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Quantum interference control of localized carrier distributions in the Brillouin zone
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Using transition-metal dichalcogenides as an example, we show that the quantum interference arising in
two- and three-photon absorption processes can lead to controllable, highly localized carrier distributions in
the Brillouin zone. We contrast this with the previously studied one- and two-photon absorption, and find
qualitatively different features, including changes in the relevance of interband and intraband processes according
to the excitation energy. Thus, the distribution of excitations arising under certain circumstances in two- and
three-photon absorption can facilitate the study of far-from-equilibrium states that are initially well localized in

crystal momentum space.
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I. INTRODUCTION

Although nearly every technological device is based on
systems in far-from-equilibrium states, our understanding of
the properties of materials in such a regime is limited [1,2].
This is the case even for intensively investigated materi-
als such as semiconductors, which are the basis of digital
technology. One of the main impediments in the study of
materials far from equilibrium is the difficulty in creating
quantum excitations in a controlled way. For example, we
lack good methods for creating one of the simplest types of
electronic excitation in a gapped material: the excitation of
an electron from a valence to a conduction band at a given
crystal momentum. A simple way to excite electrons from
one band to another is via optical fields, but they usually
excite carriers in almost every location of the Brillouin zone
where the photon energy matches the energy difference of the
electronic bands. However, because of quantum interference
effects, optical fields of different frequencies can be used in
combination to excite carriers with more local distributions in
the Brillouin zone.

Quantum interference between distinct processes that re-
sult in the same transition can lead to localized electronic
excitations in crystal momentum space, as the different pro-
cesses interfere constructively in some parts of the Brillouin
zone and destructively in others. This interference can be
manipulated by varying physically tunable parameters char-
acterizing the excitation, such as a relative phase parameter
of the optical fields and their intensities. Polar distributions of
injected carriers in the Brillouin zone lead to charge currents,
and such “injected currents” due to the interference of one-
and two-photon absorption processes (“1 4+ 2” injection) have
been observed in bulk [3-7] and two-dimensional materials
[8-11]. The analogous injection of spin currents has been
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detected in bulk semiconductors [12—16], and proposed in
topological insulators [17]; the injection of spin and valley
currents in transition-metal dichalcogenides (TMDs) has also
been proposed [18].

This quantum interference control (QulC) of carriers has
been exploited to determine the carrier-envelope phase of
pulses short enough to contain both the fundamental fre-
quency and its second harmonic [19,20]; semiconductors with
a relatively large band gap are of interest here to allow
room-temperature operation. Recently the use of interference
between two- and three-photon absorption processes to inject
currents in semiconductors has also been studied both experi-
mentally [21] and theoretically [22]. This “2 4 3” injection is
of special interest for determining the carrier-envelope phase
of short pulses, since it can be used even if the frequency
spread of the short pulse does not span an octave. Coherent
optical frequency combs can be used for studying even more
general “N + M” QulC of carriers in gapped materials.

These interference processes have typically been studied
by observing the net current they generate, either directly
with the use of electrodes [4] or indirectly by the detection
of the terahertz radiation resulting from the excitation and
subsequent decay of that current [8]. These detection schemes
are sensitive only to the first moment of the carrier distribution
in the Brillouin zone, and that is all that has been typically
calculated. However, recent advances in time-resolved angle-
resolved photoemission spectroscopy (ARPES) [23] offer the
promise of detecting carrier distributions in the Brillouin zone
as a function of time. This would yield unparalleled insight
into the relaxation processes of such excitation distributions
injected by QulC, where carriers can be placed in regions of
the Brillouin zone far from those occupied by equilibrium or
near-equilibrium carrier distributions. It should also be con-
venient to use QulC as part of pump-probe experiments, with
QuIC used either to place carriers in a region of the Brillouin
zone or to detect them in a region of the Brillouin zone, or
both. So detailed theoretical studies of the injected carrier
distributions, and ultimately of their subsequent dynamics, are
now in order.
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In this first paper along these lines, we study the initial
k-space carrier distributions in the TMD WSe; due to 142,
143, and 2+ 3 injection. An important result is that 2 + 3
injection can lead to more localized carrier distributions in the
Brillouin zone than 1+ 2 injection, moving further towards
the goal of coherent control strategies that act as effective
“tweezers in the Brillouin zone” for the placement of carriers
where desired. The outline of the paper is as follows. We begin
in Sec. II by introducing a generic single-particle Hamil-
tonian, where the vector potential is included via minimal
coupling, and derive expressions for the first-, second-, and
third-order perturbative coefficients. Using these coefficients
we illustrate the origin of QulC. In Sec. III we introduce the
quantities of interest, namely, the electron excitation (carrier
injection) rate and the current injection rate. Following this,
in Sec. V we introduce a model Hamiltonian for TMDs and
use this system as a platform to compare features of different
orders of photon absorption processes. We then analyze our
findings: Sec. VI contains the k-space distributions of elec-
tronic excitations for various polarizations of incident light,
and in Sec. VII we plot the dependence of the carrier and
current response tensors on the excitation energy.

II. OPTICAL INJECTION RATES

We investigate the optical excitation of electrons by way of
time-dependent perturbation theory (TDPT), using a second
quantized Hamiltonian H (¢) that follows from a single-particle
Hamiltonian of the form

1
Hx, pin) = —[p— eA®]’

2m
+ Ko (x, p — eAD) + Viu(x), (1)
where e = —|e| is the electronic charge, x and p are position

and momentum operators, %o is the spin-orbit term, and
Ha(x) is the periodic lattice potential energy. We have chosen
a gauge in which the time-dependent scalar potential vanishes,
and have assumed the external electromagnetic field can be
approximated as uniform, with an electric field E (f) described
solely by the vector potential A(f). We only consider electrons
and holes injected at high enough energies to lead to currents,
and so bound exciton states are not relevant. The electron-hole
interaction in the ionized excitons that result can lead to phase
shifts in the injected currents at excitation energies close to
the band gap [24]; we ignore those here, as well as other
effects of electron-electron interactions. The O[A(f)?] term
arising in (1) is solely a function of time and adds a global
phase to the energy eigenstates, which has no consequence on
the expectation values we compute. Then (1) can be written
as S + Vexi(f), where %) is the unperturbed Hamiltonian
and the interaction term takes the form 7. (f) = —eb - A(?),
where v = i~} [74(x, p), x] is the velocity operator; this
holds for any unperturbed single-particle Hamiltonian that is
at most quadratic in the momentum. The only experimentally
accessible parameters within H(#) enter through this external
interaction; namely, the intensity, polarization, and phase of
the optical fields. It is therefore these parameters that can then
be varied to tune the quantum interference between excitation
processes.

The second quantized Hamiltonian can be written, in the
Schrodinger picture, as H(f) = Ho + Vex (), where

Ho = Zhwn (k)a,:kank s

nk

Ve () =D Vm(k, D&y .

nmk

(@)

The crystal momentum wave vectors, k, are summed over
the first Brillouin zone, n and m label bands, and ¥,,,(k, t) =
—ev,(k) - A(9), with v,,,(k) = (nk|v|mk). We express (2) in
the basis of eigenstates of H, where |nk) = a;k |vac) indicates
a Bloch state of band n with crystal momentum /ik and energy
hwy(k), and {a,;} are the fermionic electron operators. To
describe the applied optical fields, we take a vector potential
of the form

i i i ) ,
A() = ZAwa e—z(wa-i-ze)t — _Zw_Ewae_l(wu+le)t’ 3)
o
a o

where € — 0" describes the adiabatic turning on of the fields
from ¢t = —o0, and for N + M injection we sum over fre-
quencies w, = £Q/N, =Q/M, where hS2 identifies the total
transition energy. To keep track of the relative phases and the
polarizations of the different frequency components we write
E,, = E, %@,  where E, and @,, are real valued and &,,
is a polarization vector satisfying é:;a -8y, = 1.

The implementation of perturbation theory for problems
of this type has been previously discussed [5,25]; here we
simply summarize the approach. We move to the interaction
picture such that all operators evolve under H, thus a:,k (1) =

k)t

elon k) aik and a, (f) = e~ ®' g, . and all states evolve under

the time-evolution operator

o t d
u(t>=1+2/ %v1<r1v>-~-/
N=1Y =%

—00

15}

d
i—gvz(n), @)

where V() = M0/, (e~ ™!/ Using the completeness
relation for a multiparticle Hilbert space, a state |y (7)) can
be written, as shown in Appendix A, as

V() = UDIgs) = 1oOlgs) + Y Veolle, Dcvk) + ... (5

cvk

where |gs) denotes the ground state of the unperturbed Hamil-
tonian, in which all conduction bands (labeled c¢) are empty
and all valence bands (labeled v) are occupied, and |cvk) =
az_kavkl gs). Taking the applied optical field to be an ultrashort
pulse, we consider only the contribution of single electron-
hole pairs to the electronic charge and current density injec-
tion rates [5]. These rates can can be found via the coefficients

Yeolk, 1) = (cvk|U(D)]gs) Q)
(see Appendix A). The perturbative calculation gives

—i(Q2=wey (k) +i€)t

Yeolk, 1) = Rey (k) ) (N

- wcv(k) +ie '

where w., (k) = w.(k) — w,(k) such that hw. (k) is
the energy difference between the bands ¢ and v at
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k, and
Revk) =Y RY (k). ®)
N

These R (k) are transition amplitudes arising at different
order, N, of TDPT and are of the form

where the sum is over both frequencies and Cartesian compo-
nents, the latter indicated by superscript indices; at Nth order
of TDPT, there are N frequencies in the list (wq, ..., wp)
that add to €2, and N Cartesian components in the list
a---b that are accompanied by N factors of the applied
fields E. Here we are interested in the lowest-order am-

ROU = Y R, wpEL L. plitades RDE), RE®), and R (), which we identify
T with one-, two-, and three-photon absorption, respectively.
We find

©
| .
RO s 0) = 01, K), 1o
hwy
2 02 (k) (k) vgy (K)o, ()
R(Z)ab k;a)a,a) = — ¢ &« L - < = ? 11
cv ( ﬂ) hza)awﬂ ;a)ﬁ —a)c/,,(k) ;wﬁ —C!)cv’(k) ( )
R (k- o, g, w5) = ie” Z e ®) anw(k)ng”v(k) a be/u/(k)t’g’v(k)
b » Lo @B h3waa)ﬁwa ¢ Wy — wcc’(k) e ws — a)cuv(k) v @s = wc,v,(k)
y and kol (k) 3 vgy (k)og,, (k) \ vy, (k)
Ny e @) 0y — 0 ®) ) 0y — 000
~ Z ( ol (K)o, . (k)vd, (k) o? (kv . (k)b (k) ) . (12)
=\ [0o — 0y ()05 — 0y ()] [@5 — @y ()]0 — @y ()]

Ilustrated in Fig. 1 are the pairs of simultaneous absorption
processes we consider. The lowest-order terms comprising
Rcv (k) that give nonvanishing contributions to the charge and
current density injection rates, for applied fields containing
particular frequencies, are those amplitudes R%) (k) associ-
ated with each process in the pair. For instance, consider
an applied field containing frequencies w and 3w/2 with
corresponding energies less than the band-gap energy. We
say that such an applied field mediates 2+ 3 PA because,
although R\)(k; @) # 0 and R\)*(k; 3w/2) # 0, these terms
will not lead to injected carriers or currents; as it relates
to the charge and current density injection rates, R, (k) is
effectively R?) (k)+R 3 (k), as illustrated in Fig. 1(b). In our
calculation below, we include only the dominant contributions

(a) 142 PA

(b) 2+3 PA (c) 143 PA

FIG. 1. Schematic of the N + M photon absorption (PA) pro-
cesses considered. We adopt the notation Q2 = Mw.

(

to these amplitudes; for example, when investigating 142
PA, illustrated in Fig. 1(a), we neglect 2 PA involving a photon
of energy Ziw and another of energy 27w. This is justified
because, in order for 2 PA mediated entirely by light of
frequency w to excite the same magnitude of carriers as 1
PA mediated by light of frequency 2w, as required for QulC,
necessarily E, > E,. From (9) it is then clear that 2 PA by
hw + 2ho is insignificant in comparison to 2 PA by /iw + ho,
and we include only the latter in the R(>)(k) implemented
below.

III. CARRIERS AND CURRENTS

We are interested in the injection rates of both conduction
electrons and current density arising from the distribution
of electronic excitations in the Brillouin zone just after the
external fields have been removed. In the interaction picture,
the operators corresponding to the density of electrons in the
conduction bands and the total electronic current density are
given by

1
ne = L_D Za:kack,
| ck (13)
TO =75 Y eom®)ay Dam,

nmk

respectively, where L is a normalization length, D is the spatial
dimension of the system, and in the latter term n and m range
over all bands. To investigate the distribution of electronic
excitations in crystal momentum space arising from various
photon absorption processes, we resolve the injection rates
through the Brillouin zone; for a k-conserving, single-body
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operator M((f), which here will be the density n. or J (f), we
always have
dPk d

| Gmp M. a4

d
E(I/f(t)l/\/l(t)llﬁ(t)) =

where %(M (k;p) is the “injected density rate” in the Bril-
louin zone associated with the operator M, in the limit of
continuous k (Appendix A). It will be these injected density
rates that we later plot, primarily %(nc(k)) N+Mm, and are the
main focus of this paper.

Under our approximations - (M (k;1)) is independent of

d
time and, in general, can be expressed as

d
E(M(k,t»

E : a--ba-b . a

= MNN/ (Q’k)E—Q/N’ .
a,..., b;N
a,..., b;N'

b b
‘E—Q/N'EsaZ/N o Egn,

(15)

where we refer to Ml‘(;)g,b/“"'b (2; k) as the “response coefficient
density” associated with M (for a particular absorption pro-
cess). The general form of this object is given in Appendix A.
As previously mentioned, we include only the dominant con-
tributions to R (k) as dictated by the conditions for QuIC;
this restricts the optical frequencies included in (15). Further-
more, introducing response coefficients for the injection rate
associated with M as

d
E(iﬁ(t)l/\/l(t)llﬁ(t))

da--ba-b a
= § T SOE g -
a, ..., b;N
a,..., b;N'

b b
'E—Q/N'EsaZ/N o Egn

(16)

we find the response coefficient for a particular absorption

process, u& v ?(2), can be written as

de ab

bz )P “h(Qk). (17

i@ =

IV. THE TWO-BAND LIMIT

The model we later adopt is effectively a two-band model
for electrons of a given spin about each valley; this simplifies
(10)—(12) as well as the expressions for the electronic charge
and current density injection rates (see Appendix A). Proceed-
ing to take the limit e — 07 [25],

d
et D> = 27 |Re®0)|’81Q — w0 (k)],  (18)

which gives the rate of injection of electron-hole pairs at k.
It is the interference in this expression between the different
R (k) that contribute to R, (k) that allows the possibility
of quantum interference control; this is true even outside
of this limit. We note that as the RY) (k) coefficients are
always accompanied by 8[Q2 — w, (k)] in the expression for
the response the substitution w, + wg + ws = wc, (k) can be
made in R4 (k); in fact, this has been used to simplify (12).

The form of the response coefficient densities are simpli-
fied in this limit, and are defined to be (Appendix A)
Wi (k) = 2[R (ke /N, L Q/ND]

x RM*b(j; Q/N, ..., Q/N)
x L2 (cvk| M |cvk)8[Q — we ()], (19)

where M is an operator in the Schrodinger picture. An
implication of the two-band limit is that only diagonal matrix
elements of M appear in (19); if more bands were to be
included, off-diagonal elements would also appear.

A. 1+ 2 photon absorption

Consider a system with a direct band gap E, as indicated
in Fig. 1(a), with an incident optical field composed of fre-
quencies w and 2w, where fiw < E; < 2fiw. In such a system
a total energy of at least E, is required to excite electrons
from valence to conduction bands, which can be satisfied
both by absorption of a single photon of energy 2/iw and
by the absorption of two photons each of energy 7/iw. We
illustrate below how the interference of these two excitation
pathways gives rise to an injected current density in the
system. Contributions to the total injection rate corresponding
to the conduction electron density, j—l (n¢) 142, are of the form

d — ab 2 Ea Eb
EMC)] —51 Cw) 2024

d
Zr e = £ Qw)E® E® JES +cc.,  (20)

d
27 ek = g5 Qw)E E® ESEC,

as given in (16). In the above and below, the subscript i is
used in %(nc) N+um:i to denote a contribution to the total rate
that arises solely from the interference of excitation processes.
The contributions to the total injected density rate associated
with each of the above contributions to the total injection rate
then have the form

d
o), = £ (Qw; K)E ), EY,,

d
E(”c(k)>l+2;i = %{’%(Zw;k)Ewawagw +cc, (21)

d
Tlne(k))y = & Qe kOE E? ESES,

and the total injected density rate is given, from (15), by

d d d
E(nc(k»prz = E(nc(k»l + EMC(k))Z

d
+ E(nc(k»l-ﬂ;i' (22)

Implementing (19), the response coefficient densities for the
various absorption processes are found to be

EPPQw; k) = 2w R (k; 20)* RVP (5 20)8[ 20 — i ()],
£ 2wy k) = 27RO (k; , 0) R (k; 20)8[ 20— 0w, (k)]
£ Qw: k) = 21RE) (k; , ) R (k; , )
X 8[2w — wey (k)]. (23)
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Analogously, the total current injection rate has the form

d
E(j‘m 2 =0 Qw)E? E? ES +c.c.,

(24)

with the associated density
1% Qws k) = 2mef v, (k) — v4, ()[R (k; w, w)*

X RE,L)e(k; 2w)8[2w — wey (k)] 25)

for systems having current injected only because of the in-
terference of excitation processes. Generically this occurs in
materials with center-of-inversion symmetry, where all odd-
rank response tensors vanish; current is not injected by one-
or two-photon absorption individually, but the interference of
these excitation processes can lead to an injected current. We
note that for crystals with high enough symmetry such single
color current injection can be forbidden even if the system
lacks inversion symmetry.

B. 2+ 3 photon absorption

Next suppose the optical field is composed of frequencies
w and 3w/2, with 2w < E, < 3hiw. Then two- and three-
photon absorption processes can promote electrons from va-
lence to conduction bands, and also interfere; see Fig. 1(b).
The contributions to the total injection rate corresponding to
the conduction electron density are

E(”cb = ;bde(3w)Eﬁsw/zEfaw/zEélw/zng/z7
%mc)m;i = &7 Gw)E* E* E* ES, ,Ef ,+cec.
)y = M GBS B B ESELES,(26)
where
80 (303 k) = 27 R (k; =3 37“’)

’ 2 ’ 2
sabdef(:;w;k) — 27TR(.3)abd(k; w, W, a))*
243 cv

X 3w 3
% Rg))ef (k, 7607 ;)5[3&) - wcv(k)]7

3w 3
x R@xde (k. @ _“’)5[3w — wey (K],

%‘;bdefg(Sa);k) — ZnRg)”bd(k; w, w, w)*
X R8s 0, 0, 0)8[30 — 0 ()], (27)

while the current density injection rate is given by

d bd b pd
E(ja)2+3 = ng+38fg(Sw)E—wE—wEin{w/ZEégwﬂ +c.c.,
(28)

where

nsn % 8 Buws k) = 2me[vl. (k) — v, (k) |RO™ (ks w, w, w)*

3w 3
x RO (k; = 7‘“)8[&0 — 0, (0]  (29)
for systems in which current is injected only because of the
interference of excitation processes.

C. 1+ 3 photon absorption

Finally, consider an incident optical field consisting of
frequencies w and 3w, with 2w < E, < 3hw; see Fig. 1(c).
The contributions to the total injection rate corresponding to
the conduction electron density have the form

d
—lne)1 = P Gw)E B,

d
— ()13 = £ Bw)E® JEP EY ES +cc.,  (30)

dt - —wW —W
d
—(n.); = E™I83w)E® E? EY ESE/ES

dt — T w T w?

where the densities of the response coefficients in the Bril-
louin zone are given by

EPPBw; k) = 2R (k; 3w)*
X RO (k; 30)8[30 — ey (K],
525 Gwik) = 27 R (ks 0, 0, 0)*
x RV (k; 3)8[3w — ey (k)]
E;bdefg(?,w;k) — 2nR$})abd(k;w’ w, w)*

% Rg)efg(k; w, w, w)S[3w — we(k)].

€19}

Similarly, the current density injection rate is given by

d : :
T s = "% Gw)E® JEY E€ EL +c.c.,

where
1% Gosk) = 2melv (k) — 0%, (ORI (k; 0, , )"
x RV (k; 30)8[30 — 0, ()], (33)

and again we are restricting ourselves to systems where the
injected current arises entirely because of the interference of
excitation processes.

(32)

D. Qualitative functional behavior of the response
coefficient densities

Before evaluating these expressions for a particular model,
we note some general features that can be expected from any
system with a direct band gap in which electron-electron and
electron-phonon interactions are neglected, as well as possible
small contributions from other bands.

In the one-photon absorption amplitude (10) there is a
single interband velocity matrix element, v.,(k), which is in
general nonzero for all k values. In the two-photon absorption
amplitude (11) there are products of inter- and intraband
velocity matrix elements, while the three-photon absorption
amplitude contains terms involving one interband and two
intraband elements, as well as terms involving three interband
elements.

The structure of these terms is vital for understanding the
variation of the absorption amplitudes through the Brillouin
zone. Unlike the interband velocity matrix element, the intra-
band matrix elements v..(k) [v,,(k)] are zero at the conduc-
tion (valence) band minima (maxima), since they are directly
related to the slope of the bands at that k point; in particular,
they both vanish at the band gap, and have a much more
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significant crystal momentum dependence than the interband
matrix elements. Thus the two-photon absorption amplitudes
have more structure in the Brillouin zone than do the one-
photon amplitudes.

This is even more dramatic for the component of the three-
photon amplitude involving two intraband terms, which also
vanishes at a band extremum, but varies more quickly in k
than do the two-photon amplitudes due to the appearance
of two diagonal matrix elements v,,(k). In contrast to the
two-photon amplitude, the three-photon amplitude has a com-
ponent composed entirely of interband matrix elements that is
nonzero at the band gap, and generally has a slow variation in
the Brillouin zone, reminiscent of the one-photon absorption
amplitude. In this way, the three-photon absorption process
contains qualitative features of both the one- and two-photon
processes.

Since the two- and three-photon absorption amplitudes
can generally be expected to exhibit much more structure in
the Brillouin zone than the one-photon amplitude, it is not
surprising that carriers injected through a 24 3 absorption
process, where there is interference between the two- and
three-photon absorption amplitudes, can be more localized in
the Brillouin zone than those injected from a 1 + 2 absorption
process, involving interference between one- and two-photon
absorption amplitudes.

Finally, for a material with center-of-inversion symmetry
all full response coefficients described by odd-rank tensors
vanish. For such a material £{%(2w) and E;_I;‘ief (Bw) are iden-
tically zero. That is, in both 1 + 2 and 2 + 3 photon absorption
there is no interference between the contributing processes
that can lead to QulC of the total number of electron-hole
pairs created. Nonetheless, §%5(2w; k) and él‘ﬁef (Qw; k) are
not identically zero. That is, at a particular point in the Bril-
louin zone there can be interference between the contributing
processes, with (say) more electron-hole pairs created at a
particular k, than at —k,, and indeed it is this interference that
leads to the injected current described by the even-rank tensor
18 2w) (for 142 PA) or 1574/ (3w) (for 2+ 3 PA).

The situation for 1 4+ 3 photon absorption is qualitatively
different. For a material with center-of-inversion symmetry
there is no QulC leading to an injected current, as the tensor

nﬁ‘ﬂ’r‘é"eﬁw) that describes it is of odd rank. However, the tensor

& f’i%d(Sw) that describes QulC related to the total number of
electron-hole pairs injected is of even rank, and so this QulC
survives.

We now illustrate these features with a calculation using a
model for TMDs.

V. LOW-ENERGY MODEL FOR TRANSITION-METAL
DICHALCOGENIDES

For the exciting optical fields we consider, only electron
states near the band gap are relevant. We therefore consider an
effective theory defined in the regions near the valleys, K and
K’, that describes the lowest-energy excitations of the system;
we let k indicate the displacement in the Brillouin zone from
the nearby valley, writing

k=kX+ky=kXcosd + Jsin0), (34)

where k = |k| and 6 is the angle that k makes from the %
axis. We adopt an exactly solvable model Hamiltonian intro-
duced earlier [26-29], which includes terms allowed by the
symmetry of the lattice, and explicitly retains the intra-atomic
spin-orbit coupling term:

Hy(k) = hE(k,T, ® 0, ® s + ky‘L'o Koy ® S0)

hA A
+ T(t() ® oy & SO) + 7['(2 ® (GO - Gz) ® SZ]7
(35)

where the components of 7, o, and s are the usual Pauli
matrices, and with the index zero referring to the 2 x 2
identity matrix over the appropriate Hilbert space. For 7 that
Hilbert space corresponds to the valley degree of freedom
associated with the massive Dirac points, for o it corresponds
to the pseudospin degree of freedom associated with the
inequivalent sublattice sites, and for s it corresponds to the
spin degree of freedom.

In general Hy(k) is represented by an 8 x 8 matrix; but
the valleys are not coupled, and about each valley the spin
degrees of freedom also decouple. We thus solve a general
2 x 2 eigenvalue equation for an input {r, s}, which we use
to specify the valley and spin for which we are solving:
T = 1(—1) corresponds to the K (K’) valley, and s, = 1(—1)
corresponds to spin component in the z direction being up
(down):

Hy (k) = hwe;00 + hd (k) - 0, (36)

where @., = Ats;, d. (k) = EtkX + BkY + A2, and
Ay = (A — Ats;)/2. Here E is related to the hopping inte-
gral from site to site, AA is the band-gap energy if the spin-
orbit interaction were to be neglected, and A characterizes the
spin-orbit coupling; their values are given in Table I for WSe,
[26]. Note that A,y > 0.

One can diagonalize the Hamiltonian (36) to find energies
ey (k) = ooy £ hld (k)| [see Figs. 2(a) and 2(b)] for a
given {7, s}, leading to a frequency difference

g (k) = 2|d (k)| (37)
between the bands ¢ and v associated with {z, s} at k; note that
d.(k))> = B** + A%, (38)

is independent of 6, even though d.4(k) is not, and the fre-
quency difference function for a particular spin in one valley
is equal to the frequency difference function for the opposite
spin in the other valley. This is due to the combination of
time-reversal symmetry and because £3°(k) = ¢3°(—k), which
together imply e3°(k) = e" ¥ (k).

The only model dependent parameters that arise in the
perturbative expansion of the transition coefficient ., (k, )
are related to the velocity matrix elements [18]. Writing

TABLE 1. Model parameters for WSe, and upper bounds of
optical field amplitudes for single color absorption.

£ (%)

2 x 108

h

&3]

hiA hA Ey (%)

1.3 x 108

Es (53)

2 x 107

39AeVv  046eV  1.6eV
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(a) T=+1 (b)yr=-1 (c) Velocity matrix elements for WSes.

FIG. 2. (a), (b) Low-energy band structure of WSe, about the K (t = +1) and K’ (r = —1) points, where only 1+ 2 photon absorption
is indicated for clarity. Distinctly colored bands (red and blue) correspond to opposite spin projection (s, = —1 and +1). (c) Velocity matrix
elements for the upper valence band and lower conduction band about both valleys along the 6 = 0 direction ().

ey =R +H)/V2= é-, the interband velocity matrix ele-
ments are given by

; . TAg
0oy (k) = — iBe 0 [(— sinf + i cos e)fc
|ds(k)|

+< o4 itBr 9)]
COS l sin y
|d (k)]

Be it [ i9< TAL 1)“*
= e — e
V2 |d s (k)| B

T P (39)
|d.s(k)| +

and the intraband velocity matrix elements are given by
B’k
ld (k)|

The dominant contributions to the perturbative coefficients are
found to be (see Sec. II for discussion)

(k) = =0y (k) = (40)

ie 1
RO (k; Q) = E§U?U(k)’

Rrab (4. 2 & zﬁﬁ
@ \"2'2 n2 Q3

R(3)abd kg 9 9
v 373’3

335

[036 (k) - Uiv (k)] U?v (k)v

ie
= e { [08. () — 0, ()] [02. (k) — v5, (k)]
1
- Jot ot o @n
and useful combinations of velocity matrix elements are thus
‘ , 2E%!
o, (k) — o), (k) = ———,
' ld -5 (k)|
‘ . n oA ITAp . A A B2kik/
v, (k)v! (k) = EZ|:i-j+ 2'(i><j)——:|’
d o5l o)l
(42)

which follow immediately from (39) and (40). We also in-
troduce k. (mw), the crystal momentum at which §[mw —
s (k)] is satisfied, and the magnitude of which is given by

2
kes(mew) = B! (gw) — A2, 43)

The velocity matrix elements are plotted in Fig. 2(c) along
the direction 8 = 0 in the Brillouin zone. In the variation
of these matrix elements through the Brillouin zone, and
in the way they combine in the amplitudes (41), one can
easily identify the different qualitative nature of the absorption
amplitudes, as discussed in Sec. IV D. While the TMDs lack
center-of-inversion symmetry, for the configuration of optical
fields at normal incidence to which we restrict ourselves there
are electric fields only in the ¥ and y directions, and we
consider only current injections in the plane defined by those
two vectors. For this restricted set of “in-plane” Cartesian
components the TMD response coefficients do exhibit the
selection rules that would follow from center-of-inversion
symmetry: All odd-rank tensors vanish, QulC of injected
current is possible only for 1 42 and 2 + 3 absorption, and
QuIC of the number of injected electron-hole pairs is possible
only for 1+ 3 absorption. Expressions for the full set of
nonvanishing response coefficients (20,24,26,28,30) for this
model are given in Appendix B.

VI. ELECTRONIC DISTRIBUTION
IN THE BRILLOUIN ZONE

In what follows we focus primarily on an excitation energy
of 72 = 1.5 eV, which should be assumed unless otherwise
specified. To display the location of injected carriers in the
Brillouin zone, we plot % (ne(k))yp for N + M being 1 + 2,
2+ 3, and 1+ 3. These quantities are found by weighting
the previously found densities of the carrier injection rate
coefficients, &(2;k), by factors of the fields, and summing
them appropriately; this was described in detail in Sec. III.

Since our calculations are done at the perturbative level,
the field amplitudes and pulse lengths must be such that only
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FIG. 3. Distribution of injected carriers in crystal momentum space from an optical probe facilitating 1 + 2 photon absorption; the first
Brillouin zone is composed of a single pair of K (filled circles) and K’ (empty circles) points.

a small fraction of carriers in any region of the valence band
are excited into the conduction band. Taking a nominal figure
of 5% for this limit, the rough upper bounds for optical field
amplitudes corresponding to one-, two-, and three-photon
absorption at 3w, 3w/2, and w, respectively, are given in
Table I for 50-fs full width at half maximum pulses normally
incident on WSe,; these values were determined as described
in detail earlier [18].

In N + M injection the increased localization of excitations
in the Brillouin zone results from interference of the N and
M absorption amplitudes, and this increased localization is
typically maximized for field strengths giving rise to total
probabilities of N and M photon absorption that are nearly
equal, %(nc) N= %(nc) um . For the model we consider, this is
the explicit condition for maximum interference between pro-
cesses, which corresponds to the most localized excitations.
In what follows the optical intensities are always set such
that this holds. The field amplitudes listed in Table I do not
correspond to the condition of maximum interference between
any processes; these values specify the upper bound of the
perturbative regime for one-, two-, or three-photon absorption
processes individually. The values used for plotting are then
approximately half of those listed, and scaled appropriately;
the strength of the response, namely, the number of excited
electrons or magnitude of the injected current, depends inti-
mately on the field strengths, however the qualitative features
of Brillouin-zone densities are independent of these values so
long as the interference is maximized.

When considering excitation by incident optical fields,
the quantum interference between pathways can be affected
by adjusting the frequency, polarization, and phase shift of
the fields. As previously mentioned, we consider initially an
energy of 12 = 1.5 eV, and so it is the latter two parameters
we initially vary. In what follows we then look at various
relative polarizations of the fields, and for each combination
of polarizations we vary the phase shift. The quantity we term
the “relative phase parameter” arises as the natural parameter
to vary; this contains information about phases of both fields.
For 1+ 2,2+ 3, and 1 4 3 absorption processes the relative

phase parameters are given by

Adr2 = ¢ — 200,

A¢3 = 20302 — 3P0,

A¢13 = $30 — 3w, (44)
respectively, or generally Agyy = Npon — Mdom.

A. Colinearly polarized incident fields

Here the spin of the injected carriers is valley dependent,
while the distribution of electronic excitations is valley in-
dependent. It is thus sufficient to show the injected carrier
distribution about a single valley with the understanding that
the same excited charge distribution is present at the other,
composed of electrons of the opposite spin.

1. 1+ 2 absorption

Yet to gain an overall perspective, in Fig. 3 we plot the
relative density of carriers injected in the Brillouin zone for
the fields at w and 2w both linearly polarized along the %
direction and A¢, = 3w /2, for 2hw = 1.5 eV. In the neigh-
borhood of each valley the carriers are injected with the same
polar distribution, indicating that a net current is injected, and
that each valley contributes equally to the injected current. In
the inset of Fig. 3 we show an enlarged view of the carrier
injection about one of the valleys; the width of the arc is

(a) A¢12 = 71'/2 (b) A¢12 =0 (C) A¢12 = 3’/T/2
FIG. 4. Dependence of %(”c(k))uz on A¢y, for fields of fre-
quency w and 2w both polarized along X.
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(@) g (ne(R))y  (b) G (ne(k)), () & (ne(k))s
FIG. 5. BZ resolved carrier injection rates arising from single

color absorption, for fields polarized along X.

associated with the 50-fs pulse duration, and could be made
larger or smaller by considering shorter or longer pulses,
respectively. In the majority of the following figures we show
a view that corresponds to the inset of Fig. 3. Using such
a view we show in Fig. 4 how the injected carrier distribu-
tion changes with the relative phase parameter A¢;,, which
controls the interference between the one- and two-photon
absorption amplitudes.

In Fig. 5 we show the distribution of carriers injected from
(solely) one-, two-, or three-photon absorption, where the
different field amplitudes are again chosen so that there is
equal total carrier injection from each process. The results
here are also valley independent, with carriers of opposite
spin being injected about the different valleys. Although each
of these carrier distributions is nonpolar, they illustrate the
general feature, noted above, that the higher-order processes
result in more localized regions of injected carriers in the
Brillouin zone. We now explain the qualitative differences.

The one-photon absorption, due solely to interband matrix
elements, is peaked in the £y directions, perpendicular to the
direction of the electric field; this follows from (39), for from
it we find

812 =22 EzA%s 2
|nw(k) -x’ = E7sin"0 + ———> cos" 0,
|d s (k)|
2202 (45)
0o () -57’2 = E%cos’ 6 + u—”z sin® 6,
|d (k)]

and thus at larger photon energy, or equivalently at larger k, as
Ag/|d.5(k)| becomes smaller there will be even less injection
of carriers near the +x directions. The two-photon absorption
peaks in the directions £X associated with the oscillating
electric field because of the presence of the intraband matrix
element, and exhibits more localization in the Brillouin zone
than that of the one-photon absorption. The strong maxima
in the three-photon absorption are also due to the presence of
intraband matrix elements, while the weaker maxima in the
49y directions are due to the terms involving only interband
matrix elements. It is clear how the patterns displayed in
Fig. 4 result from the interference of the one- and two-photon
amplitudes responsible for the plots shown in Fig. 5.

2. 2+ 3 absorption

In Fig. 6 we plot the carrier injection distributions from
2 + 3 absorption corresponding to the carrier injection distri-
butions from 1 + 2 absorption shown in Fig. 4. As the relative
phase parameters (A¢,3 in the former, A¢;, in the latter)

(a) Aoz = /2

FIG. 6. Dependence of %(nc(k))2 13 on Ag¢,s for fields of fre-
quency w and 3w/2 both polarized along .

(b) A¢23 =T (C) A¢23 = 37T/2

are varied, the two sets of plots show the same qualitative
behavior. However, as expected, we see stronger localization
of the injected carriers in the 2 + 3 process than in the 1 42
process. The location of these more localized excitations leads
to a larger current injected in 2 + 3 than in 1 + 2 absorption at
a transition energy of 1.5 eV, as will be discussed in Sec. VII.

3. 1+ 3 absorption

The injected electronic distributions from 1 + 3 absorption
are qualitatively different than those from 1 + 2 and 2 + 3, and
are shown in Fig. 7. Here there is no net current injection, but
rather a variation in the total density of carriers injected as
the relative phase parameter A¢3 is varied. For A¢3 = 7 /2,
the contributions to EI“Jbr‘ée(S’w;k) from all (z,s) vanish, and
at any k point in the Brillouin zone the carriers injected are
the sum of those injected at that k point from one-photon
absorption and at three-photon absorption. There is construc-
tive interference between those two absorption processes at
A¢13 = m, with about 50% more carriers injected than for
the same intensities at A¢;3 = 7 /2, and there is destructive
interference between the processes at A¢;3 = 0, with about
50% fewer carriers injected than for the same intensities at
A¢1 3=T7 / 2.

B. Cross-linearly polarized incident fields

The spin of the injected carriers is again valley dependent.
However, in contrast to the colinear case, the injected elec-
tronic charge distributions also become valley dependent.

1. 1+ 2 absorption

In Fig. 8 we plot the distribution of injected carriers
for é3, =% and &é3,» =3. For A¢, =m/2 or 3m/2 the
distribution of injected carriers about the different valleys

 —~—— —

(a) A¢13 =0 (b) A¢13 = 71'/2 (C) A¢13 =T

FIG. 7. Dependence of %(nc(k))IH on A¢,; for fields of fre-
quency w and 3w both polarized along X.

075203-9



MAHON, MUNIZ, AND SIPE

PHYSICAL REVIEW B 100, 075203 (2019)

(b) K, A¢ra =

oHe

) _—

(d) K', Ao =% (e) K/, Aprz =7

(f) K', A1y = 22

FIG. 8. Dependence of % (n(k)) 4, on A¢,, for fields orientated
according to &, = ¥y and é,, = X.

is the same, and exhibits a current in the —% direction (for
A¢i, = w/2) or in the X direction (for A¢, = 37 /2). How-
ever, more generally the injected electronic distributions are
valley dependent; the most dramatic example is for A¢, =
7, where currents are injected in the —j and § directions about
K and K’, respectively. Here there is no net current injected
in either direction. Due to the symmetries of the model, the
only nonzero response tensor involved for the net current for
the specified polarizations is 77”5, and so any nonvanishing
injected current is in the £X direction. In fact, regardless of
the crystal axes associated with the cross-linear polarizations,
in this model it is always the direction associated with the
field facilitating odd-number photon absorption (i.e., 1 PA,
3 PA, etc.) that determines the direction of the net injected
current, if there is one. This can be shown analytically using
the expressions provided, and is consistent with previously
found results for the TMDs [18].

2. 2+ 3 absorption

The situation is the same for 2 + 3 absorption, where the
direction of the current injected by cross-linearly polarized
light is always determined by the direction of field facilitating
three-photon absorption. In Fig. 9 we plot the injected carriers
for &, = X and &3,/ = J; the corresponding response tensor
component is 77,5 . As in the 1 4- 2 case, at A¢y3 = 7 there
is no net current injected. At A¢y3 = m/2 and 37 /2 the
distributions of injected carriers about the K and K’ points
are identical, mirroring the situation for 1 4 2 absorption,
and there is a weak current injected in the —X% direction
(for A¢3 = 7 /2) and in the X direction (for A¢g,3 = 37 /2).
The carrier distributions injected by cross-linearly polarized
incident fields appear to be more strongly localized in the
Brillouin zone for 2 + 3 absorption than for 1 + 2 absorption,
as was seen for colinearly polarized incident fields. Here,
however, it is found that there is a larger current injected from
1+ 2 absorption than from 2+ 3 absorption at a transition
energy of 1.5 eV (see Sec. VII).

(2) K, Agas =m/2 (b) K, Agas =

()

T—

(c) K, Aoz = %

(d) K', Agas =35 (e) K', Agops =7 (f) K', Aps = &
FIG. 9. Dependence of %(nf (k)),.3 on Ag,; for fields orientated
according to &, = X and &3,» = J.

3. 1+ 3 absorption

Again, there is no current injection possible for 143
absorption. For &3, = X and &, = J the injected carrier dis-
tributions are shown in Fig. 10. The distributions about K
and K’ are the same for A¢i3 = 7, but different from each
other generally. The result of the interference is that one set
of regions where injected carriers are localized (those in the
4y directions about K) becomes less populated as the relative
phase parameter is increased from 7 /2 to = to 37 /2, and
another set of regions (those in the +% directions about K)
becomes more populated. This parallels what was seen for
14 3 absorption for colinearly polarized incident fields. As
was found there, the number of carriers injected about each
valley varies as the relative phase parameter A¢,; is changed.
Here, however, the injected distributions are valley dependent
and the result after summing both valleys is that there is no net

N—

(a) K, Ap1s =% (b) K, Az =

— L NG

(d) K,, Api3 =15 (e) I{/7 Apiz =m (f) I{/7 A1z = 3m

2 2

FIG. 10. Dependence of %(ng(k))] 43 on A¢ys for fields orien-
tated according to &, = y and &;, = X.
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injection of carriers; this is consistent with what we display in
Fig. 10.

C. Circularly polarized incident optical fields

Consider first the one-, two-, and three-photon absorption
processes individually. For a given helicity, say &, the distri-
bution of carriers injected by one-photon absorption will show
no dependence on the angle 6 about the nearby band gap. This
follows from (39), which governs the one-photon absorption
rate, and from which we find

Bel!—0) < TA,
V2 \ldws(k)l

It is the absolute value squared of (46) that enters in the
one-photon absorption rate for &, polarized light, which is
independent of 6. Similar arguments hold for the two- and
three-photon absorption rates. Thus the localization of in-
jected carriers resulting from a single color absorption process
using linearly polarized light (recall Fig. 5) is absent for
excitation by circularly polarized light, and so the single
color absorption processes do not help in establishing well-
localized polar distributions when interference effects are
brought into play. Nonetheless, in another sense the use of
circular polarizations offers more control compared to the use
of linear polarizations, in that continuous variations in the
relative phase parameter change the direction of the injected
current continuously; this is not the case when exciting elec-
trons using linearly polarized fields.

Notice that near the K point (t = 1) (46) will be larger
than about the K’ (t = —1); indeed, as the excitation energy
decreases to the band-gap energy and |d. (k)| — A, there
will be no carriers injected about K’ by light of this helicity.

Ucu(k) : é\‘)-k— = + 1) (46)

1. Equal helicities

We first consider 1+ 2 absorption, with &, being the
polarization for the fields at both frequencies. The injected
carrier distributions about the K point are shown in Fig. 11;
those about K’ are qualitatively the same, but with far fewer
carriers injected. As the relative phase parameter A¢, is
varied from O to 27 the direction of the injected current varies
continuously over the same angular range in real space. Since
more carriers are injected about the K valley than about the
K’ valley, and as carriers injected in different valleys have
different spins, the injected current will be spin polarized.
This was discussed previously [18]. The scenario for 2 43
absorption is qualitatively the same and thus not included as

)

g

(a) A¢13 =0 (b) A¢13 = 271'/3 (C) A¢13 = 47T/3
FIG. 12. Dependence of %(nc(k))1 13 on Ag,;3 for fields of fre-
quency w and 3w both circularly polarized in ...

a figure; as Agy3 varies from O to 27 the direction of the
injected spin current varies from 0 to 27 in real space.

For 143 absorption there is no injected current, as ex-
pected, but there is a nonuniform distribution of injected
carriers in the Brillouin zone that rotates as the relative phase
parameter A¢3 varies; this is shown in Fig. 12. Here the total
number of carriers injected does not vary with A¢,3, as was
possible for linearly polarized excitation, but since there are
more carriers injected around K than K’, and since the spin of
the injected carriers is correlated with the valley, the injected
carriers are spin polarized.

The scenario for é_ polarized light is essentially the same
for all interference processes, but with the predominant valley
and spin of the injected carriers reversed.

2. Opposite helicities

For a transition precisely at the band gap facilitated by
fields having opposite helicity, carriers are injected into each
valley by only one of the two frequencies, namely, the fre-
quency associated with the helicity of light that couples to
that particular valley, and of course there is no interference.
For higher excitation energies interference does arise because
each polarization injects carriers into both valleys, although
more into one than into the other. Yet in our model for the
TMDs there is no variation in the number of carriers injected
as the appropriate phase parameter is varied, nor is there
net current injected for amy of the interference processes.
However, anisotropic carrier distributions are injected that
rotate as with variation in the relative phase parameter. For
142 absorption the anisotropic distribution has threefold
rotational symmetry, for 1+ 3 absorption it has fourfold ro-
tational symmetry, and for 2 4 3 interference it has fivefold
symmetry. We show the first of these for our excitation energy
of 12 = 1.5 eV in Fig. 13.

(a) A¢12 = O (b) A¢12 = 271'/3 (C) Ad)m = 47‘&'/3
FIG. 11. Dependence of %(nc(k))1 42 on Agy, for fields of fre-

quency w and 2w both circularly polarized in é, .

(a) Ag12=0  (b) A1z =m/2 (c) Agrz =

FIG. 13. Dependence of [%(nc(k))l 42 on A¢y, for fields orien-
tated according to é, = €, and &,, = é_.
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FIG. 14. Excitation energy dependence of the independent components of the carrier injection response tensor for single color photon

absorption processes. We plot nonzero components about the K valley.

VII. FREQUENCY DEPENDENCE
OF INJECTION COEFFICIENTS

As the excitation energy 72 is varied, the carrier and cur-
rent injection distributions shown above will change. For an
overview of this we look at plots of the injection coefficients
themselves.

A. Carrier injection coefficients

In Fig. 14 we show contributions to the carrier injection
rate about the K point arising solely from single color absorp-
tion: &1, &, and &;. The total coefficient, &,, is given as a sum
over contributions &,.;; associated with valley T and spin s,
& = Z” &n.25; however, to label the plots we use the notation
Enr = D Enrs. In Fig. 15 we display the interference terms
that give rise to a nonvanishing carrier injection rate. As it
happens, this term is only nonvanishing in the case of 1 + 3
absorption.

We find the real valued components of the response tensor
to be valley independent, while the imaginary parts differ by
a sign between K and K’. So the real part characterizes the
total carrier injection, while the imaginary part characterizes
the imbalance of injected carriers between the valleys. For
one-photon absorption we have §&% = &Y and they are both
real; here and below we only show independent components.

The cross term £ is imaginary, reflecting the structure of the
interband matrix element (39), and close but not identically
equal in magnitude to £**. There is the usual steplike increase
in the one-photon absorption coefficient at the band gap
because the matrix element (39) is finite there, and a second
steplike increase in magnitude at the onset of absorption from
the lower valence band.

Unlike the one-photon carrier injection coefficients, the
two-photon injection coefficients have a smooth initial onset
because of the presence of intraband matrix elements (40)
appearing in the expression (41) for the R>%®| which arises
in the expression (27) for &;; these intraband elements vanish
at the band gap and change continuously as one moves away
from it. The onset of absorption from the lower valence band
is also smooth for the same reason. The overall magnitudes
of the &, coefficients drop off faster with increasing excitation
energy than do those of the & coefficients because a larger
number of frequencies appear in the denominator of the
coefficients (9) Rg\f )(k) as N is increased.

The three-photon carrier injection coefficients &; share
some of the features of the £, and some of the &;, since RS}) (k)
contains pure interband (PR) contributions [as does Rg}) (k)]
and interband-intraband contributions (RA) that involve both
types of matrix elements [as does R (k)]; this also leads
to the coefficients &; exhibiting a more complicated energy
dependence than the elements of either &, or &,. For example,
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FIG. 15. Excitation energy dependence of the independent components of the carrier injection response tensor arising from the interference
of photon absorption processes. We plot the nonzero components about the K valley.

the sharp onset at the band edge of the different components of
&3 is due to the PR contribution, while the later, smoother rise
(or fall) in the different components is due to an increasing
contribution from the RA contributions as the magnitude of
v (k) — v,,(k) increases at larger k; certain components of
&; can actually vanish as the PR and RA contributions cancel.

The interference coefficient &3 again shows the presence
of PR and RA contributions. The first leads to the steplike
increase at the band edge, and another steplike change at the
onset of absorption from the lower valence band. The second
leads to the smoother change with increasing excitation en-
ergy that actually produces a sign reversal of the nonvanishing
coefficients as the PR and RA contributions cancel one an-
other. Note that all components of Re(&3), which govern the
net carrier injection, vanish at a particular excitation energy
h2 = 1.31 eV. Thus the destructive interference between the
PR and RA contributions [see (41) for R®)®{] leads to a
frequency region where there is very small coherent control of
the carrier injection rate. At the energy that Re(&;3) vanishes
Im(&;43) is not strictly vanishing, and therefore there will be
carrier injection interference in both the K and K’ valleys, but
the interference effects will cancel when producing the total
carrier injection rate. Nonetheless, at this energy Im(&;43) is
very small, and so even the “valley-by-valley” interference
will be very small.
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B. Current injection coefficients

The contributions to the current injection coefficients 1y,
and 43 from the K valley are shown in Figs. 16 and 17,
respectively, as a function of excitation energy; an analogous
notation to that used for plotting carrier injection rates is
adopted here. In contrast to the carrier injection, here we
find the imaginary valued components of the response tensor
to be valley independent, while the real parts differ by a
sign between K and K’, so it is the imaginary parts that
completely characterize the charge current injected into the
system. Earlier work [24] on simpler systems showed that
including the Coulomb interaction between injected electrons
and holes led to the prediction of a phase shift introduced
in the response, and thus to an expected maximum injection
current occurring at a relative phase parameter different than
A¢yy (or Agrz) = m/2 and 3w /2. That should be expected
here as well; we plan to investigate the inclusion of this effect
in a later publication.

Neither 714, nor 1,43 shows steplike behavior as the
energy crosses band gaps because of the involvement of
intraband matrix elements in each term of the expression,
again arising through the R?% term. Likewise there is no
steplike behavior at the onset of the absorption from the lower
valence band. Again 7,43 is suppressed more at excitation
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FIG. 16. Excitation energy dependence of the independent components of the current injection response tensor for 1 + 2 photon absorption
processes. We plot components about a single valley, K, and omit vanishing components.
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FIG. 17. Excitation energy dependence of the independent components of the current injection response tensor for 2 4 3 photon absorption
processes. We plot components about a single valley, K, and omit vanishing components.

energies greater than 17,., because of frequency factors
in the denominators. The nature of the excitation energy
dependence of 7,3 is much more complicated than that of
N1+2, and arises again primarily because of the combination
of PR and RA terms in the third-order response. Note that the
sign of many of the imaginary components of 7,43 changes
as a function of excitation energy, exhibiting the interplay
between those two terms in the third-order response. Since
it is these components that characterize the total current
injection in 243 absorption, we can expect interesting
consequences in the excitation energy dependence of the
injected current, which we consider next.

C. Swarm velocities

We now characterize the average velocity of the injected
carriers by considering the “swarm velocity,” which is the
current injection rate divided by the total charge injection rate
[30]. For 1 4 2 absorption it is given by

_ T 1
Povam (12) = [e(;j—,m + 4 n) 1 + %m»ﬁ}m’
(47)
and for 2 4 3 absorption it is given by
b () = |: ! %(J)2+3 ; :| ’
e(4(ne)y + 5 (nc)aay + = (ne)s) max
(48)

where the subscript max indicates that the relative amplitudes
of the fields appearing, and the relative phase parameter
(A¢1» and Agys, respectively), are set to guarantee that the
magnitude of the swarm velocity is a maximum. In both 1 +2
and 2 + 3 excitation the phase parameter that does this can be
A¢ =1 /2 or 3w /2, and we choose the latter.

We look at the examples of co- and cross-linearly polarized
light for the excitation scenarios, where the current injected
is in the X% direction. Recall that in the colinear case this
arises with all fields polarized in the X direction, while in the
cross-linear case it arises for &3, = % and €3, =3 in 1+2
absorption, and for &, = X and &3, =y in 2+ 3 absorption.
As the excitation energy is increased we expect the magnitude

of the swarm velocity to increase, simply because the carriers
injected will have larger velocities.

Comparing two swarm velocities at the same excitation
energy gives a measure of how well localized the carriers are
in the Brillouin zone. Under the specified excitation condi-
tions we plot the swarm velocities for excitations facilitated by
colinearly polarized light in Fig. 18(a), and by cross-linearly
polarized light in Fig. 18(b). The former are generally larger
than the latter, and in particular the latter are very small
near an excitation energy of 1.5 eV, especially for 243
absorption as noted in our discussion above; these velocities
do increase at larger excitation energy. In general the swarm
velocities for 243 absorption become larger than those of
1+ 2 absorption for high enough excitation energy. At low
excitation energies we see a reversal of the swarm velocity for
2 + 3 absorption with increasing excitation energy, again due
to interplay between the PR and RA contributions to the three-
photon absorption amplitude, and as a result its magnitude
is smaller than the swarm velocity for 1+ 2 absorption. The
PR contribution to the amplitude is finite at the band gap, but
the RA contribution vanishes. As the excitation energy moves
away from the gap, the RA contribution becomes finite with
net opposite sign of the PR term; at an excitation energy of
A2 = 1.24 eV for colinearly polarized excitation, and 72 =
1.29 eV for cross-linearly polarized light, the contributions
cancel, leading to no net current injection. Within the model
adopted here, this adds another level of control over the
injected current, above and beyond what can be done by ad-
justing field intensities and the relative phase parameters, and
only arises for 2 4 3 absorption. Also, all the swarm velocity
plots show a discontinuous jump as the energy crosses the
second band gap, as would be expected from the behavior of
the injection coefficients.

VIII. RESULTS AND DISCUSSION

We have shown that the quantum interference arising
from 2+ 3 photon absorption can give rise to significantly
more localized distributions of electronic excitations in the
Brillouin zone than the 1+ 2 counterpart (see Fig. 18). The
primary reason for this is the increased number of intra-
band velocity matrix elements in the transition coefficients at

075203-14



QUANTUM INTERFERENCE CONTROL OF LOCALIZED ...

PHYSICAL REVIEW B 100, 075203 (2019)

x10°
1.5¢
=
0 1.0f
£
g —— 2+3PA (%+X)
=00

15 20 25
hQ[eV]
(a) Co-linearly polarized incident fields.
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(b) Cross-linearly polarized incident fields.

FIG. 18. Swarm velocities for co- and cross-linearly polarized optical fields. The relative polarizations of the fields are indicated in the
legend, and combinations of polarizations that lead to a vanishing swarm velocity in the % direction are omitted.

third-order perturbation theory. The increased localization of
these distributions is most apparent for colinearly polarized
incident optical fields, and it is also this orientation of fields
that lends itself most to the idea of using QulC as “tweezers
in the Brillouin zone” (Fig. 6), using quantum interference of
excitation processes as a mechanism to place carriers where
one desires in k space. Studying the subsequent dynamics of
such injected distributions is of interest from both theoretical
and experimental perspectives, driven by the recent advances
in time-resolved ARPES. In principle, one could directly
implement the QuIlC mechanism into pump-probe strategies
to study nonequilibrium dynamics; 2 4+ 3 photon absorption
could be used to set the system in a far-from equilibrium state
with carriers well localized in k space, or to probe carriers in
a well-localized region of k space, or both.

We have also shown that, akin to 1+ 2 absorption, the
quantum interference arising in 2 + 3 absorption can be ma-
nipulated by varying a relative phase parameter; by doing
so we can, for both 1 +2 and 2+ 3 processes, change the
direction of the injected current. Additionally, for transitions
at sufficiently large energies, there will be a larger current
injected from 2 + 3 absorption than from 1 + 2 absorption.
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APPENDIX A: INJECTION RATES

In the interaction picture, a state |y (f)) evolves under
[ (f)) = U(F)|gs), where U(7) is given by (4). Using this, in
combination with the resolution of identity in a multiparticle
Hilbert space

L= lgs)(gs| + D levk) (cok| + ...,
cvk

where |gs) is the filled Fermi sea and |cvk) = azkavk|gs) are
eigenstates of H,, we reexpress | (f)) as

(o) = <|gs> (gs| + Y levk) (cvk] + .. .)u(r)|gs>

cvk

= lgs)(gslU(®)lgs) + Y lcvk) (coklU (D]gs) + ...

cvk

= y0(0)lgs) + D _veull, Dlcvk) + ...,
cvk

(AD)

where yo(t) = (gslU(Dlgs) and  ye (k. 1) = (cok|U(D)]gs).
Then, the expectation value of a general single-body operator
M(#) can be written, neglecting higher-order electron-hole
excitations, as

(Y OIMO|Y (@)
= lyo(®)|* (gs| M(1)|gs)
+ ) 0O ek, D{gs| M(@)]cvk)

cvk

+ D Yeolk, 0 yo (D) {cok| M(D)]gs)

cvk

+ ) Vew k', 0 yeo(k, (VK | M) cvk).

cvk
VK

The operators we are interested in are the densities given
in (13), and since |gs) is taken to be an equilibrium state it
does not contribute to these quantities. Also, since (13) are
k-conserving and M (f) = e"o'/" Me=ot/ we find

(VK |M(©1)|cvk) = v B om0l () fe| M| cvk) Sy,

where M is an operator in the Schrodinger picture. We
consider the time derivatives of such expectation values, to
give the so-called injection rate associated with M. The
second and third terms in the above expectation value are
expected to be oscillating rapidly and are therefore neglected,
as we are interested in the underlying dc response that may be
experimentally captured by measurement with electrodes [4].
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The injection rate associated with M is then given by

d
7 W OIMOIY @)

d
— oMM (k)f
N Z dt ale

cc'vv'k

x (c'vVk| M |cvk)

—iwey (k) Very (&, 0)* Ve (K, t)]

(A2)

under the approximations we take. To investigate the k-space
distributions of such injection rates, the above is rewritten, in
the continuous k limit, as

dPk d

— (M(k; 1)),

, )P dt (A3)

d
Ewa)w(r)wa» =
where we have defined

d d
. — iy (k)t
o (M(k;1)) = § o —[¢

cc'ov’

mioa®ry (ke 0 Yoo (kD)

x L (¢'v'k| M|cvk),
making connection with (14).

Now, the adopted model for TMDs simplifies the above to
considering a single ¢ and v for electrons of a given spin about
each valley. This, in combination with (18), gives

d

E<M(k; D) = 27| Rey (k)P LP (cvk| M| cvk)S[Q — we, ()],
which is indeed independent of ¢. Furthermore, recalling (9)
and including only the dominant contributions to R (k) as
dictated by the QulC condition, the above can be written in
the form

d
E<M(k,t))

— Z Mu ~ba- b(Q kE® Q/N"

a,..b:N
a,.bN'

b b
'Efﬂ/N’ES%/N o Egn

(A4)
where we have defined the response coefficient density
pnl (k) = 2[RV (key /N, ..., /NN
x RM*b(je; Q/N, ..., Q/N)
x LP (cvk| M |cvk)8[Q2 — we, (k)]

The form of the above has been simplified by taking the
two-band limit; this is all that is required for our analysis.
However, it can be shown that for a system with many bands
the response coefficient density takes the form [22]

Hin k) =2 Y [RE T /N

cc’'vv’

x RNVt Q/N, ...,

cv

L QN

Q/N)Swe, ), 0,0, ()

x LP (' VE|M|cvk)S[Q2 — wey()].

In the main text u%;\',}’"”"'b(ﬂ;k) corresponds to a partic-
ular absorption process’s contribution to the total £($2;k) or
n(S2; k), depending if M equals n. or J, respectively. For
example, if M = n., and if we consider 1+ 2 PA [such that

N’ € (1,2)], then
Wi (Qk) < 5@k,
wiy Qi) < & (),
LSV k) <> ESVAP(Q k),
and note that
Mg,lab(Q;k)E Esaz/zEsz/z = [51 ba(Q k)Easz/zEfQ/zEgz]*;

this is the complex conjugate contribution in (20). Finally,
introducing response coefficients for the injection rate as

d
E(l/f(t)l/\/l(t)lllf(t»

Z /JL?\//}\']’P,amb(Q)EE,Q/N/ B

a,..b;N
a,..b N

b b
'E—Q/N’ES/N - Egns

we find the response coefficient for a particular absorption
process can be written as

a--ba-b de a-ba--b .
HNN () = - WMNM (Q:k).

For the first example above, one has
EQ) = [ a7 Ef(Quk)
! Bz QTP

APPENDIX B: INDEPENDENT RESPONSE
TENSOR COMPONENTS

1. Carrier injection rate

The nonvanishing, independent, and valley- and spin-
dependent response tensor components corresponding to the
carrier injection rate are given for the indicated photon ab-
sorption processes. The relation of these components to the
carrier injection rate is given in Sec. III, and as there we use
the notation &, = ) &,.z5.

a. One-photon absorption

OQRw — 2A,,)é? A2
2 — N TR 1 Ts
tes(20) = 167w )
. COQw —2A4)e* Ay
Y Qo) = —it——— ——— . Bl
0 20) = it - (B1)

b. Two-photon absorption

OQw — 2A,)e*E? A2\ /1 3 A2
b ) — 1— TS _ Tt ,
525 (20) PRI

i wd w?

@(Zw 2A.5)e* B2 A2\ Aqy
xxxy _
2 (20) = 21w’ ) e
, OQw — 2A.,)e*E? A?
XXyy _ s
Eurs 20) = — 4w 1- 2 )
, OQw — 2A,)e*E? A4
xyxy _
52;” QRw) = P 1-— s (B2)
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c. 1+ 3 absorption

6555 () = %[(z s (2 %)%k - 3]

o= £E e Lo )% )
[ I

£ (Gw) = — % 52®(31c;w72Am) 22)“ [%(2 N 2_12) 2242 ng] B3)

d. Three-photon absorption
() (ei)e = () Cra)e
3w 3w

_<3%2>6<20+ )121&},

czan =5 2o o o= () | = (38 [ 3- () () o
() (s B (B) (434 2 )

oo 2 i[5 | () o - () )
() (2 (2)

. 6 (3w — 2A, 28\ [1 282\’ 1 282\*
%_,\xxxxy(:;w) — 6‘_ ( @ T ) it T —E6 _ E4 2 + - k?é + EZ
3w 4 3w

SX)C)CXXX (3 )

3;Ts

(1]

e 3@(3a) 2A55)
P P

[

3;ts ﬁ6 24529

3003
(6 +3+ )ki],
4

4
£ Bo) = 30060 —28n) ([ 20 \[1ge_ o 28 2 2+ Ve v 2222 (2414 L)
3t T 24E2) 30 )47 T\ 3o 4)7 73w 2 32)"]
S OBw—2A.) (. 28 \[1 _ (2A:\° 22\° 282\* 1 3
T (Bw) = — Slie == )| - == ) - e 5 ) @k, + 8 84 - — — ki |. (B4
3;ts ) hﬁ 24332609 <l‘[ 3&) >|:4 ( 3(0 ) < 36() ) ( ) TS + < 36() ) < + 2 32) ( )

2. Current injection rate

The nonvanishing, independent, and valley- and spin-dependent response tensor components corresponding to the current
injection rate are given for the indicated photon absorption processes. The relation of these components to the current injection
rate is given in Sec. III, and as there we use the notation 1, = Z” Nn:rs-

a. 1+ 2 absorption

02 2A 5 A? 1 3A? 02 2A . )e* 82 A?
P 20) = 1200280 (1— ”)(—+— ) M 20) = o = 22u)e (1— )

P} 0 J\4 7" 42 M2 8w’ ot
=2 2\ 2 4 =2 2
Y (2e) = — @(20) 20.)e' 8 (AL DY (2w = OC2w —2A,)e" E LB () A 7
1+2;ts 8h3a)3 w2 14+2;ts 2h3w3 w w?
OQw —2A,)e*Er A A? .
Mg (20) = ———— 5= (1= =3 ). m}3,,(20) =0. ®5)
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b. 2+ 3 absorption

I Ge) = i

OBw —2A)e0 23 BS [ 9 o2 g2
S 36 Il ’

—Z— Kk + 15k —5—k°
2 Ez TS s w S

e = 2002 BB A T - S ]
e e
Gy = OO 2R B j—jkﬁ]

I () = i%‘”_h—W%ng‘ (3 + é)kﬁs - i—jkfy},
2o = ORI S w25 |

e = SO 28 2 B (202 i |
S T (e | SRy
e = - 200 B (28 k)
G0 = - 200280 2 B <r zfaf) ‘é’—zkz T ki‘s],
B Gy = 2280 Ae) i—zw:—j <r s )k;‘s,

1 G = 0.

(B6)
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