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Doublon-holon excitations split by Hund’s rule coupling within the orbital-selective Mott phase
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Multiorbital interactions have the capacity to produce an interesting kind of doublon-holon bound state that
consists of a single-hole state in one band and a doubly occupied state in another band. Interband doublon-holon
pair excitations in the two-orbital Hubbard model are studied by using dynamical mean-field theory with the
Lanczos method as the impurity solver. We find that the interband bound states may provide several in-gap
quasiparticle peaks in the density of states of the narrow band in the orbital-selective Mott phase with a small
Hund’s rule coupling (J). There exists a corresponding energy relation between the in-gap states of the narrow
band and the peaks in the excitation spectrum of the doublon for the wide band. We also find that the spin-flip
and pair-hopping Hund interactions can divide one quasiparticle peak into two peaks, where the splitting energy
increases linearly with increasing J . Strong Hund’s rule coupling can move the interband doublon-holon pair
excitations outside the Mott gap and restrict the bound states by suppressing the orbital selectivity of the doubly
occupied and single-hole states.
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I. INTRODUCTION

The cooperative effect of electron-electron interactions
and orbital degeneracy gives rise to a variety of intriguing
phenomena in strongly correlated multiorbital systems [1–3].
The interactions in a multiorbital Hubbard model typically
consist of three components: an intraorbital Hubbard interac-
tion U , an interorbital Coulomb repulsion U ′, and the Hund’s
rule coupling J . Theoretical studies demonstrate that the
effective Coulomb repulsion is increased by a finite Hund’s
rule coupling J , which results in a strong reduction in the
critical correlation Uc of the Mott transition [4–6]. Owing to
the effect of the Hund’s rule coupling, which may greatly
suppress interorbital charge fluctuations, an orbital-selective
Mott transition (OSMT) will occur, where the carries on a
subset of orbitals become localized while the others remain
metallic [7].

Four factors may lead to an OSMT in multiorbital sys-
tems.

(i) The bandwidth difference plays an essential role in the
occurrence of the OSMT, which has been verified by some
dynamical mean-field theory (DMFT) investigations [8–11].

(ii) The crystal field splitting reduces the orbital degener-
acy to induce the OSMT [4,12–14].

(iii) The next-nearest neighbor (NN) hopping breaks the
particle-hole symmetry at half-filling that also benefits the
emergence of the OSMT [15];

(iv) The Hund’s rule coupling J promotes the OSMT at
half-filling by strongly suppressing the coherence scale to
block the orbital fluctuations [6,16–18].

The two-orbital Hubbard model is the minimal theoretical
model used to study the OSMT [8–20]. In the vicinity of
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the OSMT, a finite J can lead to fundamentally different
low-energy behavior in the two-orbital Hubbard model [21].
A very recent DMFT study [22] found an interesting kind of
doublon-holon bound state in the two-orbital Hubbard model
when the OSMT occurs. Because the quasiparticle peak of the
doublon-holon pair excitation is locked at the Fermi energy
when U = U ′, the OSMT cannot occur, regardless of the
difference in the bandwidths of the two orbitals [22].

A doublon (holon) is an excitation in which one particle
is added to (removed from) a lattice site with average integer
filling. The unique properties of a Mott insulator require the
doublon and the holon to form a bound state [23,24]. For
the single-band Hubbard model, sharp subpeaks have been
found at the inner edges of the Hubbard bands in the metallic
phase close to the Mott transition [25–29]. However, the
existence of subpeaks in the insulating phase is still a matter
of debate [28–32].

In a multiorbital system, there exists a specific relationship
between the doublon-holon bound state and the OSMT. The
orbital-selective Mott phase (OSMP) between the metallic and
insulating phases provides a new perspective for investigating
the properties of doublon-holon pair excitations. Multiorbital
interactions may also have the capacity to introduce different
types of doublon-holon pairs. Very recently, an interesting
kind of doublon-holon bound state was found in the OSMP
of the two-orbital Hubbard model without the interaction
terms for the Hund’s rule coupling J [22]. This doublon-
holon pair excitation consists of a single-hole state in one
band and a doubly occupied state in the other band, which is
called an interband doublon-holon bound state. The interband
doublon-holon pair excitations provide quasiparticle peaks in
the narrow band (NB) only in the presence of a coherent
metallic resonance in the wide band (WB) [22]. However, the
above findings are mainly based on the assumption that J = 0.
Hence it is still unclear how the Hund’s rule spin exchange
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influences the formation of the interband doublon-holon pair
excitations.

In this paper, we study the effect of Hund’s rule coupling
on the doublon-holon bound states in the two-orbital Hubbard
model by using DMFT with the Lanczos method as the
impurity solver. We find that some in-gap quasiparticle peaks
can appear in the density of states (DOS) of the insulating
NB for the OSMP with a smaller Hund’s rule coupling and
bandwidth ratio. These spectral features indicate the occur-
rence of the interband doublon-holon bound states, and the
orbital selectivity of the doubly occupied state and single-hole
state can be found by investigating the excitation spectra of
the doublon and the holon. In an OSMP, Hund’s rule coupling
can split one low-energy quasiparticle peak into two subpeaks,
and the energy gap between the two subpeaks is 2J . The
splitting of the quasiparticle peak is mainly caused by the
spin-flip and pair-hopping Hund interactions.

Suppression effects on the excitation spectra of the doublon
and the holon are found when we increase the Hund’s rule
coupling. In addition, the distance from the Fermi level to the
nearest peak increases linearly with increasing J . As a result,
the quasiparticle peaks of the interband doublon-holon pairs
may be moved outside the Mott gap, and hence are not easily
identified from the high-energy excitations of the Hubbard
bands. We also find that the in-gap spectral features disappear
completely in the fully insulating phase.

This paper is organized as follows. In Sec. II, we introduce
the theoretical model and the DMFT numerical approach. In
Sec. III, we calculate the spectral function and the optical
conductivity to show the influence of Hund’s rule coupling
on the doublon-holon bound states. We discuss the conditions
for the occurrence of in-gap quasiparticle excitations and the
interband feature of the doublon-holon pair excitations. The
principal findings of this paper are summarized in Sec. IV.

II. TWO-ORBITAL HUBBARD MODEL AND DYNAMICAL
MEAN-FIELD METHOD

We consider the Hamiltonian of the two-orbital Hubbard
model:

H = −
∑
〈i j〉lσ

tld
†
ilσ d jlσ − μ

∑
ilσ

d†
ilσ dilσ

+ U

2

∑
ilσ

nilσ nilσ̄ +
∑
iσσ ′

(U ′ − δσσ ′J )ni1σ ni2σ ′

+ J

2

∑
i,l �=l ′,σ

d†
ilσ d†

ilσ̄ dil ′σ̄ dil ′σ

+ J

2

∑
i,l �=l ′,σσ ′

d†
ilσ d†

il ′σ ′dilσ ′dil ′σ , (1)

where 〈i j〉 represents the NN sites on a Bethe lattice, d†
ilσ

(dilσ ) is the electron creation (annihilation) operator for the
orbital l (=1 or 2) at site i with spin σ , and nilσ = d†

ilσ dilσ

represents the electron occupation of the orbital l at site i.
tl denotes the NN intraorbital hopping in orbital l , U (U ′)
corresponds to the intraorbital (interorbital) interactions, and
J is the Hund’s rule coupling. The last two terms represent
the pair-hopping and spin-flip Hund interactions, respectively.

For systems with spin rotation symmetry, the relationship
U = U ′ + 2J should be kept.

Considering the semicircular DOS of the Bethe lattice, the
on-site component of the Green’s function of each orbital
[G(l )

ii (iωn) = ∑
k Gl (k, iωn)] satisfies a simple self-consistent

relation, {
g(l )

0 (iωn)
}−1 = iωn + μ − t2

l G(l )
ii (iωn), (2)

where g0 is the noninteracting Green’s function [33].
In a DMFT procedure, the lattice Hamiltonian [Eq. (1)]

needs to be mapped onto an impurity model with fewer
degrees of freedom:

Himp =
∑
mlσ

εmlσ c†
mlσ cmlσ − μ

∑
lσ

d†
lσ dlσ

+
∑
mlσ

Vmlσ (c†
mlσ dlσ + d†

lσ cmlσ )

+ U

2

∑
lσ

nlσ nlσ̄ +
∑
σσ ′

(U ′ − δσσ ′J )n1σ n2σ ′

+ J

2

∑
l �=l ′,σ

d†
lσ d†

lσ̄ dl ′σ̄ dl ′σ + J

2

∑
l �=l ′,σ

d†
lσ d†

l ′σ ′dlσ ′dl ′σ , (3)

where εmlσ denotes the effective parameter of the mth envi-
ronmental bath of orbital l , and Vmlσ represents the coupling
between the impurity site and its environment baths. The
parameters εmlσ and Vmlσ are determined by performing self-
consistent DMFT calculations using an impurity solver.

In our study, we employ the Lanczos solver [34]. The
Green’s function G(l )

imp(iωn) of the impurity model can be
expressed as [33,35,36],

G(l )
imp(iωn) = G(+)

l (iωn) + G(−)
l (iωn), (4)

where

G(+)
l (iωn) = 〈φ0|dld

†
l |φ0〉

iωn − a(+)
0 − b(+)2

1

iωn−a(+)
1 − b(+)2

2
iωn−a(+)

2 −···

, (5)

G(−)
l (iωn) = 〈φ0|d†

l dl |φ0〉
iωn + a(−)

0 − b(−)2
1

iωn+a(−)
1 − b(−)2

2
iωn+a(−)

2 −···

. (6)

In Eq. (1), the two orbitals are nonhybridized. Thus, the
self-energy, effective medium functions, and Green’s func-
tions are all diagonal with respect to the orbitals. Within
multiorbital DMFT calculations [37], the frequency energy is
defined as ωn = (2n + 1)π/β. In our calculations, we choose
β = 512 to assure the accuracy of the self-consistency for
the Green’s functions, Gl (iωn) = G(l )

ii (iωn) = G(l )
imp(iωn), es-

pecially in the low-energy region. The quasiparticle weights
Zl of different bands can be obtained by

Zl =
(

1 − ∂

∂ω
ReΣl (ω)|ω=0

)−1

≈
(

1 − ImΣl (iω0 )

ω0

)−1

.

(7)
Analytic continuation is performed to obtain the real fre-
quency Green’s function Gl (ω) [33]. We calculate the orbital-
resolved DOS by ρl (ω) = − 1

π
ImGl (ω + iδ), where δ is a
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FIG. 1. Effect of the bath size nb on the critical interactions Uc

of the OSMT in the two-orbital Hubbard model. The interaction
dependencies of the quasiparticle weight (Z) of the WB (dashed
lines and empty symbols) and NB (solid lines and solid symbols) are
shown for various bath sizes: nb = 2 (circles), nb = 3 (squares), and
nb = 4 (triangles). The same critical values of the OSMT, Uc1 = 3.8
and Uc2 = 3.0, are obtained for the two cases with different bath
sizes nb = 3 and nb = 4. The other model parameters are t2/t1 = 0.6,
J = U/4, and U = U ′ + 2J . The energies are in units of t1.

factor for energy broadening. The orbital-dependent optical
conductivity is expressed as

σl (ω) = π

∫ ∞

−∞
dεDl (ε)

∫ ∞

−∞

dω′

2π
ρ

(ε)
l (ω′)ρ (ε)

l (ω′ + ω)

×n(l )
f (ω′) − n(l )

f (ω′ + ω)

ω
, (8)

where n f (ω) is the Fermi function, and Dl (ε) =
1

2πtl

√
4t2

l − ε2 is the semicircular DOS of the Bethe lattice.

III. RESULTS

A. Phase diagram of the OSMT

The existence of the OSMT in a nondegenerate two-orbital
Hubbard model is demonstrated by the evolution of the
quasiparticle weight Zl with increasing interactions U when
t2/t1 = 0.6 and J = U/4, as shown in Fig. 1. The interaction
dependence of Zl for the cases with nb = 3 and nb = 4 are
very similar, which gives the same critical values of the
OSMT: Uc1 = 3.8 for the WB and Uc2 = 3.0 for the NB.
For the two-orbital Hubbard model with parameters close to
the OSMT, a common low-energy scale is found when the
Hund’s rule coupling is strong [21]. As shown in Fig. 2(a), the
self-energy of the NB is approximately equal to the product
of the self-energy of the WB and a certain constant, i.e.,
Re�2(ω) ≈ αRe�1(ω), in the low-energy region [−0.2, 0.2].
The constant α is found to be 2.85 when U = 2 and J = 0.5.
In Figs. 2(b) and 2(c), it is also shown that there is no obvious
change in the self-energy for the cases with nb = 3 and nb = 4
for both the WB and the NB in the low-energy region. Our
findings support the prediction that the effective bath size

ω

ω

Σ(
ω

)

∗

ω

FIG. 2. Common low-energy scale induced by Hund’s rule cou-
pling in the vicinity of the OSMT. (a) The self-energies of the two
bands has the relation of Re�2(ω) = 2.85Re�1(ω) within the energy
region [−0.2, 0.2] when the two-orbital Hubbard model is close to
the OSMT with J = 0.5, U = 2, U = U ′ + 2J , and t2/t1 = 0.5. The
self-energies of the WB (b) and the NB (c) are almost the same for
nb = 3 and nb = 4 within the corresponding low-energy region.

is doubled in the vicinity of the OSMT in the two-orbital
Hubbard model.

In agreement with the prediction of some previous DMFT
calculations [16], our study shows that one can accurately
determine the critical points of Mott transitions in the two-
orbital Hubbard model by using the Lanczos solver with
a limited bath size. Therefore, we could comprehensively
investigate the influence of different model parameters on the
phase diagram of the two-orbital Hubbard model, especially
the Hund’s rule coupling J .

In Fig. 3, we compare the phase diagrams of the two-
orbital Hubbard model with different Hund’s rule couplings.
For the cases with a small J , the OSMT occurs only if the
orbital difference meets a certain requirement. For example,
the appearance of the OSMP requires t2/t1 � 0.6 when J =
U/8, as shown in Fig. 3(b). However, the OSMP can exist
for any bandwidth ratio when the Hund’s rule coupling is
sufficiently strong. As illustrated in Fig. 3(d), a boundary
for the existence of the OSMT is presented, which clearly
shows that the Hund’s rule coupling significantly promotes
the OSMT. There is no OSMT for any nonzero bandwidth in
both bands when J = 0. When J = 0, the quasiparticle peaks
of the interband doublon-holon pairs will be locked at the
Fermi level, leading to the simultaneous appearance of the
Mott transition for both bands, regardless of the difference in
bandwidths [22].

B. Quasiparticle excitations in the OSMP

We find in the OSMP that some low-energy quasiparticle
peaks appear inside the Mott gap of the NB when the Hund’s
rule coupling is sufficiently small. Figure 4 shows the DOS
of the NB and the WB of the two-orbital Hubbard model in
an OSMP. Four peaks of quasiparticle excitations are found
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(a)

(c) (d)

FIG. 3. Phase diagrams of the two-orbital Hubbard model with
various Hund’s rule couplings: J = U/64 (a), J = U/8 (b), and
J = U/4 (c). Both the critical values Uc1 and Uc2 for the WB and
the NB decrease as the Hund’s rule coupling increases due to the
enhancement in the Coulomb interactions caused by J . When the
Hund’s rule coupling is sufficiently strong (J � U/4), the OSMT can
occur for any bandwidth ratio t2/t1. (d) Dependence of the boundary
between the OSMT region and non-OSMT region on the Hund’s rule
coupling. As J decreases, a significant decline in the threshold of the
ratio t2/t1 is observed, which drops to zero when J = 0. Thus, there
is no OSMT for any nonzero bandwidth in both bands when U = U ′

and J = 0.

close to the Fermi level in the NB, as shown in Fig. 4(a). Here,
the model parameters are U = 5.1, J = 0.08, t2/t1 = 0.2, and
U = U ′ + 2J . The corresponding Mott critical values for the
WB and the NB are obtained as Uc1 = 5.3 and Uc2 = 3.2,
respectively. Therefore, the system with U = 5.1 is in an
OSMP, which is close to the insulating transition point Uc1.

In the NB, the four peaks are symmetrically located around
the Fermi level, carrying energies of E = ±0.19 and ±0.36. It
is important to note that the energy splitting between the two
nearby quasiparticle peaks with positive (negative) energy is
� = 0.17, which is approximately equal to 2J (J = 0.08). In
the WB, we can also find two low-energy peaks at the two
sides of the center coherent peak, as shown in Fig. 4(b). As
with the two inner quasiparticle peaks in the NB, the two low-
energy peaks in the WB carry energies of E = −0.19 and E =
0.19. This energy association implies that the quasiparticle
bound states may not be orbitally independent.

Numerous numerical calculations have been carried out for
the two-orbital Hubbard model with various model parame-
ters, and we find that the energies carried by the quasiparticle
peaks do not change with changes in the bandwidth ratio t2/t1
when the Hund’s rule coupling J is fixed.

Low-energy quasiparticle excitations may be observed
by the orbital-resolved optical conductivity of multiorbital
correlated compounds. In Fig. 5, we present the optical

ω

FIG. 4. DOS showing the low-energy quasiparticle states in the
OSMP of the nondegenerate two-orbital Hubbard model with a small
Hund’s rule coupling J . In the low-energy region around the Fermi
level, the DOS of the NB (a) and the WB (b) are presented for the
OSMP with U = 5.1, J = U/64 ≈ 0.08, t2/t1 = 0.2, and U = U ′ +
2J . The corresponding OSMT critical interactions are Uc1 = 5.3 and
Uc2 = 3.2. The OSMP is very close to the insulating transition point.
Four quasiparticle peaks are found close to the Fermi level in the NB,
and the corresponding excitations carry energies of E = ±0.17 and
±0.34, respectively. The energies are in units of t1, and the energy
broadening is δ = 0.05.

conductivities of the WB and the NB obtained for different
phases of the two-orbital Hubbard model. The quasiparticle
states contribute significantly to the optical conductivity in
the OSMP. As expected, the optical conductivity of the NB
exhibits a significant feature in the low-energy region, pre-
senting the transfer of spectral weight between the quasipar-
ticle excitations appearing in the NB. Meanwhile, the Drude
weight in the optical conductivity of the WB indicates that the
WB is metallic. In contrast, Drude peaks are shown for both
optical conductivities of the two bands in the metallic phase
[Fig. 5(c)].

The Mott transition occurs in the WB when U > Uc1,
accompanied by the vanishing of the coherent metallic res-
onance and the quasiparticle peaks. The orbital-dependent
optical conductivity can also illustrate the disappearance of
the quasiparticle peaks in the insulating phase, as shown in
Fig. 5(b). Owing to the absence of low-energy excitations,
Mott gaps are clearly shown in the optical conductivities for
both bands [Fig. 5(b)]. This finding is of great significance for
solving the dispute regarding whether there are subpeaks in
the insulating phase of the single-band Hubbard model.

C. Effect of J on the quasiparticle excitations

Núñez-Fernández et al. studied the low-energy bound
states in a simplified two-orbital Hubbard model [22]. Without
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ω ω

FIG. 5. Manifestation of the emergence of low-energy bound
quasiparticle states by orbital-resolved optical conductivity. We com-
pare the optical conductivities of the NB and the WB for different
phases: the OSMP (a), the insulating phase (b), and the metallic
phase (c). In the OSMP, the low-energy peaks in the NB optical
conductivity (solid line and solid symbols) indicate the transfer of
spectral weight between the quasiparticle peaks of the low-energy
bound excitations appearing in the NB. These low-energy in-gap
excitations completely disappear in the insulating phase. The other
model parameters are the same as those in Fig. 4.

the Hund’s rule coupling terms, this model is still able to
show the OSMT, but the spin rotation symmetry is broken
when U �= U ′. The authors found that a finite DOS at the
Fermi energy in the WB is correlated with the emergence of
well-defined quasiparticle states at the excited energy � =
U − U ′ in the insulating NB [22]. For a comparison with their
results, we also calculate the DOS of the two-orbital Hubbard
model with J = 0 and U �= U ′. Our results are in good
agreement with the results obtained by using DMFT with the
density-matrix renormalization group method as the impurity
solver [22], as shown in Fig. 6. Our finding indicates that the
splitting of quasiparticle excitations is caused by Hund’s rule
coupling. In the NB, as shown in Fig. 6(c), there are only two
quasiparticle peaks when J is absent. In addition, there is no
quasiparticle excitation in both the WB and the NB for the
fully insulating phase, as shown in Figs. 6(b) and 6(d). Núñez-
Fernández et al. predicted that these quasiparticle excitations
are interband holon-doublon bound states [22].

To understand the effects of the different terms in the
Hund interaction Hamiltonian on the energy splitting of
quasiparticle excitations, we compare the low-energy DOS
of two different models with different Hund interactions,
as shown in Fig. 7. When only the interorbital density-
density Hund interactions are considered, there are only two
quasiparticle peaks in the NB, which are located at ω =
±0.265. We suppose that the energies of the quasiparticle
peaks may be determined by D = U − U ′ + J . The interac-
tion parameters are U − U ′ = 0.16, J = 0.08, and U = 5.1
(U − U ′ = 2J). Our prediction is in good agreement with the
findings of Ref. [22] (J = 0 and D = U − U ′ = 0.3), where
the two peaks carry energies of 0.3 and −0.3, as shown in
Fig. 6(c).

ω ω

FIG. 6. Low-energy quasiparticle peaks with broken spin-
symmetry. Left panels: The low-energy DOS of the WB (a) and
the NB (c) in the OSMP when J = 0, U = 3, and U − U ′ = 0.3.
Two quasiparticle peaks are found in the NB, located approximately
at ω = −0.3 and ω = 0.3. Right panels: The DOS of the WB
(b) and the NB (d) in the insulating phase when J = 0, U = 4.0,
and U − U ′ = 0.3. The quasiparticle peaks in the NB disappear with
the vanishing of the central resonance peak in the WB. Compared
with the results obtained by the DMFT + DMRG (black dashed
lines) [22], very good agreement is achieved. The other model
parameters are t1 = 0.5 and t2 = 0.25.

Four quasiparticle peaks appear in the NB when the influ-
ences of the full Hund interactions are considered. As shown
in Fig. 7(b), the energies carried by the four quasiparticles in
the NB are 0.36, 0.19, −0.19, and −0.36. Our results indicate
that the energy splitting of the interband holon-doublon bound
states is mainly caused by the spin-flip and pair-hopping Hund
interactions. As a special type of double-hopping term, the
pair-hopping Hund’s rule coupling can move two electrons
from one orbital to another simultaneously, which contributes
to the occurrence of interband doublon-holon pairs and the
transition between different interband bound states. Similarly,
the spin-flip exchange interaction also has a significant effect
on the interorbital doublon-holon bound states because it
represents a particular kind of double-hopping term between
the two orbitals. The transverse (spin-flip and pair-hopping)
Hund’s rule couplings enhance the electronic interactions and
spin fluctuations, resulting in the splitting of the doublon-
holon excitations. The interplay between the split doublon-
holon bound states and the dependence of the splitting energy
on effective doublon-holon pair interactions require further
investigations.

As mentioned in the previous subsection, there might
also exist some low-energy quasiparticle peaks in the WB.
However, the WB is in the metallic phase, and there is a
resonance peak at the Fermi level. Therefore, distinguishing
the low-energy quasiparticle excitations with the central res-
onance peak is difficult. We find that the overlap between the
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ω
FIG. 7. Influence of the different interaction terms of the Hund’s

rule coupling Hamiltonian on the quasiparticle excitations: (a) when
only the interorbital density-density Hund interactions are consid-
ered, and (b) when the spin-flip and pair-hopping Hund interactions
are also included. The positions of the in-gap quasiparticle peaks
in the NB are indicated by the dashed lines in the negative-energy
region. It is obvious that the splitting of the quasiparticle excitations
is mainly driven by the spin-flip and pair-hopping Hund interactions.
The model parameters are the same as those in Fig. 4.

interband bound states with the resonance peak is reduced
when the spin-flip and pair-hopping Hund interactions are
included. Also shown in Fig. 7(b), two quasiparticle peaks are
found at ±0.19 in the WB, which have the same energies as
the two inner peaks in the NB.

We further study the relation between the energy splitting
� and J . We focus on the two-orbital Hubbard model with
full Hund’s rule coupling. In Fig. 8, from top to bottom,
Hund’s rule coupling increases from J = 0.07 to J = 0.14 and
finally to J = 0.28, and the intraorbital interactions are fixed
as U = 4.5. In the left panels, the DOS of the WB and the
NB clearly show that the two-orbital Hubbard model remains
in the OSMP with the change in the Hund’s rule coupling.
Correspondingly, in the right panels, we indicate the energy
splitting � between the two nearby quasiparticle peaks in the
NB for the three cases with different J . It is shown that the
splitting energy increases linearly with increasing J , satisfying
the relation � = 2J .

In addition, our study also suggests that there also exists
a linear relationship between the position of the quasiparticle
peak and the Hund’s rule coupling J . When the Hund’s rule
coupling increases from J = 0.14 to J = 0.28, the energy
carried by the inner peak is found to increase from ω = 0.26
to ω = 0.50.

It is worth noticing that a small bandwidth ratio t2/t1 is
an essential condition for the emergence of the low-energy
quasiparticle peaks in the OSMP of the two-orbital Hubbard
model. Many earlier DMFT studies focused on the OSMT

ω

Δ=0.16

ω

Δ=0.26

Δ=0.50

FIG. 8. Quasiparticle excitations are split by Hund’s rule cou-
pling in the OSMP. Left panels: The DOS of the WB and the NB
for different Hund’s rule couplings: J = 0.07 (a), J = 0.14 (c), and
J = 0.28 (e). Right panels: A one-to-one correspondence with the
left panels. The energy splitting between the quasiparticle peaks is
shown in the low-energy DOS of the NB. The two-orbital Hubbard
model remains in the OSMP with t2/t1 = 0.2 and U = 4.5. The
positions of the quasiparticle peaks increase linearly with increasing
Hund’s rule coupling. A linear dependence of the energy splitting
between the peaks on J is also found.

with a bandwidth ratio of t2/t1 = 0.5 only, which may be
the main reason why the feature of the quasiparticle peaks
was missing. Based on the phase diagrams shown in Fig. 3,
to find the OSMP for the cases with t2/t1 = 0.5, the Hund’s
rule coupling must be larger than 0.5. The quasiparticle peaks
are predicted to appear in the high-energy region (U − U ′ >

1.0). Thus, it would be difficult to distinguish them from the
excitations in the Hubbard bands.

D. Excitation spectra of the doublon and the holon

The spectrum function has well-defined quasiparticle
peaks in the low-energy region when the two-orbital Hubbard
model is in the OSMP with a small Hund’s rule coupling. To
characterize the feature of these quasiparticle excitations, we
focus primarily on the orbital-resolved excitation spectrum of
the doublon Dl (ω), which is defined as

D(−)
l (ω) = − 1

π
Im〈b†

l (ω − H + iδ+)−1bl〉, (9)

where the doublon operator [28] b†
l = nl↓d†

l↑ creates a doubly
occupied state in orbital l .

The excitation spectrum of the doublon within the negative
low-energy region is plotted in Fig. 9 for the two-orbital
Hubbard model with different Hund’s rule couplings: J =
0.14 (left panel) and J = 0.28 (right panel). Obviously, the
doublon spectrum function of the WB is much stronger than
that of the NB, which suggests that the doubly occupied states
prefer to stay in the WB. In addition, the excitation spectrum
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ωω

FIG. 9. Orbital selectivity of the doubly occupied states in the
OSMP. The excitation spectra of the doublon in the WB [panels
(a) and (c)] and the NB [panels (b) and (d)] are shown by the solid
lines with empty symbols, for the OSMP with different Hund’s rule
couplings J = 0.14 and J = 0.28. For a comparison, the DOS of
the two bands are also presented by the dashed lines. The doublon
spectrum of the WB is significantly larger than that of the NB,
indicating that the doubly occupied states prefer to stay in the WB.
The energies of the in-gap peaks in the DOS of the NB correspond to
the positions of the peaks in the doublon spectrum. The other model
parameters are U = 4.5, t2/t1 = 0.2, and U = U ′ + 2J .

is found to decrease with increasing Hund’s rule coupling,
which indicates that strong Hund’s rule coupling suppresses
the orbital selectivity of the doubly occupied state.

Moreover, a specific correlation between the two bands is
also observed for the first time, where the energies carried
by the quasiparticle excitations in the NB are determined by
the positions of the peaks shown in the excitation spectrum
of the doublon of the WB. As shown in Figs. 9(a) and 9(c),
in the negative energy region when U = 4.5 and J = 0.14,
there are two peaks in the excitation spectrum of the doublon
of the WB (red solid line with circles), which carry energies
of ω = −0.32 and ω = −0.59, respectively. The DOS of the
NB also has two peaks (blue dashed line), and the positions of
these two peaks correspond exactly to the peaks in the doublon
spectrum of the WB.

This investigation provides insight into the intrinsic orbital-
selective characteristics of the doubly occupied states. Fur-
thermore, the interorbital correlation between the doublon
spectrum and the DOS implies that the quasiparticle excitation
should be formed by the doublon and holon in different
orbitals, which is just the interband doublon-holon bound
state [22]. We predict that the interband doublon-holon pair
with negative energy should consist of a doublon in the WB
and a hole in the NB. To confirm this hypothesis, we also need
to further study the orbital selectivity of the single-hole state.

Correspondingly, the excitation spectrum of the holon
H (+)

l (ω) can be expressed by the following equation:

H (+)
l (ω) = − 1

π
Im〈hl (ω − H + iδ+)−1h†

l 〉, (10)

ω

ω

ω

ω

ω

ω

FIG. 10. Excitation spectra of the doublon (left panels) and holon
(right panels) for the WB and the NB in the OSMP with J = 0.14,
t2/t1 = 0.2, U = 4.5, and U = U ′ + 2J . The spectrum weight of the
doublon (holon) of the wide band is approximately 2 orders higher
than the corresponding spectrum weight of the NB.

where h†
l = (1 − nl↓)dl↑ presents the holon operator [28] of

orbital l .
In a half-filled system with particle-hole symmetry, the

holon spectrum function H (+)
l (ω) is not independent. Based

on the particle-hole transformation, we can find that there is
an asymmetric relationship, D(−)

l (−ω) = H (+)
l (ω), under the

transition ω → −ω.
In Fig. 10, we compare the excitation spectra of the dou-

blon and the holon in the OSMP. As expected, the excitation
spectrum of a hole in the positive-energy region matches
the spectrum of the doubly occupied state in the negative-
energy region. A basic feature of the interband doublon-holon
bound state is found, where the pair excitation also shows
an asymmetric relation under the energy transition ω → −ω.
The interband doublon-holon pair with positive (negative)
energy consists of a holon (doublon) in the WB and a doublon
(holon) in the NB. These theoretical predictions need to be
tested and verified by experiments. Additionally, the relation-
ship between the effective doublon-holon pair interaction and
Hund’s rule coupling in the multiorbital Hubbard model still
needs to be explored by further research.

IV. CONCLUSION

We study the effect of Hund’s rule spin exchange on
the doublon-holon pair excitations in the two-orbital Hub-
bard model by using DMFT with the Lanczos method as
the impurity solver. Our calculations show that low-energy
quasiparticle peaks occur in the DOS of the OSMP if both
the Hund’s rule coupling J and the bandwidth ratio t2/t1 are
small enough. These low-energy excitations are the interband
doublon-holon bound states, in which the doublon is located
in one band while the holon is in the other band.

The spin-flip and pair-hopping Hund interactions can di-
vide one quasiparticle peak into two peaks. The linear relation
� = 2J has been confirmed between the energy gap and the
Hund’s rule coupling. In addition, the energies carried by the
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quasiparticle peaks are also controlled by the Hund’s rule
coupling.

There exists a direct correspondence between the energies
of the quasiparticle peaks in one band and the positions of the
peaks in the excitation spectrum of the doublon for the other
band. Our study demonstrates that the interband doublon-
holon pair with positive (negative) energy consists of a holon
(doublon) in the WB and a doublon (holon) in the NB.

When the Hund’s rule coupling is strong, the interband
doublon-holon pair excitations are suppressed with a signif-
icant reduction in the excitation spectra of the doublon and
the holon. In addition, the low-energy quasiparticle peaks
are moved to Hubbard bands and hence are inefficiently

identified. The interband doublon-holon bound states disap-
pear completely in the fully insulating phase.

ACKNOWLEDGMENTS

The computational resources utilized in this research were
provided by Shanghai Supercomputer Center. The work is
supported by the the National Natural Science Founda-
tion of China (NSFC), under Grants No. 11174036 and
No. 11474023. S.F. is supported by the National Key Re-
search and Development Program of China under Grant No.
2016YFA0300304 and the NSFC under Grants No. 11574032
and No. 11734002.

[1] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70,
1039 (1998).

[2] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O.
Parcollet, and C. A. Marianetti, Rev. Mod. Phys. 78, 865 (2006).

[3] G. Rohringer, H. Hafermann, A. Toschi, A. A. Katanin, A. E.
Antipov, M. I. Katsnelson, A. I. Lichtenstein, A. N. Rubtsov,
and K. Held, Rev. Mod. Phys. 90, 025003 (2018).

[4] P. Werner and A. J. Millis, Phys. Rev. Lett. 99, 126405 (2007).
[5] A. H. Nevidomskyy and P. Coleman, Phys. Rev. Lett. 103,

147205 (2009).
[6] A. Georges, L. de’ Medici, and J. Mravlje, Annu. Rev. Condens.

Matter Phys. 4, 137 (2013).
[7] V. I. Anisimov, I. A. Nekrasov, D. E. Kondakov, T. M. Rice,

and M. Sigrist, Eur. Phys. J. B 25, 191 (2002).
[8] A. Koga, N. Kawakami, T. M. Rice, and M. Sigrist, Phys. Rev.

Lett. 92, 216402 (2004)
[9] A. Koga, N. Kawakami, T. M. Rice, and M. Sigrist, Phys.

Rev. B 72, 045128 (2005).
[10] L. de’ Medici, A. Georges, and S. Biermann, Phys. Rev. B 72,

205124 (2005).
[11] Y. Song and L.-J. Zou, Phys. Rev. B 72, 085114 (2005).
[12] L. de’ Medici, S. R. Hassan, M. Capone, and X. Dai, Phys. Rev.

Lett. 102, 126401 (2009).
[13] Y. Song and L.-J. Zou, Eur. Phys. J. B 72, 59 (2009).
[14] E. Jakobi, N. Blümer, and P. van Dongen, Phys. Rev. B 87,

205135 (2013).
[15] Y. K. Niu, J. Sun, Y. Ni, and Y. Song, Phys. B (Amsterdam,

Neth.) 539, 106 (2018).
[16] A. Liebsch, Phys. Rev. Lett. 95, 116402 (2005).
[17] L. de’ Medici, Phys. Rev. B 83, 205112 (2011).
[18] J. Sun, Y. Liu, and Y. Song, Acta Phys. Sin. 64, 247101 (2015).

[19] T. A. Costi and A. Liebsch, Phys. Rev. Lett. 99, 236404 (2007).
[20] L. de’ Medici, J. Mravlje, and A. Georges, Phys. Rev. Lett. 107,

256401 (2011).
[21] M. Greger, M. Kollar, and D. Vollhardt, Phys. Rev. Lett. 110,

046403 (2013).
[22] Y. Núñez-Fernández, G. Kotliar, and K. Hallberg, Phys. Rev. B

97, 121113(R) (2018).
[23] X.-J. Han, Y. Liu, Z.-Y. Liu, X. Li, J. Chen, H.-J. Liao, Z.-Y.

Xie, B. Normand, and T. Xiang, New J. Phys. 18, 103004
(2016).

[24] P. Phillips, Rev. Mod. Phys. 82, 1719 (2010).
[25] R. G. Leigh and P. Phillips, Phys. Rev. B 79, 245120 (2009).
[26] Y. Yamaji and M. Imada, Phys. Rev. B 83, 214522 (2011).
[27] S. Zhou, Y. Wang, and Z. Wang, Phys. Rev. B 89, 195119

(2014).
[28] S.-S. B. Lee, J. von Delft, and A. Weichselbaum, Phys. Rev.

Lett. 119, 236402 (2017).
[29] S.-S. B. Lee, J. von Delft, and A. Weichselbaum, Phys. Rev. B

96, 245106 (2017).
[30] S. Nishimoto, F. Gebhard, and E. Jeckelmann, J. Phys. Condens.

Matter 16, 7063 (2004).
[31] E. Gull, D. R. Reichman, and A. J. Millis, Phys. Rev. B 82,

075109 (2010).
[32] M. Granath and J. Schött, Phys. Rev. B 90, 235129 (2014).
[33] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.

Mod. Phys. 68, 13 (1996).
[34] E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).
[35] M. Caffarel and W. Krauth, Phys. Rev. Lett. 72, 1545 (1994).
[36] M. Capone, L. de’ Medici, and A. Georges, Phys. Rev. B 76,

245116 (2007).
[37] R. Arita and K. Held, Phys. Rev. B 72, 201102(R) (2005).

075158-8

https://doi.org/10.1103/RevModPhys.70.1039
https://doi.org/10.1103/RevModPhys.70.1039
https://doi.org/10.1103/RevModPhys.70.1039
https://doi.org/10.1103/RevModPhys.70.1039
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/RevModPhys.90.025003
https://doi.org/10.1103/RevModPhys.90.025003
https://doi.org/10.1103/RevModPhys.90.025003
https://doi.org/10.1103/RevModPhys.90.025003
https://doi.org/10.1103/PhysRevLett.99.126405
https://doi.org/10.1103/PhysRevLett.99.126405
https://doi.org/10.1103/PhysRevLett.99.126405
https://doi.org/10.1103/PhysRevLett.99.126405
https://doi.org/10.1103/PhysRevLett.103.147205
https://doi.org/10.1103/PhysRevLett.103.147205
https://doi.org/10.1103/PhysRevLett.103.147205
https://doi.org/10.1103/PhysRevLett.103.147205
https://doi.org/10.1146/annurev-conmatphys-020911-125045
https://doi.org/10.1146/annurev-conmatphys-020911-125045
https://doi.org/10.1146/annurev-conmatphys-020911-125045
https://doi.org/10.1146/annurev-conmatphys-020911-125045
https://doi.org/10.1007/s10051-002-8912-5
https://doi.org/10.1007/s10051-002-8912-5
https://doi.org/10.1007/s10051-002-8912-5
https://doi.org/10.1007/s10051-002-8912-5
https://doi.org/10.1103/PhysRevLett.92.216402
https://doi.org/10.1103/PhysRevLett.92.216402
https://doi.org/10.1103/PhysRevLett.92.216402
https://doi.org/10.1103/PhysRevLett.92.216402
https://doi.org/10.1103/PhysRevB.72.045128
https://doi.org/10.1103/PhysRevB.72.045128
https://doi.org/10.1103/PhysRevB.72.045128
https://doi.org/10.1103/PhysRevB.72.045128
https://doi.org/10.1103/PhysRevB.72.205124
https://doi.org/10.1103/PhysRevB.72.205124
https://doi.org/10.1103/PhysRevB.72.205124
https://doi.org/10.1103/PhysRevB.72.205124
https://doi.org/10.1103/PhysRevB.72.085114
https://doi.org/10.1103/PhysRevB.72.085114
https://doi.org/10.1103/PhysRevB.72.085114
https://doi.org/10.1103/PhysRevB.72.085114
https://doi.org/10.1103/PhysRevLett.102.126401
https://doi.org/10.1103/PhysRevLett.102.126401
https://doi.org/10.1103/PhysRevLett.102.126401
https://doi.org/10.1103/PhysRevLett.102.126401
https://doi.org/10.1140/epjb/e2009-00314-1
https://doi.org/10.1140/epjb/e2009-00314-1
https://doi.org/10.1140/epjb/e2009-00314-1
https://doi.org/10.1140/epjb/e2009-00314-1
https://doi.org/10.1103/PhysRevB.87.205135
https://doi.org/10.1103/PhysRevB.87.205135
https://doi.org/10.1103/PhysRevB.87.205135
https://doi.org/10.1103/PhysRevB.87.205135
https://doi.org/10.1016/j.physb.2018.04.003
https://doi.org/10.1016/j.physb.2018.04.003
https://doi.org/10.1016/j.physb.2018.04.003
https://doi.org/10.1016/j.physb.2018.04.003
https://doi.org/10.1103/PhysRevLett.95.116402
https://doi.org/10.1103/PhysRevLett.95.116402
https://doi.org/10.1103/PhysRevLett.95.116402
https://doi.org/10.1103/PhysRevLett.95.116402
https://doi.org/10.1103/PhysRevB.83.205112
https://doi.org/10.1103/PhysRevB.83.205112
https://doi.org/10.1103/PhysRevB.83.205112
https://doi.org/10.1103/PhysRevB.83.205112
https://doi.org/10.7498/aps.64.247101
https://doi.org/10.7498/aps.64.247101
https://doi.org/10.7498/aps.64.247101
https://doi.org/10.7498/aps.64.247101
https://doi.org/10.1103/PhysRevLett.99.236404
https://doi.org/10.1103/PhysRevLett.99.236404
https://doi.org/10.1103/PhysRevLett.99.236404
https://doi.org/10.1103/PhysRevLett.99.236404
https://doi.org/10.1103/PhysRevLett.107.256401
https://doi.org/10.1103/PhysRevLett.107.256401
https://doi.org/10.1103/PhysRevLett.107.256401
https://doi.org/10.1103/PhysRevLett.107.256401
https://doi.org/10.1103/PhysRevLett.110.046403
https://doi.org/10.1103/PhysRevLett.110.046403
https://doi.org/10.1103/PhysRevLett.110.046403
https://doi.org/10.1103/PhysRevLett.110.046403
https://doi.org/10.1103/PhysRevB.97.121113
https://doi.org/10.1103/PhysRevB.97.121113
https://doi.org/10.1103/PhysRevB.97.121113
https://doi.org/10.1103/PhysRevB.97.121113
https://doi.org/10.1088/1367-2630/18/10/103004
https://doi.org/10.1088/1367-2630/18/10/103004
https://doi.org/10.1088/1367-2630/18/10/103004
https://doi.org/10.1088/1367-2630/18/10/103004
https://doi.org/10.1103/RevModPhys.82.1719
https://doi.org/10.1103/RevModPhys.82.1719
https://doi.org/10.1103/RevModPhys.82.1719
https://doi.org/10.1103/RevModPhys.82.1719
https://doi.org/10.1103/PhysRevB.79.245120
https://doi.org/10.1103/PhysRevB.79.245120
https://doi.org/10.1103/PhysRevB.79.245120
https://doi.org/10.1103/PhysRevB.79.245120
https://doi.org/10.1103/PhysRevB.83.214522
https://doi.org/10.1103/PhysRevB.83.214522
https://doi.org/10.1103/PhysRevB.83.214522
https://doi.org/10.1103/PhysRevB.83.214522
https://doi.org/10.1103/PhysRevB.89.195119
https://doi.org/10.1103/PhysRevB.89.195119
https://doi.org/10.1103/PhysRevB.89.195119
https://doi.org/10.1103/PhysRevB.89.195119
https://doi.org/10.1103/PhysRevLett.119.236402
https://doi.org/10.1103/PhysRevLett.119.236402
https://doi.org/10.1103/PhysRevLett.119.236402
https://doi.org/10.1103/PhysRevLett.119.236402
https://doi.org/10.1103/PhysRevB.96.245106
https://doi.org/10.1103/PhysRevB.96.245106
https://doi.org/10.1103/PhysRevB.96.245106
https://doi.org/10.1103/PhysRevB.96.245106
https://doi.org/10.1088/0953-8984/16/39/038
https://doi.org/10.1088/0953-8984/16/39/038
https://doi.org/10.1088/0953-8984/16/39/038
https://doi.org/10.1088/0953-8984/16/39/038
https://doi.org/10.1103/PhysRevB.82.075109
https://doi.org/10.1103/PhysRevB.82.075109
https://doi.org/10.1103/PhysRevB.82.075109
https://doi.org/10.1103/PhysRevB.82.075109
https://doi.org/10.1103/PhysRevB.90.235129
https://doi.org/10.1103/PhysRevB.90.235129
https://doi.org/10.1103/PhysRevB.90.235129
https://doi.org/10.1103/PhysRevB.90.235129
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.66.763
https://doi.org/10.1103/RevModPhys.66.763
https://doi.org/10.1103/RevModPhys.66.763
https://doi.org/10.1103/RevModPhys.66.763
https://doi.org/10.1103/PhysRevLett.72.1545
https://doi.org/10.1103/PhysRevLett.72.1545
https://doi.org/10.1103/PhysRevLett.72.1545
https://doi.org/10.1103/PhysRevLett.72.1545
https://doi.org/10.1103/PhysRevB.76.245116
https://doi.org/10.1103/PhysRevB.76.245116
https://doi.org/10.1103/PhysRevB.76.245116
https://doi.org/10.1103/PhysRevB.76.245116
https://doi.org/10.1103/PhysRevB.72.201102
https://doi.org/10.1103/PhysRevB.72.201102
https://doi.org/10.1103/PhysRevB.72.201102
https://doi.org/10.1103/PhysRevB.72.201102

