For the (AA′-AA′) sym-
metric case 〈n(ib,A)〉 intersects 〈n(ib,A′ )〉 at ib = 30 signifying
the appearance of a domain wall. In this study we investigate
the temperature dependence of these electronic states, whose
detailed nature including the phase diagram has not yet been
fully understood.

B. Optical conductivity

In order to evaluate the optical gap, we calculate the optical
conductivity given by the following Nakano-Kubo formula

σ a(ω) = 1

iω
[QR(ω) − QR(0)], (5)

where QR(ω) is a current-current correlation function in which
the Matsubara frequency iεn is analytically connected to a real
frequency ω. The optical conductivity σ a(ω) is calculated in
a clean limit. In the zero-frequency limit Eq. (5) gives the
longitudinal conductivity along the a axis (corresponding to
the Drude term) [16,37–40]

σ a =
∫

dω

(
− df

dω

)
�(ω), (6)

where f is the Fermi-Dirac function and �(ω) is a distribution
function that is calculated for impurity scatterings using the
T -matrix approximation, as expressed by

�(ω) = 4e2

�

∑
kaν

∣∣va
ν (ka)

∣∣2
τν (ω, ka)δ(h̄ω − Eν (ka)). (7)

Here, � = Na × Nb is the 2D system size, τν (ω, ka) is a
relaxation time, and va

ν (ka) is a velocity derived from a wave-
number derivative of the energy eigenvalue Eν (ka). A spatially
resolved conductivity σ a

ib is calculated as

σ a
ib =

∫
dω

(
− df

dω

)
�ib (ω), (8)

�ib (ω) =
∑
αlb

′
�lblb

′ (ω)

= 4e2

Na

∑
αlb

′

∑
kaν

va
ν (ka)

[
d∗

lbν (ka)va
lblb

′ (ka)dlb
′ν (ka)

]

× τν (ω, ka)δ(h̄ω − Eν (ka)). (9)

(For the details of derivations, see the Appendix and Ref [16].)
In the following, the conductivity is normalized to the uni-
versal conductivity σ0 = 4e2/πh, and the Drude term is
subtracted.
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III. NUMERICAL RESULTS

A. Local electronic structures and the massive
Dirac electron phase

In Fig. 3 we plot the temperature dependence of the
modulus of the squared A-site eigenfunction at ka = π/2,
|dibAν (π/2)|2, in which we focus on the bands ν = 179
and 180 at the unit cell locating at the center (ib = 30)
and around the right end (ib = 3). (For the definition of
these band indices, see the caption of Fig. 2.) The 2D
plot of |dibAν (π/2)|2 at T = 0.011(>T ∗) is also shown
in the insets, plotted as a function of ib and ka for the
(AA′-BC) asymmetric-edge pattern [ν = 180; inset Fig. 3(a)]
and the (AA′-AA′) symmetric-edge pattern [ν = 179; inset
Fig. 3(b)]. A clear change in the temperature dependence
appears at T = T ∗ in |dib=3Aν=180(π/2)|2Asym(open squares)

and |dib=30Aν=179(π/2)|2Sym (filled circles).
For T > T ∗ emergent edge states are clearly

visible for the both edge patterns, although the
amplitude of |dib=3Aν=180(π/2)|2Asym is twice larger than

|dib=3Aν=179(π/2)|2Sym. Moreover, the edge state appears only
at the right end for the (AA′-BC) asymmetric case [inset
Fig. 3(a)], whereas it is visible at both ends for the (AA′-AA′)
symmetric case [inset Fig. 3(b)]. These results suggest that the
electrons tend to gather more easily around the charge-neutral
molecules appearing in the AA′ column of the edges (see
Fig. 1).

For T < T ∗ a redistribution of electrons takes place
for the (AA′-AA′) symmetric case, shifting electrons from
an edge (|dibAν=179(π/2)|2Sym at ib = 3) to the center

(|dibAν=179(π/2)|2Sym at ib = 30) due to a formation of a do-
main wall and an associated bound state. For the (AA′-BC)
asymmetric case, by contrast, electrons do not gather around
the center, but instead the population around the right edge
(|dibAν=180(π/2)|2Asym at ib = 3) suddenly increases below
T ∗, signaling that electrons are bound to the charge-neutral

|d
ib

,A
,ν

(π
/2

)|
2

0.030.020.010
T [eV]

0

0.1

0.075

0.05

0.025

T*

ib= 3, ν=180, Asymmetric

ib= 3, ν=179, Symmetric

ib=30, ν=180, Asymmetric

ib=30, ν=179, Symmetric

ib  [unit cell]
60 30 0

0

π/2

π

0

0.04

0.08

0.12

k a

ib  [unit cell]
60 30 0
0

π/2

π

0

0.02

0.04

0.06

k a

(a) (b)Asymmetric Symmetric

ν=180 ν=179

FIG. 3. Temperature dependence of the squared A-site eigen-
function at ka = π/2 and Va = 0.21 plotted for the (AA′-BC)
asymmetric-edge (ν = 180) and (AA′-AA′) symmetric-edge (ν =
179) cases. The results around the right edge (ib = 3) and the center
(ib = 30) are presented. T ∗ represents the charge-ordering transition
temperature. Inset: The 2D plot of the squared A-site eigenfunction at
Va = 0.21 and T = 0.011(>T ∗), plotted as a function of ka and ib for
the (AA′-BC) asymmetric (ν = 180) (a) and (AA′-AA′) symmetric
(ν = 179) (b) edges.

molecules at that edge [see Fig. 1(a)]. These edge-bound
electrons might contribute to the conductivity by thermal
excitations. Figure 4 shows the interaction-temperature (Va-T )
phase diagram for the (AA′-AA′) symmetric-edge pattern,
where we present three characteristic energy scales: T ∗, TDW,
and TM . Already introduced as the metal-to-insulator transi-
tion temperature, T ∗ also defines a phase boundary between
the massless Dirac phase (with gapless Dirac cones) and the
(charge-ordered) massive Dirac phase (with gapped Dirac
cones). TDW, which coincides with T ∗, gives the energy scale
for forming a single domain wall determined from the tem-
perature where the domain wall width WD diverges [15,17],
and TM represents a merging transition of two gapped Dirac
cones [4,5,15,16,19–23]. The fact that we have T ∗ = TDW

directly supports the notion that the domain wall only appears
in the charge-ordered state and disappears in the massless
Dirac phase.

To have a better understanding of this phase diagram, it is
informative to focus on the evolution of the electronic state
at low temperature as a function of Va. As one increases
Va, there is first a transition from the massless Dirac phase
to the massive Dirac phase at V c

a = 0.197 (at T = 0) occur-
ring simultaneously with the charge ordering [15–17]. Upon
further increasing Va, the merging transition takes place at
V c2

a = 0.211 (at T = 0.0005) where the system changes from
the (charge-ordered) massive Dirac state (V c2

a > Va > V c
a ) to

the charge-ordered state with no Dirac cones (Va > V c2
a ). (As

we mentioned previously, the valley Chern number changes
from a finite value to zero across this transition [15], but
in both phases metallic bound states exist along the domain

FIG. 4. The Va-T phase diagram for the (AA′-AA′) symmetric-
edge pattern, where a domain wall emerges in the charge-ordered
(CO) phases either with or without massive Dirac cones. Gapless
Dirac cones are present in the massless Dirac electron (DE) phase
protected by the space and time inversion symmetry, whereas the
inversion symmetry is broken in the filled area due to the charge
ordering. For TM < T < T ∗ (green region), a charge-ordering gap
opens at the Dirac points and the cones become massive. These
massive cones merge at T = TM at the M point. Below TM , a charge-
ordered state without gapped Dirac cones is realized (yellow region).
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wall.) The latter critical interaction value well agrees with
what is deduced from the previous study using the 2D periodic
boundary condition (V c2

a = 0.212 at T = 0.001 [18]). We
note, however, that the real situation is a bit more complicated
because the merging happens separately in the conduction and
valence bands in α-(BEDT-TTF)2I3 reflecting the tilt of the
Dirac cones; in Fig. 4 we thus defined TM from the merging of
two energy minima taking place in the conduction band.

B. Temperature dependence of the resistivity
and the transport gap �ρ

Next, we calculate the temperature dependence of the
resistivity to estimate the transport gap �ρ . Figures 5(a)
and 5(b) present the 2D plots of the spatially resolved dc
conductivity σ a

ib (T ) in the a direction (at Va = 0.21) plotted
as a function temperature T and the position in the b direction
ib for the (AA′-BC) asymmetric-edge pattern [Fig. 5(a)] and
the (AA′-AA′) symmetric-edge pattern [Fig. 5(b)]. The plots
reveal a very different nature in the low-T behaviors for two
cases. For the (AA′-BC) asymmetric pattern, σ a

ib (T ) vanishes
at low T in the bulk of the sample since a gap opens at
the Fermi energy. For the (AA′-AA′) symmetric pattern, by
contrast, σ a

ib (T ) becomes vanishingly small at low T except
for the central region of the sample (i.e., ib = 30) where a
gapless 1D bound state appears on the domain wall [Fig. 2(b)]

T
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FIG. 5. 2D plot of the spatially resolved dc conductivity σ a
ib

in
the a direction at Va = 0.21, plotted as a function of temperature
T and unit-cell position in the b direction ib for (a) the (AA′-BC)
asymmetric-edge pattern and (b) the (AA′-AA′) symmetric-edge
pattern.

and yields finite conductivity [16]. Note that high conductivity
also survives at low T on the two edges in the (AA′-AA′)
symmetric case, whereas it remains large only on the right end
in the (AA′-BC) asymmetric case (for T � 0.002). These high
conductivities can be explained by thermal edge conductance
owing to the edge-bound electrons, as we mentioned in the
previous section (see Figs. 2 and 3).

To have a closer look on the temperature dependence,
we measured the dc resistivity ρa(T ) as a function of T
in the a direction for several strengths of interaction Va

ranging from 0.180 to 0.230. The resulting curves for the
(AA′-BC) asymmetric- and (AA′-AA′) symmetric-edge pat-
terns are shown in Figs. 6(a) and 6(b), respectively. For the
(AA′-BC) asymmetric pattern [Fig. 6(a)], the curves start to
diverge at low T above the critical interaction V c

a = 0.197.
This divergence signals the opening of a gap via spontaneous
charge ordering, in line with our recent results using the 2D
periodic boundary condition [18]. These data are contrasted
to the (AA′-AA′) symmetric pattern [Fig. 6(b)] in which the
resistivity does not diverge but levels off at low T for Va >

V c
a since the domain wall formation in the charge-ordered

state results in a finite conductivity along the gapless bound
state [Fig. 5(b)]. The values of the resistivity gap 2�ρ can
be extracted from exponential fits to the Arrhenius plot of
ρa(1/T ), presented in Figs. 6(c) and 6(d) for the (AA′-BC)
asymmetric- and (AA′-AA′) symmetric-edge patterns, respec-
tively. Upon increasing Va, the slope of the data shows a
systematic increase for Va � V c

a in the (AA′-BC) asymmetric
case [Fig. 6(c)], pointing to a continuous evolution of 2�ρ as a
function of Va. For the (AA′-AA′) symmetric case [Fig. 6(d)],
however, the curves of ρa(1/T ) show a nonmonotonic

Va=0.180
Va=0.190
Va=0.198
Va=0.205
Va=0.210
Va=0.220
Va=0.230
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ρ
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0
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T [eV]
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(d)
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Asymmetric
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Symmetric
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FIG. 6. Temperature dependence of the dc resistivity ρa in
the a direction plotted for several values of Va for (a) (AA′-BC)
asymmetric-edge and (b) (AA′-AA′) symmetric-edge patterns. The
corresponding Arrhenius plots of (a) and (b) are presented in (c) and
(d), respectively. Representative fits to the data are shown by black
dashed lines.
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behavior as one increases Va; for large values of Va there is
a steep slope at high T (around the transition temperature
T ∗), a gradual increase at intermediate T (�T ∗/2), and a
clear leveling off at low T (�0.001�T ∗). These contrasting
behaviors yield different estimates of 2�ρ in the charge-
ordered state (Va > V c

a ) that strongly depend on the range of
the fits to the data, as we shall see below.

We note here that the calculated curves of ρa(1/T ) in
Fig. 6(d) have many features in common with the recent
experimental data at a range of pressure P [28], showing
strongly nonmonotonic changes in the shape of ρa(1/T ) upon
increasing P. This apparent similarity motivates us to make a
comparison of the calculated values of 2�ρ (Va) with the ex-
perimentally obtained 2�ρ (P), considering Va instead of P as
a control parameter of the charge-ordering transition. To this
end, we perform fits using different fitting ranges to Figs. 6(c)
and 6(d). Figure 7 plots the resulting values of 2�ρ against Va

for several fitting procedures. The horizontal axis is reverted
to make a comparison to the pressure-dependence data in
Ref. [28]. The charge-ordering gap 2�ρ (Va) starts to open at
Va = V c

a and continues to develop almost linearly for Va > V c
a .

For the (AA′-BC) asymmetric pattern the gap size agrees with
that for the 2D periodic boundary condition [18] since the bulk
appearance of charge order results in a unique definition of the
gap. In contrast, the evolution of 2�ρ (Va) for the (AA′-AA′)
symmetric pattern shows a marked difference for certain types
of fits. The fits at high T yield a similar result to the above two
cases, pointing to a small influence of the domain wall bound
state at high temperature. On the other hand, the gap becomes
smaller for the intermediate-T fits and is almost zero for the
low-T fits, reflecting the presence of the metallic bound state
dominating the conductivity at low temperature.

Va [eV]

2
Δ

ρ
 [

eV
]

0.23 0.22 0.21 0.20 0.19 0.18
0

0.02

0.04

0.06
Va

c

2D-PBC
Asymmetric

Symmetric (High T)

Symmetric (Low T)
Symmetric (Mid T)

FIG. 7. The resistivity gap 2�ρ plotted as a function of Va for
the 2D periodic boundary condition (pluses) [18], the (AA′-BC)
asymmetric-edge pattern (crosses), and the (AA′-AA′) symmetric-
edge pattern. For the last one, results obtained for three distinct
fitting regimes are presented: High-T fits (stars), mid-T fits (filled
squares), and low-T fits (open squares). V c

a stands for the critical
point in this model at which the charge-ordering gap closes. The
black dashed-dotted line corresponds to the Va dependence of 2�ρ

that is deduced from the experimental data in Ref. [28] following the
fitting procedure discussed in the text.

In Ref. [28] the authors examined fits to the Arrhenius
plot of experimental resistivity at various values of P for
determining 2�ρ (P), but their choice of fitted temperature
range varies from pressure to pressure: (i) at ambient pressure
the fit was performed just below the transition temperature
(high T ), (ii) for P = 4.8 and 6.3 kbar it was done at half
of the transition temperature (mid T ), and (iii) for 7 kbar
<P < Pc it was done at a low-temperature limit below 20 K
(low T ). Given the similarity of the experimental Arrhenius
plot and Fig. 6(d), one is tempted to hypothesize that there
is a correspondence between the P-dependent choice of the
fitted temperature range in [28] and the Va-dependent fitted
range in Fig. 6(d). By doing so, we are able to estimate an
expected curve of 2�ρ (Va) corresponding to the experimental
data (indicated by the black dash-dotted line in Fig. 7).

C. Optical conductivity and optical gap �O

As a next step, we calculated the optical conductivity
σ a(ω) in the a direction for the (AA′-BC) asymmetric- and
(AA′-AA′) symmetric-edge patterns, where the interaction
Va was varied between 0.180 and 0.230. The representative
conductivity data normalized to σ0 = 4e2/πh deep in the
charge-ordered phase (at T = 0.0005 and Va = 0.21) are pre-
sented in Fig. 8. The overall shape of the optical conductivity
spectra is more or less similar for the two edge patterns and
is characterized by two energy scales 2�O and h̄ωpeak. A
sharp drop at 2�O � 20 meV signals the opening of a direct
charge-ordering gap at the Dirac point. Above the gap, there

FIG. 8. Optical conductivity spectra relative to the universal con-
ductivity σ a(ω)/σ0, plotted as a function of energy ω at Va = 0.21
and T = 0.0005 for the (AA′-BC) asymmetric edge (dashed curve)
and the (AA′-AA′) symmetric edge (solid curve). The contribution
from the Drude term is subtracted. h̄ωpeak is given by the maximum
energy of the spectra, and the optical gap 2�O is defined as the
inflection point. The black dashed line at low energy is drawn to
determine h̄ωDW. Inset: The energy bands near the Fermi energy
for the (AA′-AA′) symmetric-edge pattern. The gapless 1D bound
state stemming from the domain wall is shown by the green solid
curve intersecting the Fermi energy near the gapped Dirac point at
ka = −KD. The corresponding energy scales of h̄ωpeak, h̄ωDW, and
2�O are indicated by arrows.
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FIG. 9. The 2D plot of the spatially resolved optical conductivity
σ a

ib
(ω)/σ0 at Va = 0.21 and T = 0.0005, plotted as a function of

energy h̄ω and the unit-cell position ib in the b direction for the (AA′-
BC) asymmetric-edge pattern (a) and the (AA′-AA′) symmetric-edge
pattern (b).

is a humplike structure with a peak at h̄ωpeak � 34 meV.
The peak is ascribed to a direct transition between different
van Hove singularities in the conduction and valence bands,
locating at a time-reversal-invariant momentum (TRIM). Sim-
ilar structures have been observed in the previous study using
the 2D periodic boundary condition [18]. A remarkable differ-
ence found in the present cylindrical model is the additional
bump at low energy with a kink at h̄ωDW � 6 meV, which
only appears for the (AA′-AA′) symmetric pattern. This bump
can be associated to a direct transition between the valence
band and the gapless band at the Fermi energy linked to the
1D bound state on the domain wall. In addition, we note that
h̄ωDW is almost half the charge-ordering gap 2�O since the
Fermi energy locates at approximately the midpoint of the gap
(for details, see the inset of Fig. 8).

Figures 9(a) and 9(b) show the 2D plots of the spatially
resolved optical conductivity σ a

ib (ω) normalized to σ0 in the
charge-ordered phase (at T = 0.0005) calculated at Va = 0.21
for the (AA′-BC) asymmetric-edge pattern [Fig. 9(a)] and
the (AA′-AA′) symmetric-edge pattern [Fig. 9(b)], plotted as
a function of h̄ω and the position ib in the b direction. A
spatially uniform optical gap is clearly visible in both plots
except for the central region (ib ∼ 30) in Fig. 9(b) where the
conductivity increases from a lower energy due to the domain
wall bound state, bringing about a T-shaped structure. At the

2
Δ

[e
V
]

0.06

0.04

0.02

0

Va [eV]

Va
c

0.23 0.22 0.21 0.20 0.19 0.18

Va
c2

2ΔO

ħωpeak

ħωDW

FIG. 10. The optical gap 2�O plotted against Va (crosses). Other
characteristic energy scales of h̄ωpeak (stars) and h̄ωDW (open circles)
are also presented. Here, h̄ωpeak corresponds to the energy difference
between the conduction and valence bands at the M point in the first
Brillouin zone. Note that the results are the same for both edge types.

edges, finite conductivity resumes due to a direct transition
between the edge states (Fig. 3) and the conduction band. The
edge conductance is absent at the left edge (ib = 60) for the
(AA′-BC) asymmetric pattern in Fig. 9(a) since there are no
edge states in this case.

In Fig. 10 we present results for the optical gap 2�O

and the two characteristic energy scales h̄ωpeak and h̄ωDW.
(The horizontal axis is inverted to make a comparison with
the transport gaps in Fig. 7.) The results of 2�O and h̄ωpeak

show identical behaviors for the (AA′-BC) asymmetric and
(AA′-AA′) symmetric patterns and will not be distinguished.
The optical gap 2�O approximately increases linearly with in-
creasing Va, which is paralleled by h̄ωDW that also linearly de-
velops in a similar fashion. Note that the magnitude of h̄ωDW

is about 50% the size of 2�O as we mentioned above. By
contrast, h̄ωpeak is almost flat at lower Va, starts to decrease at
Va = V c

a (due to a deformation of energy bands at the charge-
ordering transition [18]), gradually approaches 2�O for V c2

a >

Va > V c
a , and eventually becomes almost identical to 2�O for

Va > V c2
a . The last point agrees with the fact that the van Hove

singularities in the conduction and valence bands disappear
when the merging transition occurs at Va = V c2

a since in that
case direct transitions between the singular points also vanish.
We have reported similar asymptotic behaviors of 2�O and
h̄ωpeak for the 2D periodic boundary condition in Ref. [18].
This similarity suggests that the overall changes of the band
topology and the optical gap are irrespective of boundary
choices (i.e., the absence or presence of a domain wall).

IV. SUMMARY AND DISCUSSION

In this study we examined the detailed temperature depen-
dence of the electronic states of interacting 2D Dirac electrons
in α-(BEDT-TTF)2I3 by using a minimal lattice model at a
mean-field level. More specifically, we assumed cylindrical
boundary conditions that, depending on the type of edges, ne-
cessitate a single domain wall as a consequence of geometrical
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constraints. An interaction-temperature (Va-T ) phase diagram
is proposed which we claim to correspond to the experimen-
tally reported pressure-temperature (P-T ) phase diagram if
one associates an increase in P with a reduction in Va.

We find clear evidence for a formation of a domain wall in
the entire charge-ordered phase (Va > V c

a ) for the (AA′-AA′)
symmetric-edge pattern. The key finding is the discovery of
a conduction mechanism along the 1D domain wall bound
state that excellently explains the experimental discrepancy
in the sizes of transport and optical gaps under pressure. The
conduction along this bound state turns out to offer a major
contribution to the transport conductivity at large Va, whose
degree increases upon cooling and completely dominates the
conduction at low temperature, resulting in a saturation of
resistivity and a vanishingly small transport gap. In contrast,
the impact of the bound state is rather limited in the optical
conductivity, giving rise to a finite gap in the optical spectra
regardless of the size of Va in the charge-ordered phase. [The
bound state causes, however, a small additional bump at low
energy (h̄ωDW) corresponding to an in-gap bound state.] As a
direct consequence of these differences, the transport gap ends
up with a vanishingly small value at low temperature, whereas
the optical gap stays finite, in a remarkable agreement with the
experiments. We therefore conclude that the emergent domain
wall must be relevant to the observed discrepancy in the ex-
perimental gap sizes. This point is in line with our supportive
calculations using the (AA′-BC) asymmetric-edge pattern and
the 2D periodic boundary condition since in these cases there
is no domain wall, and the two gaps reasonably coincide.

We also demonstrate that the Arrhenius analyses of the
resistivity data provide unusual gap values for large Va de-
pending strongly on the T slice the data are fitted. The gap is
identical to the bulk gap just below the transition temperature
T ∗, whereas it is largely suppressed toward lower T and
eventually becomes zero at low T . We reiterate that a very
similar behavior has been reported in the recent transport
experiments under pressure; Fig. 1(b) of Ref. [28] highlights
at low T a leveling-off-like feature of resistivity developing
upon increasing pressure, which draws an excellent parallel
with the calculated resistivity in Fig. 6(d) showing a similar
saturation at large Va. This strongly reinforces our original
hypothesis that the major impact of pressurization is altering
the size of Va.

Of course, our assumption in this model is somewhat
oversimplified, and in reality pressure would also change
other parameters such as the electronic bandwidth as well
as interactions between BEDT-TTF molecules and I3 anions
[42]. In our view, however, these effects are insufficient to
qualitatively reproduce the remarkable saturation of low-T
resistivity, allowing us to safely omit these effects as a first
approximation. Unfortunately, the putative model we rely on
precludes us from making a more quantitative analysis of
the gap sizes at this stage. In this regard, a more complete
calculation considering all these pressurization effects may
prove interesting.

The finding of the phase diagram also reveals that the
charge-ordered phase is divided into two subgroups in an
extended region on the Va-T plane; namely, the massive
Dirac electron phase with gapped Dirac cones on the lower-
interaction side (V c2

a > Va > V c
a ) and the trivial charge-

ordered phase without any cone on the higher-interaction side
(Va > V c2

a ). The categorization of these two phases in terms
of the valley Hall effect would be informative for improving
further understanding of charge order in this material.

We note that while our model assumes semi-infinite bound-
ary conditions and is hence different from the situation in
naturally grown α-(BEDT-TTF)2I3 bulk samples, a real crys-
tal is a quasi-2D material consisted of multiple stacks of 2D
conducting layers which inevitably has edges in each layer of
either (AA′-BC) asymmetric- or (AA′-AA′) symmetric-edge
patterns. Taking proper account of this, one can expect that
at least certain portions of the layers are comprised of the
(AA′-AA′) symmetric-edge pattern. We therefore argue that
the domain wall conductance must be relevant at low tem-
perature as long as these symmetrically edged layers are con-
cerned. Recent experimental reports on the electronic ferro-
electricity in α-(BEDT-TTF)2I3 at ambient pressure [30–32]
agree with this notion, which point to the presence of multiple
domain walls created between charge-ordered regions having
opposing electric polarizations. Another interesting remark is
that the saturationlike behavior of resistivity emerges even at
ambient pressure in some samples [14] (albeit it is absent
in others [28,44]). For real materials this suggests that the
domain wall conduction may be present in a much wider
region in the charge-ordered phase. We propose that optical
conductivity or real-space resolved spectroscopy would be
able to confirm domain walls, which should see some bump
structures at low energy inside the charge-ordering gap.

Finally, let us recall that our mean-field theory assumes a
minimal model which only considers a single domain wall
necessitated by geometrical requirements (i.e., the type of
edges at the two ends in the b direction). To go one step
ahead, one should take, for instance, thermal effects into
account which can cause excitations of multiple domain walls
by fluctuations. Nevertheless, we believe that the qualitative
features of the transport and optical gaps, in particular their
discrepancy in size, would not be altered much by the pres-
ence of excess domain walls. In that regard, our arguments
are expected to be durable even in the presence of fluctuations,
although further studies are clearly needed for gaining deeper
insight into these phenomena. It will be an interesting future
problem to consider the creation and annihilation of domain
walls as well as their dynamic properties.
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APPENDIX: DETAILS OF THE FORMULATION IN THE
CYLINDRICAL SYSTEMS USING EXTENDED

HUBBARD MODEL

In this Appendix we introduce the detailed formulations
used in this study. Our starting point is a Hamiltonian
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which is described in the site representation [see Eqs. (1)
and (2) in the main text]. Making a Fourier transformation
along the a axis, we define the Fourier inverse transform
alσ = N−1/2

a

∑
ka

akalbσ eikaia for site lb = (ib, α) (ibth unit cell
in the b direction and αth molecule) and wave-number vector
ka. The Hamiltonian in the wave-number representation then
reads as

Hkin =
∑
lblb

′

∑
kaσ

εlb,lb
′ (ka)a†

kalbσ
akalb

′σ , (A1)

Hint = U

Na

∑
lb,lb

′

∑
kak′

aqa

δlb,lb
′a†

ka−qalb↑a†
k′

a+qalb
′↓ak′

alb
′↓akalb↑

+ 1

Na

∑
lblb

′

∑
kak′

aqa

∑
σσ ′

Vlb,lb
′ (qa)

× a†
ka−qalbσ

a†
k′

a+qalb
′σ ′ak′

alb
′σ ′akalbσ

+
∑
edge

∑
ka

Vedgea†
kalb

akalb . (A2)

Here, εlb,lb
′ (ka) and Vlb,l ′b (qa) are defined as εlb,lb

′ (ka) =∑
δtlb,lb′e−ikaδ and Vlb,lb

′ (qa) = 1
2

∑
δ Vlb,l ′b , respectively, with a

momentum transfer qa and a vector δ connecting all possible
nearest-neighbor sites. Within the Hartree approximation one
obtains a mean-field Hamiltonian

HMF =
∑
lb,lb

′

∑
kaσ

ε̃lblb
′σ (ka)a†

kalbσ
akalb

′σ+const, (A3)

ε̃lblb
′σ (ka) = εlb,lb

′ (ka) + δlbl ′bφlbσ , (A4)

φlbσ = U 〈nlb−σ 〉 +
∑
lb

′′σ ′
Vlb,lb

′′ 〈nlb
′′σ ′ 〉 + Vedge, (A5)

where 〈nlbσ 〉 = ∑
ka

〈a†
kalbσ

akalbσ 〉 is the mean density of elec-
trons with spin σ at site lb averaged for the Fermi distri-
bution. Diagonalization of HMF leads to the energy eigen-
value Eνσ (ka) and the eigenfunction dlbνσ (ka), which re-
sults in a formation of the energy bands ν = 1, 2, . . ., 4Nb −
2 (1, 2, . . ., 4Nb − 1, 4Nb) for the (AA′-AA′) symmetric-edge
[(AA′-BC) asymmetric-edge] pattern. Recalling the orthog-
onality

∑
kaνσ dlbνσ (ka)d∗

lbνσ (ka) = δlblb
′ , the Hamiltonian be-

comes

HMF =
∑
kaνσ

Eνσ (ka)c†
kaνσ

ckaνσ + const, (A6)

Eνσ (ka)dlbνσ (ka) =
∑

lb
′

ε̃lblb
′σ (ka)dlb

′νσ (ka), (A7)

with E1σ (ka) < E2σ (ka) < · · · < E4Nb−2σ (ka). The chemical
potential μ is determined from the quarter-filling condi-
tion 1

4

∑
lbσ

〈nlbσ 〉 = 3
2 . Note that we set h̄ = kB = 1. Using

Eqs. (A6) and (A7), we will evaluate the electronic prop-
erties at finite temperature, in particular the optical and dc
conductivities.

The optical conductivity along the a axis is calculated by
the Nakano-Kubo formula which is formulated in terms of a

linear response theory, given by

σ a(ω) = 1

iω
[QR(ω) − QR(0)], (A8)

QR(ω) = −e2

�

∑
kaνν ′σ

∣∣va
νν ′σ (ka)

∣∣2

× f (Eνσ (ka)) − f (Eν ′σ (ka))
Eνσ (ka) − Eν ′σ (ka) + h̄ω + i0+ , (A9)

where � = Na × Nb is the 2D system size and f (Eνσ (ka)) is
the Fermi-Dirac distribution function.

The longitudinal dc conductivity [16,37–40] along the a
axis is given by

σ a =
∫

dω

(
− df

dω

)
�(ω), (A10)

�(ω) = 2e2

π�

∑
ka

Tr[vaImĜR(ω, ka)vaImĜR(ω, ka)], (A11)

where we introduced velocity variables

va
νν ′σ (ka) =

∑
lbl ′b

d∗
lbνσ (ka)va

lblb
′σ (ka)dlb

′ν ′σ (ka), (A12)

va
lblb

′σ (ka) = ∂

∂ka
ε̃lblb

′σ (ka). (A13)

The retarded Green’s function ĜR is expressed in the T -matrix
approximation as

GR
lblb

′σ (ω, ka) =
∑

ν

dlbνσ (ka)d∗
lb

′νσ
(ka)

h̄ω − Eνσ (ka) − �R
νσ (ω, ka)

(A14)

with the retarded self-energy

�R
νσ (ω, ka) =

∑
lb

nimpVimp

∣∣dlbνσ (ka)
∣∣2

1 − Vimp

Na

∑
ka

′ G0R
lblbσ

(ω, ka
′)

(A15)

and the single-particle retarded Green’s function

G0R
lblb

′σ (ω, ka) =
∑

ν

dlbνσ (ka)d∗
lb

′νσ
(ka)

h̄ω − Eνσ (ka) + i0+ . (A16)

Here, we defined the impurity potential Vimp

H ′ = Vimp

Na

∑
kaqalbσ

ρimp(qa)a†
ka+qalbσ

akalbσ , (A17)

ρimp(qa) =
∑

ia

e−iqaria , (A18)

for the number of impurity centers Nimp and the density of
impurities nimp = Nimp/Na in the a direction. The damping
constant γνσ (ω, ka) is given by the imaginary part of �R and
is calculated as

γνσ (ω, ka) = −Im�R
νσ (ω, ka)

=
∑

lb

|dlbνσ (ka)|2[πnimpV 2
impNlbσ (ω)

]
1 + [πVimpNlbσ (ω)]2

, (A19)
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where Nlbσ (ω) is a site-resolved spectral density given by

Nlbσ (ω) = 1

Na

∑
ka

(
− 1

π
ImG0R

lblbσ (ω, ka)

)

= 1

Na

∑
kaν

δ(h̄ω − Eνσ (ka))
∣∣dlbνσ (ka)

∣∣2
. (A20)

Recalling that τ = 1/2γ defines the relaxation time, one is
able to simplify �(ω) in Eq. (A11) as follows:

�(ω) = 4e2

�

∑
kaν

∣∣va
ν (ka)

∣∣2
τν (ω, ka)δ(h̄ω − Eν (ka)).

(A21)

To see the spatial distribution of conductivities along the b
direction, a spatially resolved conductivity is defined by

σ a
ib =

∫
dω

(
− df

dω

)
�ib (ω), (A22)

with a spatially resolved distribution function

�ib (ω) =
∑
αlb

′
�lblb

′ (ω), (A23)

�lblb
′ (ω) = 4e2

Na

∑
kaν

va
ν (ka)

[
d∗

lbν (ka)va
lblb

′ (ka)dlb
′ν (ka)

]

× τν (ω, ka)δ(h̄ω − Eν (ka)). (A24)

The dc conductivity σ a (or the dc resistivity ρa = 1/σ a) is
derived from a summation of σ a

ib over all possible ib in the b
direction.
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[37] P. Středa and L. Smrčka, Phys. Status Solidi B 70, 537 (1975).
[38] N. H. Shon and T. Ando, J. Phys. Soc. Jpn. 67, 2421 (1998).
[39] I. Proskurin, M. Ogata, and Y. Suzumura, Phys. Rev. B 91,

195413 (2015).

075206-11

https://doi.org/10.1143/JPSJ.61.23
https://doi.org/10.1143/JPSJ.61.23
https://doi.org/10.1143/JPSJ.61.23
https://doi.org/10.1143/JPSJ.61.23
https://doi.org/10.1143/JPSJ.69.543
https://doi.org/10.1143/JPSJ.69.543
https://doi.org/10.1143/JPSJ.69.543
https://doi.org/10.1143/JPSJ.69.543
https://doi.org/10.1143/JPSJ.73.3135
https://doi.org/10.1143/JPSJ.73.3135
https://doi.org/10.1143/JPSJ.73.3135
https://doi.org/10.1143/JPSJ.73.3135
https://doi.org/10.1143/JPSJ.75.054705
https://doi.org/10.1143/JPSJ.75.054705
https://doi.org/10.1143/JPSJ.75.054705
https://doi.org/10.1143/JPSJ.75.054705
https://doi.org/10.1143/JPSJ.76.034711
https://doi.org/10.1143/JPSJ.76.034711
https://doi.org/10.1143/JPSJ.76.034711
https://doi.org/10.1143/JPSJ.76.034711
https://doi.org/10.1103/PhysRevB.78.045415
https://doi.org/10.1103/PhysRevB.78.045415
https://doi.org/10.1103/PhysRevB.78.045415
https://doi.org/10.1103/PhysRevB.78.045415
https://doi.org/10.7566/JPSJ.83.072002
https://doi.org/10.7566/JPSJ.83.072002
https://doi.org/10.7566/JPSJ.83.072002
https://doi.org/10.7566/JPSJ.83.072002
https://doi.org/10.1143/JPSJ.64.4523
https://doi.org/10.1143/JPSJ.64.4523
https://doi.org/10.1143/JPSJ.64.4523
https://doi.org/10.1143/JPSJ.64.4523
https://doi.org/10.1143/JPSJ.69.805
https://doi.org/10.1143/JPSJ.69.805
https://doi.org/10.1143/JPSJ.69.805
https://doi.org/10.1143/JPSJ.69.805
https://doi.org/10.1016/S0379-6779(02)00404-6
https://doi.org/10.1016/S0379-6779(02)00404-6
https://doi.org/10.1016/S0379-6779(02)00404-6
https://doi.org/10.1016/S0379-6779(02)00404-6
https://doi.org/10.1143/JPSJ.76.113702
https://doi.org/10.1143/JPSJ.76.113702
https://doi.org/10.1143/JPSJ.76.113702
https://doi.org/10.1143/JPSJ.76.113702
https://doi.org/10.1080/00268948408078687
https://doi.org/10.1080/00268948408078687
https://doi.org/10.1080/00268948408078687
https://doi.org/10.1080/00268948408078687
https://doi.org/10.7566/JPSJ.85.104706
https://doi.org/10.7566/JPSJ.85.104706
https://doi.org/10.7566/JPSJ.85.104706
https://doi.org/10.7566/JPSJ.85.104706
https://doi.org/10.1103/PhysRevB.94.085154
https://doi.org/10.1103/PhysRevB.94.085154
https://doi.org/10.1103/PhysRevB.94.085154
https://doi.org/10.1103/PhysRevB.94.085154
https://doi.org/10.7566/JPSJ.85.094710
https://doi.org/10.7566/JPSJ.85.094710
https://doi.org/10.7566/JPSJ.85.094710
https://doi.org/10.7566/JPSJ.85.094710
https://doi.org/10.7566/JPSJ.86.074708
https://doi.org/10.7566/JPSJ.86.074708
https://doi.org/10.7566/JPSJ.86.074708
https://doi.org/10.7566/JPSJ.86.074708
https://doi.org/10.7566/JPSJ.87.054703
https://doi.org/10.7566/JPSJ.87.054703
https://doi.org/10.7566/JPSJ.87.054703
https://doi.org/10.7566/JPSJ.87.054703
https://doi.org/10.3390/cryst8030137
https://doi.org/10.3390/cryst8030137
https://doi.org/10.3390/cryst8030137
https://doi.org/10.3390/cryst8030137
https://doi.org/10.1088/1742-6596/132/1/012002
https://doi.org/10.1088/1742-6596/132/1/012002
https://doi.org/10.1088/1742-6596/132/1/012002
https://doi.org/10.1088/1742-6596/132/1/012002
https://doi.org/10.1103/PhysRevLett.100.236405
https://doi.org/10.1103/PhysRevLett.100.236405
https://doi.org/10.1103/PhysRevLett.100.236405
https://doi.org/10.1103/PhysRevLett.100.236405
https://doi.org/10.1103/PhysRevB.80.153412
https://doi.org/10.1103/PhysRevB.80.153412
https://doi.org/10.1103/PhysRevB.80.153412
https://doi.org/10.1103/PhysRevB.80.153412
https://doi.org/10.1140/epjb/e2009-00383-0
https://doi.org/10.1140/epjb/e2009-00383-0
https://doi.org/10.1140/epjb/e2009-00383-0
https://doi.org/10.1140/epjb/e2009-00383-0
https://doi.org/10.1103/PhysRevB.84.075450
https://doi.org/10.1103/PhysRevB.84.075450
https://doi.org/10.1103/PhysRevB.84.075450
https://doi.org/10.1103/PhysRevB.84.075450
https://doi.org/10.1038/ncomms12666
https://doi.org/10.1038/ncomms12666
https://doi.org/10.1038/ncomms12666
https://doi.org/10.1038/ncomms12666
https://doi.org/10.1126/science.aan5351
https://doi.org/10.1126/science.aan5351
https://doi.org/10.1126/science.aan5351
https://doi.org/10.1126/science.aan5351
https://doi.org/10.7566/JPSJ.86.014705
https://doi.org/10.7566/JPSJ.86.014705
https://doi.org/10.7566/JPSJ.86.014705
https://doi.org/10.7566/JPSJ.86.014705
https://doi.org/10.7566/JPSJ.87.054706
https://doi.org/10.7566/JPSJ.87.054706
https://doi.org/10.7566/JPSJ.87.054706
https://doi.org/10.7566/JPSJ.87.054706
https://doi.org/10.1103/PhysRevLett.116.226401
https://doi.org/10.1103/PhysRevLett.116.226401
https://doi.org/10.1103/PhysRevLett.116.226401
https://doi.org/10.1103/PhysRevLett.116.226401
https://doi.org/10.1103/PhysRevB.93.195116
https://doi.org/10.1103/PhysRevB.93.195116
https://doi.org/10.1103/PhysRevB.93.195116
https://doi.org/10.1103/PhysRevB.93.195116
https://doi.org/10.1143/JPSJ.77.074709
https://doi.org/10.1143/JPSJ.77.074709
https://doi.org/10.1143/JPSJ.77.074709
https://doi.org/10.1143/JPSJ.77.074709
https://doi.org/10.1063/1.3327810
https://doi.org/10.1063/1.3327810
https://doi.org/10.1063/1.3327810
https://doi.org/10.1063/1.3327810
https://doi.org/10.1103/PhysRevB.91.245132
https://doi.org/10.1103/PhysRevB.91.245132
https://doi.org/10.1103/PhysRevB.91.245132
https://doi.org/10.1103/PhysRevB.91.245132
https://doi.org/10.1143/JPSJ.80.054707
https://doi.org/10.1143/JPSJ.80.054707
https://doi.org/10.1143/JPSJ.80.054707
https://doi.org/10.1143/JPSJ.80.054707
https://doi.org/10.7566/JPSCP.1.012119
https://doi.org/10.7566/JPSCP.1.012119
https://doi.org/10.7566/JPSCP.1.012119
https://doi.org/10.7566/JPSCP.1.012119
https://doi.org/10.1088/1468-6996/10/2/024309
https://doi.org/10.1088/1468-6996/10/2/024309
https://doi.org/10.1088/1468-6996/10/2/024309
https://doi.org/10.1088/1468-6996/10/2/024309
https://doi.org/10.1088/1468-6996/10/2/024308
https://doi.org/10.1088/1468-6996/10/2/024308
https://doi.org/10.1088/1468-6996/10/2/024308
https://doi.org/10.1088/1468-6996/10/2/024308
https://doi.org/10.1002/pssb.2220700213
https://doi.org/10.1002/pssb.2220700213
https://doi.org/10.1002/pssb.2220700213
https://doi.org/10.1002/pssb.2220700213
https://doi.org/10.1143/JPSJ.67.2421
https://doi.org/10.1143/JPSJ.67.2421
https://doi.org/10.1143/JPSJ.67.2421
https://doi.org/10.1143/JPSJ.67.2421
https://doi.org/10.1103/PhysRevB.91.195413
https://doi.org/10.1103/PhysRevB.91.195413
https://doi.org/10.1103/PhysRevB.91.195413
https://doi.org/10.1103/PhysRevB.91.195413


D. OHKI, Y. OMORI, AND A. KOBAYASHI PHYSICAL REVIEW B 100, 075206 (2019)

[40] A. Rüegg, S. Pilgram, and M. Sigrist, Phys. Rev. B 77, 245118
(2008).

[41] R. Kondo, S. Kagoshima, N. Tajima, and R. Kato, J. Phys. Soc.
Jpn. 78, 114714 (2009).

[42] P. Alemany, J. P. Pouget, and E. Canadell, Phys. Rev. B 85,
195118 (2012).

[43] H. Kino and T. Miyazaki, J. Phys. Soc. Jpn. 75, 034704
(2006).
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