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Quantum interference control of carriers and currents in zinc blende semiconductors
based on nonlinear absorption processes
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Quantum interference between optical absorption processes can excite carriers with a polarized distribution
in the Brillouin zone depending on properties of the incident optical fields. The polarized distribution of carriers
introduces a current that can be controlled by the phases and polarizations of the incident optical fields. Here we
study the quantum interference of two- and three-photon absorption processes in AlGaAs. We present theoretical
predictions for carrier and current injection rates considering different frequencies, phases, and polarizations of
the incident fields. We also discuss the important features that result from only nonlinear optical processes being
involved, which leads, for instance, to a sharper distribution of carriers in the Brillouin zone.
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I. INTRODUCTION

Quantum interference between different optical processes
arises when two optical beams of different frequencies can
lead to the same transition. It has been used to study photoion-
ization of molecular systems [1–6] and asymmetric photoe-
jection in semiconductors [7–11]. In a crystal, amplitudes for
different optical processes leading to electron-hole excitations
can interfere constructively in some regions of the Brillouin
zone (BZ) and destructively in others. By controlling the
polarizations and phases of the incident fields, it is possible
to excite carriers in selected localized regions of the BZ.
Such quantum interference control (QuIC), using one- and
two-photon absorption processes (1 + 2 QuIC), has been used
for current injection in semiconductors [12–14], graphene
[15–17], topological insulators [18–20], and transition-metal
dichalcogenides [21–23], as well as spin current injection in
semiconductors [24–28]. It has also been theoretically investi-
gated for current injection in graphene nanoribbons [29], spin
currents in topological insulators [18], and spin and valley
currents [30] in transition-metal dichalcogenides [21,23].

In crystalline materials, every instance of QuIC studied to
date has involved one- and two-photon absorption processes,
partly because phase-related optical fields of frequencies ω

and 2ω can be conveniently achieved by second-harmonic
generation, while fractional ratios of the frequencies are
harder to obtain. Currents injected via 1 + 2 QuIC have
been exploited to determine parameters of the optical fields
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responsible for their injection [31–33]. This method has found
application in the measurement [34,35] and stabilization of
the carrier-envelope phase of a train of octave-spanning laser
pulses [36–38]. However, phase-coherent frequency combs
can also be used to study more general M + N QuIC, es-
pecially for fractional ratios N/M < 2 that only require a
narrower frequency range of the comb. Thus the use of optical
frequency combs for QuIC experiments presents an oppor-
tunity to separately study several nonlinear optical processes
in semiconductors, which cannot easily be done using simple
harmonic generation, as it only produces frequencies that are
integer multiples.

In this paper we present a theoretical study of QuIC with
two- and three-photon processes in AlGaAs. The injection
rates of 1 + 2 QuIC correspond to divergences in the third-
order electric susceptibility χ (3), while the injection rates of
2 + 3 QuIC correspond to divergences in the fifth-order elec-
tric susceptibility χ (5). Although sophisticated calculations
of χ (3) have been performed for similar analyses in 1 + 2
QuIC [39–41], here we use a Fermi golden rule approach in
the perturbative regime, as it allows us to focus only on the
nonresonant process in which we are interested and to ignore
many other nonresonant processes described by χ (5). Such an
approach has served as the basis for further studies of 1 + 2
QuIC [12,16], and in this paper we follow it to provide a first
step in elucidating 2 + 3 QuIC as well. We derive expressions
for the optical injection coefficients at the initial time when the
fields are incident and evaluate them for different stoichiome-
tries of AlGaAs using a 30-band k · p model. We compute all
the symmetry-allowed injection coefficients corresponding to
different polarizations of the incident fields and analyze their
frequency dependence over a range where the injection of car-
riers that do not contribute to the current is suppressed. That is,
considering three-photon absorption of photons at energy h̄ω

and two-photon absorption of photons at energy 3h̄ω/2, we
require 2h̄ω to be less than the band gap. The alloy AlGaAs
is an ideal material for 2 + 3 QuIC, as its stoichiometry can
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be chosen to yield a band gap appropriate for the available
laser wavelengths. Experiments demonstrating 2 + 3 QuIC of
photocurrents in AlGaAs are being reported in another paper
[42].

As would be expected, there are qualitative differences
between 2 + 3 QuIC and 1 + 2 QuIC. For instance, there is a
change of sign in the current injection coefficient for different
frequencies, which is due to an interplay between intraband
and interband processes contributing to three-photon absorp-
tion. We also find that 2 + 3 QuIC leads to sharper distri-
butions of carriers in the BZ than 1 + 2 QuIC. The sharper
distribution of carriers leads to a higher swarm velocity, which
is a desirable feature for photocurrents, and it also opens the
possibility of exciting carriers in semiconductors in a tailored
fashion.

The outline of this paper is the following: In Sec. II we
present a method to compute the optical injection rates for
a generic material. In Sec. III we describe the model used
for AlGaAs. In Sec. IV we present our results for carrier and
current injection from two- and three-photon absorption (2PA
and 3PA) processes in AlGaAs. We also discuss the efficiency
of the current injection by analyzing the swarm velocity and
computing the optimal laser intensities. In Sec. V we discuss
the implications of our results and present our conclusions.
We list the independent components of the optical injection
tensors for zinc blende lattice symmetry in the Appendix.

II. OPTICAL INJECTION RATES

In this paper, we restrict ourselves to computing the optical
injection rates at the initial time when the fields are incident.
We neglect scattering processes, carrier acceleration in the
BZ, and several other effects that later influence the dynamics
of the injected carriers. We thus use a Fermi golden rule
approach [14,18] as it is adequate for computing transition
rates. Other approaches based on solving equations of motion
[39–41] for the system have been used for 1 + 2 QuIC, and
they can be straightforwardly extended to 2 + 3 QuIC.

Assuming the independent particle approximation, we con-
sider a system described by a Hamiltonian H0 in the absence
of any external perturbation, so the full Hamiltonian H(t ) in
the presence of the external perturbation Vext (t ) is H(t ) =
H0 + Vext (t ), where in the basis of eigenstates of H0,

H0 =
∑

nk

h̄ωnka†
nkank, (1)

Vext (t ) =
∑
mnk

a†
mkVmnk(t )ank, (2)

where |nk〉 = a†
nk|vac〉 indicates a Bloch state corresponding

to band n, with crystal momentum k and energy h̄ωnk. In
the interaction picture, the creation and annihilation fermion
operators are a†

nk(t ) = a†
nkeiωnt and ank(t ) = anke−iωnt , the ex-

ternal perturbation operator is VI(t ) = eiH0t/h̄Vext (t )e−iH0t/h̄,
the time-evolution operator can be expanded as

U (t ) = 1 +
∞∑

N=1

∫ t

−∞

dtN
ih̄

VI(tN )· · ·
∫ t2

−∞

dt1
ih̄

VI(t1), (3)

and the terms of each order in Vext can be obtained from the
previous one by

UN (t ) =
∫ t

−∞

dtN
ih̄

∑
mnk

a†
mk(tN )Vmnk(tN )

× ank(tN )UN−1(tN ), (4)

where ωmnk = ωmk − ωnk and U0(t ) = 1. We are interested
in the excitation of an electron from a valence band v to a
conduction band c due to the external field. This excited state
is |cvk〉 = a†

ckavk|gs〉, where |gs〉 is the eigenstate of H0 with
filled valence bands. The state of the system is described by

|ψ〉 = U (t )|gs〉
= γ0|gs〉 +

∑
cvk

γcvk(t )|cvk〉 + · · · , (5)

where the coefficient

γcvk(t ) = 〈cvk|U (t )|gs〉 (6)

indicates the degree to which the system has been excited into
the |cvk〉 state, so they allow us to compute injection rates. We
point out that the γcvk(t ) coefficients are related to a single-
particle density matrix ρmn(t ) = 〈ψ |a†

mk(t )ank(t )|ψ〉, which
could be used for computing χ (5), but that is a much more
complicated calculation, and it includes several nonresonant
effects that are not the focus of our study. Thus we use a
simpler parametrization for the states of the system in terms
of γcvk(t ).

For a full Hamiltonian H(t ) that follows from a Hamilto-
nian for a single particle of the form

H (x, p; t ) = 1

2m
(p − eA(t ))2

+HSO(x, p − eA(t )) + Vlat (x), (7)

where x and p are position and momentum operators, HSO is
the spin-orbit term, and Vlat (x) is the lattice potential energy.
Here we neglect a contribution to the interaction that is solely
a function of time (∼[A(t )]2), for it will not lead to any
transitions, and we work in a gauge where the electric field
E(t ), assumed to be independent of position, is fully described
by the vector potential A(t ). We point out that for a general
A dependent on the position, neglecting the [A]2 term in the
Hamiltonian would be problematic. The interaction term in
the Hamiltonian takes the form Vext (t ) = −ev · A(t ), where
e = −|e| is the charge of the electron and v = −e−1∂H /∂A
is the velocity operator. Indeed, the interaction is of the form
we consider for any unperturbed Hamiltonian for a single
particle that is, at most, quadratic in the momentum.

We take the vector potential to be

A(t ) =
∑

α

Aαe−i(ωα+iε)t = −
∑

α

i

ωα

Eαe−i(ωα+iε)t , (8)

with ωα = ±ω, ±3ω/2; here ε → 0+ describes turning on
the field from t = −∞. The γcvk(t ) coefficients can be ex-
panded as γ

(N )
cvk (t ) = 〈cvk|UN (t )|gs〉 following the expansion

(4) of U (t ) for an incident optical field, so we can write the
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coefficients γ
(N )

cvk (t ) as

γ
(N )

cvk (t ) = R (N )
cvk

e−i(
N −ωcvk+iε)t


N − ωcvk + iε
, (9)

where 
N = ω1 + · · · + ωN . The coefficients R (N )
cvk involve

the electric field amplitudes Eα according to

R (N )
cvk = R(N )a···b

cvk (ωα, . . . , ωβ )Ea
α · · · Eb

β, (10)

where repeated indices are summed; here superscripts refer
to Cartesian indices and subscripts refer to incident frequency

components. For the lower orders we have

R(1)a
cvk (ωα ) =

∑
α

ie

h̄ωα

va
cvk,

R(2)ab
cvk (ωα, ωβ ) =

∑
αβ

−e2

h̄2ωαωβ

×
(∑

c′

va
cc′kv

b
c′vk

ωβ − ωc′vk
−

∑
v′

vb
cv′kv

a
v′vk

ωβ − ωcv′k

)
,

(11)

and

R(3)abd
cvk (ωα, ωβ, ωδ ) =

∑
αβγ

ie3

h̄3ωαωβωδ

[∑
c′

va
cc′k

ωα − ωcc′k

(∑
c′′

vb
c′c′′kv

d
c′′vk

ωδ − ωc′′vk
−

∑
v′

vd
c′v′kv

b
v′vk

ωδ − ωc′v′k

)

−
∑
v′

(∑
c′

vb
cc′kv

d
c′v′k

ωδ − ωc′v′k
−

∑
v′′

vd
cv′′kv

b
v′′v′k

ωδ − ωcv′′k

)
va

v′vk

ωα − ωv′vk

−
∑
c′v′

(
vb

cv′kv
a
v′c′kv

d
c′vk

(ωα − ωv′c′k)(ωδ − ωc′vk)
+ vd

cv′kv
a
v′c′kv

b
c′vk

(ωδ − ωcv′k)(ωα − ωv′c′k)

)]
. (12)

The expectation value of the density 〈M〉 of a generic quantity associated with an operator M = ∑
mnk

a†
mk(t )Mmnkank(t ) can

be computed from Eq. (5), and it will have terms independent of, linear on, and quadratic on γcvk(t ). The independent term
corresponds to the expectation value 〈M〉 in the absence of perturbations. The linear terms have accompanying e±iωcvkt factors;
thus they are fast oscillating, and we ignore them as we are interested in computing injection rates. The quadratic term in γcvk(t )
then gives us the injection rates, and it is


〈M〉 = 1

LD

∑
cvc′v′k

〈c′v′k|M|cvk〉 γ ∗
c′v′k(t )γcvk(t )eiωc′v′kt e−iωcvkt

= 1

LD

∑
cvc′v′k

(Mc′ckδv′v − Mv′vkδc′c) γ ∗
c′v′k(t )γcvk(t )eiωc′v′kt e−iωcvkt , (13)

where L is a normalization length, D is the spatial dimension
of the system, and 
〈M〉 = 〈M〉 − 〈M〉0 indicates the change
to the expectation value 〈M〉 due to the perturbation [23].
Since we are interested in the nonoscillatory response of
the system, we focus on the 
N = 
N ′ = 
 contributions to
Eq. (13). To compute the injection rate d〈M〉/dt associated
with Eq. (13), it is important to realize that

d

dt
[γ ∗

c′v′k(t )γcvk(t )eiωc′v′kt e−iωcvkt ]|t→0,ε→0

=
∑
N,N ′

R (N ′ )∗
c′v′k R (N )

cvk × 2ε

(
 − ωc′v′k − iε)(
 − ωcvk + iε)

∣∣∣∣∣
ε→0

=
∑
N,N ′

R (N ′ )∗
c′v′k R (N )

cvk 2πδ(
 − ωcvk)
∣∣∣
ωcvk=ωc′v′k

, (14)

where the sums over N and N ′ are restricted to the cases
when 
N = 
N ′ = 
. The fact that the R (N )

cvk coefficients
are always accompanied by δ(
 − ωcvk) in the expression
for the response allows for substitutions 3h̄ω − ωcvk = 0 that
were used to write R(3)abd

cvk in a simpler way in Eq. (12). The
resonance described by Eq. (14) corresponds to a divergence
in the electric susceptibility χ (5), which also describes many

nonresonant effects that we are ignoring in this paper, as they
are much weaker in comparison to resonant ones.

The injection rate of the density of a generic quantity 〈M〉
can be obtained by taking a time derivative of Eq. (13). Using
Eq. (14) and the dependence of R (N ′ )∗

c′v′k R (N )
cvk given by Eq. (10),

we can write the injection rate of 〈M〉 due to the interference
of an N ′-photon process with an N-photon process in terms of
a coefficient,

d

dt
〈M〉 = μabd··· ,pq···(
)Ea

−αEb
−βEd

−δ · · · E p
ρ Eq

σ · · · + c.c.,

(15)
where there are N ′ frequency labels (α, β, δ, . . . ) and N fre-
quency labels (ρ, σ, . . . ) and 
N = 
N ′ = 
. The injection
rate coefficient μabd··· ,pq···(
) is assembled from the matrix
elements Mabk in Eq. (13) and coefficients R(N )pq···

cvk in Eq. (14).
Taking the continuous-momentum limit, we have

μabd··· ,pq···(
) = 2π

∫
dk

(2π )D

∑
cvc′v′

× (Mc′ckδv′v − Mv′vkδc′c)δωcvk=ωc′v′k

× R(N ′ )abd···∗
c′v′k R(N )pq···

cvk δ(
 − ωcvk). (16)
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FIG. 1. Depiction of 2 + 3 QuIC showing the destructive (left)
and constructive (right) interference in different regions of the Bril-
louin zone.

We will use instances of μabd··· ,pq···(
) for carrier and current
density in this paper.

Quantum interference of two- and three-photon processes

The processes of 3PA with frequency ω and 2PA with
frequency 3ω/2 can interfere since the total frequency for
each of them is 
 = 3ω, as illustrated in Fig. 1. For such
processes the frequencies are all equal in Eqs. (11) and
(12) for the coefficients R(2)

cvk and R(3)
cvk, and symmetrizing

their components leads to some simplifications. Using ωβ =
ωcvk − ωα and ωα = ωβ = 3ω/2 in Eq. (11), the second-order
coefficient simplifies to

R(2)ab
cvk

(
3ω

2
,

3ω

2

)
= −4e2

9h̄2ω2

∑
m

va
cmkv

b
mvk(

3ω
2 − ωmvk

) , (17)

and using ωβ + ωγ = ωcvk − ωα and ωα = ωβ = ωγ = ω in
Eq. (12), the third-order coefficient simplifies to

R(3)abd
cvk (ω,ω,ω) = ie3

h̄3ω3

∑
mn

va
cmkv

b
mnkv

d
nvk

(ω − ωcmk)(ω − ωnvk)
. (18)

Notice that the denominators in Eqs. (17) and (18) are minimal
for m, n = c, v, so the dominant contributions to R(2)

cvk always
involve intraband velocity matrix elements, while R(3)

cvk also
has contributions from interband velocity matrix elements
[43]. Intraband velocity matrix elements are associated with
the corresponding band dispersion, va

nnk = ∂a
k ωnk, which van-

ishes at the k point corresponding to the band gap. Thus
R(2)

cvk is zero for total photon energies corresponding to the
band gap and increases for larger excess photon energies. The
dependence of R(3)

cvk on the total photon energy is different,
as it depends on both interband and intraband velocity matrix
elements. For total photon energies just above the gap, R(3)

cvk
is determined mainly by the interband matrix elements, but as
the photon excess energy increases, R(3)

cvk becomes dominated

by the intraband matrix elements since the electronic transi-
tions occur at k points with larger band dispersion.

The injection rate coefficients corresponding to the in-
terference of two- and three-photon processes can then be
computed from Eq. (16) as

μ
abd, f g
2+3 (
) = 2π

∫
dk

(2π )D

∑
cvc′v′

(Mc′ckδv′v − Mv′vkδc′c)

× δωcvk=ωc′v′k R(3)abd∗
c′v′k R(2) f g

cvk δ(
 − ωcvk). (19)

For the plots in the next sections we use a frequency broaden-
ing 
 corresponding to h̄
 = 13 meV.

The factor R(3)abd∗
c′v′k R(2) f g

cvk changes sign under a transfor-
mation k → −k, resulting in constructive versus destructive
interference in opposite points of the Brillouin zone. In Fig. 1
we illustrate constructive versus destructive interference of
two- and three-photon processes at opposite points in the
Brillouin zone.

III. ELECTRONIC MODEL OF AlGaAs

We use a 30-band k · p model for computing the electronic
bands. The model has free parameters associated with ener-
gies and momentum matrix elements at the � point, and the
parameters are adjusted to match the experimental results for
band energies from −5 to 4 eV, such that computations of
optical absorption coefficients are expected to be reliable for
photon energies up to 6 eV.

Using the � point as the expansion point for a k · p model,
the effective Hamiltonian that acts only on the periodic part of
an energy eigenfunction of crystal momentum k is

Heff = H + h̄

m
k · p + h̄2k2

2m
, (20)

where H is the Hamiltonian (7) with the vector potential set
equal to zero; in this model [44] we neglect the k dependence
of the effective spin-orbit term. The second term on the right-
hand side is the usual k · p contribution, and the last term is
the contribution to the kinetic energy only due to the lattice
momentum. The basis of states has eight sets [44], four of
them corresponding to the �1 representation of the point group
Td (or 43m), three corresponding to the �4 representation, and
one corresponding to the �3 representation. The �1 repre-
sentation has only one state, �4 has three states, and �3 has
two states, so in total we have 4×1 + 3×3 + 1×2 = 15 states
before considering spin; we denote these states as |A〉, |B〉, etc.
Tensor products of these are taken with spin states to get 30
states in all. Terms 〈A|Heff |B〉 are then 2 × 2 matrices and take
the form

〈A|Heff |B〉 = EAδABσ0 + i

3
�AB · σ

+ iPAB · kσ0 + h̄2k2

2m
δABσ0, (21)

where σ0 is the unit 2×2 matrix and the components of σ are
the usual Pauli matrices. The free parameters of the model
are the energies EA, the matrix elements of the spin-orbit term

AB, and the matrix elements of the momentum operator PAB.
Since the basis for the states is the same at every k point [45],
the corresponding 2×2 matrices corresponding to the velocity
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FIG. 2. Electronic band structure of AlGaAs for two stoichiome-
tries. For all the stoichiometries α in the range that we consider,
0.18 � α � 0.38, the band structures are very similar, and their main
difference is their band gaps.

operator 〈A|v|B〉 are diagonal in the spin sector,

〈A|va|B〉 = 1

h̄

∂

∂ka
〈A|Heff |B〉

=
(

i

h̄
Pa

AB + h̄ka

m
δAB

)
σ0, (22)

from which the matrix elements of the velocity operator
between the energy eigenstates can be determined.

For GaAs [44] and AlAs [46] we use reported param-
eters adjusted for room temperature, while the parameters
for AlαGa1−αAs are obtained from a linear interpolation
according to the stoichiometry. This approximation is ac-
curate within an energy tolerance corresponding to room
temperature [47]. The chosen parameters lead to effective
masses, g factors, and Luttinger parameters that are in good
agreement with experimental data [44,46,48]. More important
for the problems we consider, the band structures and linear
optical absorption spectra are also in good agreement with
experimental data. In Fig. 2 we show the relevant electronic
bands for two different stoichiometries, and in Fig. 3 we show

FIG. 3. Imaginary part of the dielectric function for two stoi-
chiometries α.

the imaginary parts of the corresponding dielectric functions,
which are related to the one-photon absorption rates (or carrier
injection) by Im ε(
) = h̄ξ xx(
)/2ε0. Calculations for 1 + 2
QuIC in GaAs and Si have been computed [39] using the same
k · p model and density functional theory for comparison.
For GaAs there is good agreement between the two models
even for the nondiagonal spin injection tensors, and for Si the
discrepancy between the two models is significant only at high
frequencies. For GaAs the k · p model for the full BZ provides
good agreement with the local-density approximation, and for
the frequencies we consider in 2 + 3 QuIC we are restricted
to the region of the BZ around the � point, where even less
sophisticated k · p models give good results.

As already mentioned, the 30-band model allows us to
perform reliable calculations for total photon energies up
to 6 eV. However, for the energies in which we are most
interested—below 3 eV—we can get accurate results for the
optical absorption coefficients even if only six valence and
two conduction bands are included in the model, and only the
valley including the � point of the BZ is considered. We also
point out that the model we use is applicable to most zinc
blende semiconductors, where each specific material corre-
sponds to a particular set of parameters. Since the band struc-
tures of zinc blende semiconductors are qualitatively similar,
our results presented in the next sections are qualitatively valid
for most direct-gap zinc blende semiconductors.

IV. QUANTUM INTERFERENCE CONTROL USING TWO-
AND THREE-PHOTON ABSORPTION IN AlGaAs

We consider two incident fields of different fre-
quencies with amplitudes Eω = Eωeiφω êω and E3ω/2 =
E3ω/2eiφ3ω/2 ê3ω/2, where Eω > 0 and E3ω/2 > 0 are the field
magnitudes, the unit vectors êω and ê3ω/2 indicate their po-
larizations, and φω and φ3ω/2 indicate their phases. We also
define the phase parameter 
φ = 2φ3ω/2 − 3φω, which will
be useful later. We assume that the field at 3ω/2 has a
weaker intensity than the field at ω, and we demand that
the frequencies satisfy 2ω < 
g < 3ω, where Eg = h̄
g is
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the optical gap. Therefore only 3PA processes are important
for the lower-frequency field Eω, while only 2PA processes
are relevant for the higher-frequency field E3ω/2; the 3PA
associated with E3ω/2 is weaker due to the lower intensity of
the field, and we neglect it.

We focus on Al concentrations α such that 0.18 �
α � 0.38 since AlαGa1−αAs with α too small has a band
gap smaller than 2h̄ω for telecommunication wavelengths
(h̄ω ∼ 0.8 eV) and AlαGa1−αAs with α too large is too
reactive.

A. Carrier injection

We track the number of injected carriers by calculating the
number of electrons in the conduction bands, which corre-
sponds to the operator

N =
∑

ck

a†
ckack, (23)

so we use ncc′ = δcc′ and nvv′ = 0 for the carrier density matrix
elements in Eq. (19). The optical injection of carriers due
to 2PA and 3PA processes, as well as their interference, is
characterized by the tensors ξ , according to

d

dt
〈n〉2 = ξ abcd

2 (3ω)Ea
−3ω/2Eb

−3ω/2Ec
3ω/2Ed

3ω/2, (24)

d

dt
〈n〉3 = ξ

abcde f
3 (3ω)Ea

−ωEb
−ωEc

−ωEd
ωEe

ωE f
ω , (25)

d

dt
〈n〉2+3(i) = ξ abcde

2+3 (3ω)Ea
−ωEb

−ωEc
−ωEd

3ω/2Ee
3ω/2 + c.c.,

(26)

where h̄
 = 3h̄ω is the total transition energy [49], and the
coefficients are calculated as

ξ abde
2 (3ω) = 2π

∫
dk

(2π )D

∑
cv

Rab∗
cvkRde

cvkδ(3ω − ωcv ), (27)

ξ
abde f g
3 (3ω) = 2π

∫
dk

(2π )D

∑
cv

Rabd∗
cvk Re f g

cvkδ(3ω − ωcv ),

(28)

ξ
abde f
2+3 (3ω) = 2π

∫
dk

(2π )D

∑
cv

Rabd∗
cvk Re f

cvkδ(3ω − ωcv ).

(29)

The ξ
abde f
2+3 (3ω) coefficient is associated with absorption pro-

cesses described by χ (5). The symmetries of the zinc blende
lattice, corresponding to the point group Td (or 43m), strongly
restrict the number of independent nonzero components of the
tensors ξ2, ξ2+3, and ξ3. We list the independent components
of the injection tensor coefficients in the Appendix. In Figs. 4,
5, and 6 we show the frequency dependence of the indepen-
dent components of the coefficients ξ abcd

2 (3ω), ξ
abcde f
3 (3ω),

and ξ abcde
2+3 (3ω), respectively. Notice that the 3PA coefficient

is large for frequencies right above the band gap, while the
coefficient for 2PA nearly vanishes for similar frequencies. As
discussed below Eqs. (17) and (18), the dominant contribution
to 2PA always involves intraband velocity matrix elements,
which correspond to the band dispersion, so they vanish at the

1.8 2.0 2.2 2.4

h̄Ω (eV)

0.0

0.2

0.4

0.6

0.8

1.0

ξ 2
(Ω

)
(m

/V
4 s

)

×105 Al0.2Ga0.8As

xxxx
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h̄Ω (eV)
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0.8
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4 s
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×105 Al0.35Ga0.65As

xxxx
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xxyy

FIG. 4. Two-photon carrier injection coefficients for two
stoichiometries.

� point of the Brillouin zone. The 3PA has contributions from
interband velocity matrix elements, which in general do not
vanish at �.

B. Current injection

Taking the quantity 〈M〉 in Eq. (15) to be the current
density 〈J〉, we can compute its injection rate due to the quan-
tum interference between two- and three-photon absorption
processes as

d

dt
〈Ja〉2+3 = η

abcde f
2+3 (3ω)Eb

−ωEc
−ωEd

−ωEe
3ω/2E f

3ω/2 + c.c., (30)

where h̄
 = 3h̄ω is the total photon energy. We emphasize
that η

abcde f
2+3 (3ω) is related to χ (5) and is finite even for

centrosymmetric materials. The dependence of the injected
current on the fields is described by Eq. (30), which is the
main equation to describe 2 + 3 QuIC experiments being re-
ported in the accompanying paper [42]. In terms of intensities,
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FIG. 5. Three-photon carrier injection coefficients for two
stoichiometries.

Eq. (30) indicates that the current injection rate is proportional
to the intensity of the 3ω/2 field I3ω/2 and the intensity of the
ω field to the power 3/2, I3/2

ω . These dependences are veri-
fied in Fig. 4 of the accompanying experimental paper [42],
indicating that the currents measured in those experiments
indeed correspond to 2 + 3 QuIC. We list the independent
components of the injection tensor coefficient η

abcde f
2+3 (3ω) in

the Appendix. In Fig. 7 we show the frequency dependence
of the independent components of the coefficient η

abcde f
2+3 (3ω)

for different stoichiometries. The plots show that some com-
ponents change sign as the frequency increases. This sign flip
is due to the competing contributions due to intraband and
interband velocity matrix elements to the R(3)

cvk coefficients.
For low excess photon energies, the excited carriers are close
to the � point in the BZ, and the interband contribution is
the most important, as the band dispersion is small. For larger
photon excess energies, the excited carriers are located farther
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xyzxx

FIG. 6. Injection rate coefficients for carrier density correspond-
ing to 2 + 3 QuIC for two stoichiometries.

from the � point in the BZ, so the band dispersion is large,
and the intraband contributions are more important.

To illustrate some aspects of the different tensor compo-
nents, in Fig. 8 we plot the injection current for different
polarizations of the incident fields in a typical experimental
scenario. We assume that the sample has electrodes mounted
such that they always measure the current along the [100]
crystal direction, which we denote by x̂. In the first case we
keep either êω or ê3ω/2 fixed along the x̂ direction, while
the other field is rotated in the x̂-ŷ plane and points along
the direction θ̂ = x̂ cos θ + ŷ sin θ , where ŷ corresponds to the
[010] crystal direction. The case where êω = θ̂ and ê3ω/2 = x̂,
corresponding to the green line in Fig. 8, is tested experi-
mentally and reported in Fig. 5 of the accompanying paper
[42]. In the second scenario, the polarizations of both incident
fields are rotated in the x̂-ŷ plane, and they are kept either
parallel or perpendicular to each other. In Fig. 8, we show
that the current is largely along the êω direction regardless
of the ê3ω/2 direction. However, the magnitude of the current
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FIG. 7. Injection rate coefficients for current corresponding to
2 + 3 QuIC for two stoichiometries.

depends significantly on the ê3ω/2 direction, and it is maximal
for ê3ω/2 = êω.

1. Swarm velocity

Since the excited carriers respond to the induced voltage
due to the injected current and usually screen it at least
partially, a good measure of the efficiency of the current injec-
tion is the swarm velocity, defined as vswarm = d

dt 〈J〉/e d
dt 〈n〉,

which represents the average contribution to the injection
current due to one excited electron [50]. Since 〈n〉2+3 	
〈n〉2 + 〈n〉3, the total density of carriers is 〈n〉 
 〈n〉2 + 〈n〉3,
and for both light beams polarized along the x̂ direction we
have a swarm velocity of magnitude

vswarm = 2
∣∣ηxxxxxx

2+3 (3ω)
∣∣E3

ωE2
3ω/2

|e|(ξ xxxxxx
3 (3ω)E6

ω + ξ xxxx
2 (3ω)E4

3ω/2

) , (31)

where we have chosen 
φ = π/2 to optimize the magnitude
of the numerator. The whole expression is optimized by
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êω = θ̂
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η 2
+

3(
Ω

)
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m
3 /

V
5 s

)

×10−17 Al0.2Ga0.8As

ê3ω/2 = êω

ê3ω/2 = ẑ × êω

FIG. 8. Injection rate coefficient for current along the x̂ direction
as the polarizations of the incident fields are rotated in the x̂-ŷ plane.
Top: Either êω or ê3ω/2 is rotated while the other is fixed along
the x̂ direction. Bottom: In both cases êω = θ̂ is rotated, and ê3ω/2

is either parallel or perpendicular to it. The total photon energy is
h̄
 = 2.4 eV (λ ∼ 520 nm) in both cases.

choosing the intensities of the two beams appropriately; the
condition to be satisfied is ξ xxxx

2 (3ω)E4
3ω/2 = ξ xxxxxx

3 (3ω)E6
ω,

which corresponds to an equal number of carriers injected
by two-photon absorption and three-photon absorption. If this
holds,

vswarm =
∣∣ηxxxxxx

2+3 (3ω)
∣∣

|e|√ξ xxxxxx
3 (3ω)ξ xxxx

2 (3ω)
. (32)

In Fig. 9 we plot this expression, together with the expression
that would result if the beam of frequency ω were polarized in
the x̂ direction while the one of frequency 3ω/2 was polarized
in the ŷ direction, which is the same as Eq. (32) but with
ηxxxxxx

2+3 (3ω) replaced by η
xxxxyy
2+3 (3ω); as well, ξ xxxx

2 (3ω) should
also be replaced by ξ

yyyy
2 (3ω), but they are equal. We see that

different stoichiometries give similar values for the swarm
velocity if the frequency is adjusted according to the band gap
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FIG. 9. Swarm velocity for two stoichiometries assuming opti-
mum interference between 2PA and 3PA. The current is measured
along the x̂ direction, and so is the polarization of the lower-
frequency field êω = x̂, while we consider two cases for the polar-
ization of the higher-frequency field: ê3ω/2 = x̂ and ê3ω/2 = ŷ.

of the system. The fact that higher Ga concentrations lead to
larger injected currents (see Fig. 7) is only due to a higher
carrier injection. Yet with appropriate laser intensities it is
possible to reach the same levels of injected current densities
with any Al concentration, although the laser frequencies and
intensities at which the maximum is achieved depend on the
Al concentration.

We point out that the 2 + 3 QuIC swarm velocity is
about twice its equivalent for 1 + 2 QuIC. This is an in-
dication that the distribution of carriers injected in the BZ
is sharper for 2 + 3 QuIC compared to 1 + 2 QuIC. We
further confirm that by computing the variance of the lat-
tice momentum k of the electrons injected in the con-
duction band for both 1 + 2 QuIC, σ a

1+2 = 〈(ka)2〉1+2 −
〈ka〉2

1+2, and 2 + 3 QuIC, σ a
2+3 = 〈(ka)2〉2+3 − 〈ka〉2

2+3. For
the incident fields polarized along the x̂ direction, we find

〈k〉1+2 = (4.9, 0, 0) × 10−2Å
−1

and 〈k〉2+3 = (5.7, 0, 0) ×
10−2Å

−1
, as well as σ1+2 = (3.4, 4.3, 4.3) × 10−3Å

−2
and

σ2+3 = (2.8, 2.2, 2.2) × 10−3Å
−2

, which indeed indicates
that the distribution of injected electrons in the BZ is sharper
for 2 + 3 QuIC, especially in the directions transverse (ŷ and
ẑ) to the polarization of the field.

2. Laser intensities

Our calculations are performed in the perturbative regime,
the validity of which requires that the fraction of the injected
carrier population density relative to the total density of states
nmax in the range of energies covered by the laser pulse be
small. We thus consider our calculations to be valid when

〈n〉2 + 〈n〉3 < 0.1nmax, (33)

where the fraction 0.1 is chosen somewhat arbitrarily. The
carrier injection due to the two- and three-photon interference
〈n〉2+3(i) mostly has the effect of concentrating the carrier
injection in some region of the BZ, but it does not contribute
significantly to the total number of injected carriers compared
to 〈n〉2 and 〈n〉3. For the estimates of laser intensities we
consider the incident fields both to be polarized along the x̂
direction, so for a laser pulse of duration T we require[

d

dt
〈n〉2 + d

dt
〈n〉3

]
T < 0.1nmax, (34)[

ξ xxxx
2 (3ω)E4

3ω/2 + ξ xxxxxx
3 (3ω)E6

ω

]
T < 0.1nmax. (35)

The maximum density of states nmax that can be injected is
determined by analyzing the volume V corresponding to the
excited states in the BZ. We denote by k
 the momentum cor-
responding to the energy difference h̄ωcvk = h̄
 between the
conduction and valence bands, so V = 4πk2



k, where 
k =
dk

dωcvk

ωcvk is related to the frequency broadening 
ω =

2π/T associated with the time duration of the pulse. The
derivative of the band energy corresponds to the velocities of
electrons in the conduction and valence bands, v
 = dωcv

dk =
dωc
dk − dωv

dk , so V = 8π2k2

/v
T . The volume in the BZ asso-

ciated with one quantum state is V1 = (2π/L)3, where L is the
normalization length of the sample. The number of states that
can be excited is then V/V1, and their spatial density is

nmax = V

V1L3
= k2




πv
T
. (36)

For optimal interference, there should be equal densities of
carriers injected by two- and three-photon absorption, 〈n〉2 =
〈n〉3, which according to Eq. (35) gives

ξ xxxx
2 (3ω)E4

3ω/2 = ξ xxxxxx
3 (3ω)E6

ω < 0.05
k2



πv
T 2
. (37)

The maximal amplitudes Eω and E3ω/2 of the incident fields
can then be estimated from the extreme of the inequality in the
above equation. For the stoichiometry of α = 0.2, pulses with
duration T = 150 fs, and total photon energy h̄
 = 2.4 eV,
we have

Eω = 1.24 × 108 V

m
, (38)

E3ω/2 = 6.05 × 107 V

m
. (39)
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The intensities in the material medium with these field ampli-
tudes are

Iω = 2ε0cnωE2
ω = 26.5

GW

cm2
, (40)

I3ω/2 = 2ε0cn3ω/2E2
3ω/2 = 6.54

GW

cm2
. (41)

For these values, the injected current density is

〈Jx〉 = 2ηxxxxxx
2+3 (3ω)E3

ωE2
3ω/2T = 6.25

MA

cm2
. (42)

We emphasize that these are just estimates, as the limit of
carrier density is set somewhat arbitrarily in Eq. (33). We note
that we are ignoring scattering of the injected carriers. This
means that the true maximal intensities would be larger than
our estimates here since there is room for more photon absorp-
tion as scattering depletes some of the excited states. We also
note that in this treatment the electron-electron interaction has
been neglected; were it included, the phase parameter would
be shifted. However, this shift is usually very small for zinc
blende semiconductors, except for frequencies very close to
the band gap [51].

V. DISCUSSION AND CONCLUSION

One of the main utilities of QuIC in semiconductors is the
injection of carriers in localized regions of the BZ. In this
respect 2 + 3 QuIC performs better than 1 + 2 QuIC, and
that can be seen in the higher swarm velocity of 2 + 3 QuIC,
which is a desirable feature for current injection. Another
interesting difference between 1 + 2 and 2 + 3 QuIC is that in
2 + 3 QuIC several current injection coefficients change sign
as the total photon energy is increased, while in 1 + 2 QuIC
they typically do not. This happens because interband velocity
matrix elements are responsible for the largest contribution
to the 3PA coefficient at low photon energies, but at higher
photon energies the intraband velocity matrix elements dom-
inate. Since only nonlinear optical processes are involved in
2 + 3 QuIC, the laser intensities required for maximal effect
are higher than for 1 + 2 QuIC but still moderate. Also, the
optical fields have a power law attenuation as they propagate
through the absorbing material, instead of the exponential
attenuation of linear absorption. Thus a waveguide geometry
is desirable, and while QuIC in waveguides presents some
challenges, as it raises issues of phase and mode matching,
it also presents opportunities for easy integration with de-
vices on chip. Since optical frequency combs are routinely
propagated through waveguides, there should be no additional
difficulties for 2 + 3 QuIC experiments in waveguides other
than the usual issues of phase and mode matching.
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APPENDIX A: NONZERO INJECTION COEFFICIENT
COMPONENTS OF ZINC BLENDE LATTICES

AlGaAs in the virtual crystal approximation forms a zinc
blende lattice, which has the symmetry of point group Td (or

43m). The optical responses we consider in this work involve
tensors of rank 4 up to 6. With Td symmetries [52], generic
rank-4 tensors have 21 nonzero components, of which 4 are
independent; rank-5 tensors have 60 nonzero and 10 indepen-
dent components, and rank-6 tensors have 183 nonzero and
31 independent components. However, the tensors represent-
ing the optical processes have a few more specific restrictions
due to their relation to the optical fields, as the indices
associated with the same incident field are symmetrized.

With these considerations the tensor ξ2 has three indepen-
dent components,

ξ xxxx
2 = P(x, y, z), (A1)

ξ
xyxy
2 = ξ

xyyx
2 = P(x, y, z), (A2)

ξ
xxyy
2 = P(x, y, z), (A3)

where P(x, y, z) indicates all the possible permutations of
(x, y, z) in the indices. The tensor ξ2+3 has three independent
components,

ξ
xxxyz
2+3 = P(x, y, z), (A4)

ξ
xxyxz
2+3 = ξ

xxyzx
2+3 = ξ

xyxxz
2+3

= ξ
xyxzx
2+3 = ξ

yxxxz
2+3 = ξ

yxxzx
2+3 = P(x, y, z), (A5)

ξ
xyzxx
2+3 = ξ

yxzxx
2+3 = ξ

yzxxx
2+3 = P(x, y, z), (A6)

and ξ3 has five independent components,

ξ xxxxxx
3 = P(x, y, z), (A7)

ξ
xxxxyy
3 = ξ

xxxyxy
3 = ξ

xxxyyx
3

= ξ
yyxxxx
3 = ξ

yxyxxx
3 = ξ

xyyxxx
3 = P(x, y, z), (A8)

ξ
xxyxxy
3 = ξ

xxyxyx
3 = ξ

xxyyxx
3 = ξ

xyxxxy
3 = ξ

xyxxyx
3 = ξ

xyxyxx
3

= ξ
yxxxxy
3 = ξ

yxxxyx
3 = ξ

yxxyxx
3 = P(x, y, z), (A9)

ξ
xxyyzz
3 = ξ

xxyzyz
3 = ξ

xxyzzy
3 = ξ

xyxyzz
3 = ξ

xyxyzyz
3 = ξ

xyxzzy
3

= ξ
yxxyzz
3 = ξ

yxxyzyz
3 = ξ

yxxzzy
3 = P(x, y, z), (A10)

ξ
xyzxyz
3 = ξ

xyzzxy
3 = ξ

xyzyzx
3 = ξ

xyzzyx
3

= ξ
xyzxzy
3 = ξ

xyzyxz
3 = P(x, y, z). (A11)

Finally, the tensor η2+3 has nine independent components,

ηxxxxxx
2+3 = P(x, y, z), (A12)

η
xxxxyy
2+3 = P(x, y, z), (A13)

η
xxyyxx
2+3 = η

xyxyxx
2+3 = η

xyyxxx
2+3 = P(x, y, z), (A14)

η
xxxyxy
2+3 = η

xxxyyx
2+3 = η

xxyxxy
2+3

= η
xxyxyx
2+3 = η

xyxxxy
2+3 = η

xyxxyx
2+3 = P(x, y, z), (A15)

η
yxxxxy
2+3 = η

yxxxyx
2+3 = P(x, y, z), (A16)

η
yxxyxx
2+3 = η

yxyxxx
2+3 = η

yyxxxx
2+3 = P(x, y, z), (A17)
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η
xxyyzz
2+3 = η

xyxyzz
2+3 = η

xyyxzz
2+3 = P(x, y, z), (A18)

η
xxyzyz
2+3 = η

xxzyyz
2+3 = η

xyxzyz
2+3

= η
xyzxyz
2+3 = η

xzxyyz
2+3 = η

xzyxyz
2+3 = P(x, y, z), (A19)

η
xyyzxz
2+3 = η

xyzyxz
2+3 = η

xzyyxz
2+3

= η
xyyzzx
2+3 = η

xyzyzx
2+3 = η

xzyyzx
2+3 = P(x, y, z). (A20)

The independent components shown here are the ones plotted
in the figures in the main text.
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