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Search for parafermions and Fibonacci anyons, which are excitations obeying non-Abelian statistics, is
driven both by the quest for deeper understanding of nature and prospects for universal topological quantum
computation. However, physical systems that can host these exotic excitations are rare and hard to realize in
experiments. Here we study the domain walls and the edge states formed in spin transitions in the fractional
quantum Hall effect. Effective theory approach and exact diagonalization in a disk and torus geometries proves
the existence of the counterpropagating edge modes with opposite spin polarizations at the boundary between the
two neighboring regions of the two-dimensional electron liquid in spin-polarized and spin-unpolarized phases.
By analytical and numerical analysis, we argue that these systems can host parafermions when coupled to an
s-wave superconductor and are experimentally feasible. We investigate settings based on ν = 2/3, 4/3, and
5/3 spin transitions and analyze spin-flipping interactions that hybridize counterpropagating modes. Finally, we
discuss spin-orbit interactions of composite fermions.
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I. INTRODUCTION

Since early years of quantum physics, it has been recog-
nized that symmetry with respect to an exchange of particles
results in the two possible quantum statistics, Bose-Einstein
statistics for particles with integer spin and Fermi statistics
for particles with half-integer spin. About fifty years later
researchers realized that particles/quasiparticles confined to
one dimension [1] or two dimensions [2,3] can obey a dif-
ferent statistics, which F. Wilczek called anyon statistics, for
which an exchange results in the wave function picking up
any possible quantum-mechanical phase. Furthermore, it was
realized [4–8] that for degenerate states, an exchange, or more
appropriately, braiding of particles or quasiparticles in two
dimensions may result in nontrivial unitary transformation of
the corresponding wave functions, i.e., in the non-Abelian
statistics. It was recognized recently that the non-Abelian
statistics opens new ways of approaching a fault-tolerant
quantum computation. An approach to the topological quan-
tum computation based on the Majorana fermions has been
widely studied in recent years [9–12]. However, it became
apparent that such systems are not computationally univer-
sal because braiding operations for Majorana fermions can-
not approximate all unitary quantum gates [13,14]. In order
to realize the universal topological quantum computation,
other kinds of non-Abelian anyons are required. In particu-
lar, parafermions have been shown to have denser rotation
groups and their braiding operations can enable two-qubit
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entangling gates [15,16]. Furthermore, a two-dimensional
array of parafermions can support Fibonacci anyons with
universal braiding statistics [17]. Therefore it is of great
interest to find experimentally realizable systems which can
host parafermions. In a seminal paper [18], Clarke, Allicea,
and Shtengel proposed that parafermions can appear in the
fractional quantum Hall effect (FQHE) regime at filling fac-
tors ν = 1/m if two counterpropagating edge states from
two adjacent 2D electron gases with opposite g factors are
gapped by the proximity superconducting pairing and spin-
orbit induced tunneling.

Here we propose that a single layer of the 2D electron
gas in a magnetic field near the spin transition between the
filling factor ν = 2/3 spin-unpolarized and spin-polarized
states can be used to create a domain wall that will host
parafermions when coupled to an s-wave superconductor, and
use exact diagonalization of small systems in order to confirm
this result microscopically. We discuss feasible experimental
settings, analyze viable spin-flipping mechanisms capable of
gapping counterpropagating modes with opposite spin, and
discuss possible realizations of topological superconductivity
and parafermions in spin transitions besides ν = 2/3.

The FQHE spin transitions have been observed at the filling
factor ν = 2/3 and other fractions [19,20], e.g., when an in-
plane component of a tilted magnetic field is varied, resulting
in a change in electron spin system. Such spin transition can
be understood in terms of the composite fermion (CF) picture
[21]. The FQHE states at a filling factor ν = n

2n−1 for electrons
can be mapped onto the integer quantum Hall states at a filling
factor n for CFs. The energy of the nth CF level is

Ens = h̄ωc f
c

(
n + 1

2

) + sgμBB, (1)
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FIG. 1. (a) The schematic plot of the composite fermion energy
levels. When the magnetic field is increased, there is a level cross-
ing(black circle) of the �0↓ and �1↑ which leads to a spin transition
from spin-unpolarized state to spin-polarized state. (b) A schematic
plot of the edge states. The arrows represent the direction of their
velocities and colors represent spin up(red) spin down(blue).

where the CF cyclotron energy h̄ω
c f
c is proportional to

the characteristic electron-electron interaction energy scale
e2

lm
, lm = √

h̄c/eB⊥ is the magnetic length, and B⊥ is the out
of plane component of the magnetic field B. The second term
is the Zeeman energy, the index s = ±1 represents the up
and down spin states of the composite fermions. Since the
cyclotron and Zeeman energies have different magnetic field
dependencies, the levels �p,↓ and �p+1,↑ have to cross at
some B∗ > 0, as shown in Fig. 1(a). Therefore, at B < B∗,
electrons of 2/3 state occupy �0↑ and �0↓ levels and the
system is in the spin-unpolarized phase, while at B > B∗ they
occupy �0↑ and �1↑ states and it is in the spin-polarized
phase. Furthermore, it has been shown that electrostatic gates
control electron-electron interactions, so that in a triangular
quantum well the composite fermion cyclotron energy h̄ω

c f
c ∝

e2√
l2
m+z2

0

, where z0 is the extent of the electron wave function

in the direction of the spatial quantization. Therefore it is
possible to induce the spin-polarized and spin-unpolarized
fractional quantum Hall phases in a single quantum well un-
derneath different electrostatic gates. In this case, a controlled
domain wall that separates regions with different spin po-
larizations should emerge [22,23]. Experimentally transitions
can then be achieved by both tuning the effective Coulomb
interaction and/or by tuning the Zeeman coupling via the
in-plane component of the magnetic field [24].

The boundary between polarized and unpolarized regions
of the 2D electron liquid results in edge-like states, which
we will call edge states despite they are, strictly speaking,
different from the true edge states flowing at the boundary
of the quantum Hall samples. The reason for a difference
between these two kinds of edge states is obvious. For edges at
the sample boundary, the spin-unpolarized or spin-polarized
phase has to decrease its density (filling factor) from ν =
2/3 in the bulk to ν = 0 at the sample boundary. For the
boundary between two ν = 2/3 phases, the density stays
nearly constant, the change in density has to be less than that
corresponding to the width of the ν = 2/3 plateau.

The first goal of our paper is to demonstrate the existence
and investigate the nature of the edge states flowing through
the domain wall between polarized and unpolarized fractional

quantum Hall spin regions. The edge states of the quantum
Hall systems were widely studied over the years [25–34]. For
the filling factor ν = 2/3, edge states of the fractional quan-
tum Hall liquid at the sample boundaries have been studied in
both spin-polarized and various kinds of unpolarized phases
[35–39]. It has been predicted that both phases of ν = 2/3
electron liquid can be characterized by two counterporopagat-
ing edge modes at the sample boundaries.

A new setting emerges on the spatial boundary between
the two different topological orders, i.e., the domain wall
between the spin-polarized and unpolarized phases realized in
the neighboring regions of the 2D electron liquid. When the
2/3 polarized and unpolarized states are far apart, there are
four edge modes with two states moving in one direction and
two states moving in the opposite direction. When they are
brought closer together, one can anticipate that there are only
two edge modes left, see Fig. 1(b). This can be understood
intuitively in terms of the composite fermion picture. The edge
states associated with the common �0↑ level will merge and
disappear, and only the edge states associated with the �0↓
and �1↑ levels will remain. This picture implies that the
remaining edge states propagate in opposite directions and
carry opposite spins. We will present simple qualitative arigu-
ments to justify this picture, and demonstrate it rigorously
by using the effective field theory. We will also apply exact
diagonalization method in a disk and torus geometries.

It then follows that the domain wall excitations in the
proximity of an s-superconductor are possibly characterized
by a parafermion non-Abelian statistics. The domain wall
system is similar to the setting discussed in Ref. [18] with a
boundary of two fractional Hall liquids having opposite values
of the electron g factor at a filling factor ν = 1/3 in proximity
to an s-superconductor. We will see indeed that the proximity
coupling of the fractional quantum Hall ferromagnet domain
wall area to an s-wave superconductor induces parafermions.

In an experimental setting, one needs to control the onset
of topological supercondutivity and be able to induce and
move the boundaries between topological and nontopological
superconducting regions. Parafermions must be located at
the boundaries between these regions. Thus an ability to
change the boundaries between these regions allows to move
parafermions, which would be ultimately necessary for their
braiding. However, when crossing between the composite
fermion Landau levels takes place, proximity coupling to
the domain wall will always yield a topological proximity
superconductivity, in much the same way as it happens in
topological insulators [40,41]. Then no trivial proximity su-
perconductivity at any value of induced superconducting order
parameter is expected. In order to have both types of proximity
superconductivity and potentially a boundary between the two
regions with different superconducting order with the location
of distinct from that of superconducting contacts, one has to
induce a gap due to tunneling between the two counterprop-
agating edge states with opposite spin. When this tunneling
is tuned, an onset of topological superconductivity depends
on the competition of tunneling and proximity superconduct-
ing gaps. If an induced superconducting order parameter in
the domain wall changes its amplitude along the domain
wall, the possibility to move parafermions along the domain
emerges.
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We will study the effective theory of states in the domain
wall when two gapping mechanisms are introduced: super-
conducting pairing and spin-flip tunneling across the domain
wall caused by an in-plane component of a magnetic field,
and demonstrate an emergence of parafermions in this system.
We find that in a single quantum well the spin-orbit coupling
is negligible between fractional quantum Hall edge states
with opposite spins belonging to the first electron Landau
level. Our simulation shows that despite a small g factor in
a GaAs system, gapping of the edge states can be realized
by an in-plane component of the magnetic field. Spin tran-
sitions in GaAs have been also observed at a filling factor
8/3 [42], which potentially opens a possibility of emergence
of parafermions in high Landau levels fractional quantum
Hall systems at magnetic fields below 1 T. We also propose
that a good candidate for observing parafemions is CdMnTe
system with the effective Zeemann splitting of the order to
the cyclotron frequency, where the fractional quantum Hall
effect has been observed in Ref. [43]. Furthermore, in this
system, the fractional quantum Hall effect spin transition was
observed at ν = 5/3, and there have been also signatures of
the spin transition at ν = 4/3. In these cases, the fractional
quantum Hall edge states that potentially experience crossing
originate from different electron Landau levels, and in these
circumstances spin-orbit interactions result in a sizable anti-
crossing gap. Because spin-orbit coupling can be effectively
tuned by electrostatic gates, this setting would allow to tune
the parafermion zero modes and their braiding using only gate
voltage.

We would like to underscore that our results not only
provide a path to a new platform realizing universal topologic
al quantum computation, but also illustrate a general method
to study the edge states on the boundary of systems with
different topological orders. We also developed a scheme
for numerical modeling of fractional quantum Hall states in
proximity of an s-superconductor.

Our paper is organized as follows. In Sec. II, we analyze
edge states on the boundary between topologically distinct
2/3 spin polarized and unpolarized states. Section III is de-
voted to the numerical calculations of edge states on on the
disk, and Sec. IV presents the numerical calculations of edge
modes on the torus. In Sec. V, we discuss the emergence of
parafermion zero modes and Sec. VI describes the numerical
calculation of these modes. In Sec. VII, we will discuss a
possible parafermion setting based on ν = 4/3 and 5/3 spin
transitions and spin-orbit interactions of composite fermions.
We summarize our results in Sec. VIII. In Appendix, we eval-
uate spin-flipping interactions of the quasiparticles orignating
from the lowest Landau level.

II. ANALYTIC CONSIDERATION OF EDGE STATES ON
THE BOUNDARY BETWEEN ν = 2/3 SPIN-POLARIZED

AND SPIN-UNPOLARIZED FRACTIONAL
QUANTUM HALL STATES

In this section, we will use the effective theory in order
to analyze the structure of the edge states on the boundary
between 2/3 spin polarized and unpolarized phases analyt-
ically. We will quantitatively show that there remain only
two edge modes, which propagate in opposite directions and

FIG. 2. (a) A schematic plot of the composite fermion energy
levels in the bulk of the spin-polarized and spin-unpolarized re-
gions. Potential barriers for composite fermions of the �1↑ Landau
level and composite fermions of the �0↓ Landau level are shown.
(b) Possible edge modes on the boundary of spin-polarized and spin-
unpolarized regions. The two modes in the middle corresponding
to �0↑ can pair and form a gap. They are not considered in the
low-energy theory. (c) Illustration of the crossed effective magnetic
field B∗ and electric field E resulting in counterpropagating modes
of opposite spin and opposite velocities v in the shaded domain wall
area. The electric field E is opposite for up and down spin states, as
follows from potential barriers in Fig. 2(a).

carry opposite spins. An analytic theory is essential because
not only it sheds light on the numerical calculations in the
following sections, but is also necessary for the study of the
emergence of parafermions.

Before considering the quantitative theory, we first qual-
itatively explain why there are edge states on the boundary
between the two regions with topologically different orders.
The formation of the edge modes are always related to the
confinement potentials acting at the edges. Naively it seems
that there is no confinement potential around the internal
edge in our case. However, we actually have intrinsic spin-
dependent confinement potential. Indeed, from the analysis in
the introduction, we see that there is a level crossing between
the edge states with opposite spins. The composite fermions
in the �0↓ level in the spin-unpolarized phase can not tunnel
into region of the spin-polarized phase because �0↓ level has
a higher energy there, see Fig. 2(a). The same story also
applies for the composite fermions of the �1↑ Landau level
in the spin polarized phase. Therefore the composite fermions
of these two levels characterizing opposite spins are subject
to the effective spin-dependent potential confinements. A
spatial gradient of this spin-dependent potential constitutes a
spin-dependent electric field. Depending on the experimental
setting, the spin-dependent confinement and electric fields
are controlled either by varying z0 extent of the electron
wave function in the direction orthogonal to the 2D plane
by electrostatic gates or by a spatial variation of the Zeeman
coupling of the electron spin to an external magnetic field. The
spin-dependent electric field acts together with the effective
residual magnetic field, which is due to joint effect of the
external magnetic field and the Chern-Simons field. For ν =
2/3, the effective magnetic field is negative [38], but it is

075155-3



LIANG, SIMION, AND LYANDA-GELLER PHYSICAL REVIEW B 100, 075155 (2019)

the same in both the spin-polarized and unpolarized phases.
Assuming a simple model, in which the change of potentials
for each of the spins is linear in coordinate across the domain
wall, we find that composite fermions with spin polarization
up are subject to the crossed effective magnetic field and the
electric field of one sign. For the spin polarization down,
we again have crossed magnetic and electric fields, with an
effective magnetic field being the same as for the spin up, but
with the opposite electric field. Thus we have two counter-
propagating composite fermion edge states of opposite spins
due to these crossed effective magnetic and electric fields,
see Fig. 2(c). This situation is analogous to the case of edge
states at the domain wall between polarized and unpolarzed
2D regions in the case of the integer quantum Hall effect
[23]. If Hamiltonian of the system contains only the out of
plane magnetic field, the counterpropagating edge states ex-
perience no backscattering. An in-plane magnetic field results
in hybridization of these edge states with opposite spins. This
in-plane field, however, should be not strong enough to alter
the character of neighboring spin phases.

We now discuss the effective theory for the boundary of the
polarized and unpolarized regions. The Lagrangian density in
the effective theory for the bulk fractional quantum Hall state
can be written in the form [29,32]

L = − 1

4π
KII ′aIμ∂νaI ′λε

μνλ − e

2π
qI Aμ∂νaIλε

μνλ

+ sIωμ∂νaIλε
μνλ, (2)

where aIμ represents n Abelian Chern Simons (CS) gauge
fields, Aμ is the electromagnetic gauge field, ωμ describes
the curvature of the space, K is an n × n nonsingular integer
matrix describing the coupling between the CS gauge fields,
q is an n-component integer vector describing the coupling
between the CS gauge fields and the electromagnetic gauge
field, s is an n-component half-integer vector describing the
coupling between the CS gauge fields and the curvature. An
Abelian quantum Hall state can be classified by a set {K, q, s},
which determines the long distance properties of the state.
Therefore this set characterizes the topological order of the
Abelian quantum Hall fluid. For the ν = 2/3 case, it takes the
following values in the spin- polarized phase:

K1 =
(

1 2
2 1

)
, q1 =

(
1
1

)
, s1 =

(
1
2

− 1
2

)
. (3)

For the spin-unpolarized phase, this set is defined by

K2 =
(

1 2
2 1

)
, q2 =

(
1
1

)
, s2 =

(
1
2
1
2

)
. (4)

The form of the K matrix can be understood in terms of the
composite fermion picture [38]. For the ν = 2/3 state, there
are two components each occupying a single CF � level in an
effective antiparallel magnetic field. Thus the corresponding
contribution to the K matrix is Ki j = −δi j . Each component
should have two fluxes attached, so we add an integer 2 to
each element of the K matrix. From Eqs. (3) and (4), we
see that the only difference between the spin-polarized and
unpolarized phases is the spin vector s, as expected. In Eq. (2),
the second and the third terms are similar. If we regard q as

a vector describing the unit of the electric charge carried by
the two CF components, s can be regarded as describing the
“curvature charge” carried by the CF components.

We now consider the physics of the edge states. We note
that for the edge states in the domain wall, due to the absence
of a boundary with vacuum, simple arguments based on ν = 1
forward-mowing mode bordering vacuum and 1/3 backward-
flowing mode of holes can no longer be applied even for the
spin-polarized phase. Similarly, analogous composite fermion
picture with two edges, one separating 2 and 1 filled compos-
ite fermion �-levels and the other separating � levels 1 and
0, which upon antiparallel flux attachment are characterized
by electron filling factors 2/3, 1/3, and 0, also does not
work. The reason is, instead of vacuum at the boundary, we
have a phase of nearly the same density, within the interval
of densities on the ν = 2/3 plateau. Therefore the K-matrix
description of Wen [32] is the reliable way to approach the
solution of this problem.

When the fractional quantum Hall liquid is confined by the
boundaries of the sample, the action S = ∫

dxdydtL, where
L is given by Eq. (2), is not gauge invariant for the CS gauge
fields. To restore the gauge invariance, one has to introduce an
action that describes the edge physics:

Sedge = 1

4π

∫
dtdx[KIJ∂tφI∂xφJ − VIJ∂xφI∂xφJ ]. (5)

In Eq. (5), we assume that the edge is along the x axis,
φI is the field that describes the Ith component of the edge
branches, aIi = ∂iφI and ρI = 1

2π
∂xφI is the density of the Ith

branch. K is the same matrix as in the bulk phase, and one
can show that its positive eigenvalues correspond to the left-
moving branches, and its negative eigenvalues correspond to
the right-moving branches. V is a positive-definite matrix that
encodes the nonuniversal interactions between edge branches.
We now study the properties of the edge states between two
Abelian FQH phases. Assuming the edge is along y = 0 axis,
and using the same gauge argument as in Ref. [32], we find
that the {K, q, s} for the new state is

K = K1

⊕
−K2, q = q1

⊕
q2, s = s1

⊕
s2. (6)

A similar situation for bilayers was considered in Ref. [35],
however the spin vectors did not play any role there. Here we
include spin vectors into the picture. In Eq. (6), dim(K ) =
dim(K1) + dim(K2), and all edge branches are retained. After
considering the tunneling perturbation, we see that two of the
edge branches can be removed from the low-energy theory.
Following Ref. [35], we define the following quantities:

φ(m) = miφi, q(m) = miqi,

s(m) = misi, K (m) = miKi jmj, (7)

where m is an integer valued vector, and repeated indices
mean summation. We define further a set of local fields:

�m = e−iφ(m), (8)

which obey

�m(x)�m′ (x′) = (−1)q(m)q(m′ )�m′ (x′)�m(x) (9)
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for x 	= x′. From the properties of K matrix in the symmetric
representation, we have

(−1)K (m) = (−1)q(m) (10)

Thus, if K (m) is odd, the field �m is fermionic, and if
K (m) is even, it is bosonic. Now we consider the tunneling
perturbation:

T =
∫

dx[t (x)�m(x) + H.c.]. (11)

It should be bosonic and charge conserving, hence q(m) =
s(m) = 0 and K (m) even. The scaling dimension of �m is
(m) that satisfies the inequality

(m) � 1
2 |K (m)|. (12)

If the tunneling perturbation is relevant, the modes in �m

become massive and are removed from the low-energy theory.
From the scaling perspective, it is potentially relevant if the
scaling dimension (m) < 2. So, with the constraints given
above, we conclude that the condition for m that leads to a
potentially mass generating perturbation is

K (m) = q(m) = s(m) = 0. (13)

We see that although the space may be flat, the spin vector still
plays a role in the properties of edge states.

We now apply this analysis to the edge states at the
boundary of ν = 2/3 spin-polarized and unpolarized regions.
The set {K, q, s} of the effective theory for this state, where
two phases coexist, is

K =

⎛
⎜⎝

1 2 0 0
2 1 0 0
0 0 −1 −2
0 0 −2 −1

⎞
⎟⎠, q =

⎛
⎜⎝

1
1
1
1

⎞
⎟⎠, s =

⎛
⎜⎜⎜⎝

1
2
1
2
1
2

− 1
2

⎞
⎟⎟⎟⎠. (14)

In terms of CF theory, we can identify fields φi as φ1, φ2 cor-
responding to �0↑, �0↓ respectively, and φ3, φ4 correspond-
ing to �0↑, �1↑ respectively. From Eqs. (13) and (14), we
find out two independent solutions for m: m1 = (1, 0,−1, 0)
and m2 = (0, 1,−1, 0). The solution m2 represents tunneling
between �0↓ and �0↑, which is unlikely to happen since there
is an energy gap. Therefore only the operator �m1 is relevant
and potentially mass generating, and φ1, φ3 are removed from
the low-energy theory. Thus we have shown that in the K-
matrix description there are only two counterpropagating edge
states with opposite spins.

Quite remarkably on the level of K-matrix description,
in the low-energy sector of the domain wall, neutral modes
do not emerge, and spin-charge separation of the spin-
unpolarized phase does not appear. There are always questions
of possible edge reconstruction, the role of disorder, and in
this particular case, a problem of how the domain wall edges
couple to the true edges at the boundary of the sample, which
is even more complicated than behavior of edge states in
homogeneous phases in the corners of a sample. However,
our conclusion on the two counterpropagating states with
opposite spins in the domain wall, supported by the K-matrix
description as well as by a hand-waving crossed electric and
effective magnetic fields argument, rings true. We shall see

(a) (b)

(c)

FIG. 3. (a) Disk geometry for the simulation domain. (b) The
profile of the Zeeman splitting of electron states. (c) Spectra of eight
electrons on the disk with the profile of the Zeeman splitting shown
in Fig. 3(b). They are characterized by an total angular momentum Lz

and a total electron spin Sz. The ground state with Lz = 46 is circled
red. Edge excitations with the same Sz = 2 as in the ground state and
with Lz = 45 and 47, corresponding to the addition or subtraction of
a single flux, are circled black.

that this picture is also supported by the exact diagonalization
in disk and torus geometry.

III. NUMERICAL CALCULATIONS IN
THE DISK GEOMETRY

Here we will use exact diagonalization in the disk geome-
try in order to confirm the conclusions of the previous section
about the induced edge states on the boundary of the ν =
2/3 spin-polarized and spin-unpolarized regions. Some of the
results in this section have already been briefly discussed in
our paper Ref. [24]. For completeness of our analysis, we
include these here, with an improved numerical procedure and
extended discussion.

We simulate the system of eight electrons in a mag-
netic field using the disk geometry shown schematically in
Fig. 3(a). In this model we use a spatially dependent Zeeman
energy to control the spin polarization in z direction, see
Fig. 3(b). The central region of the disk with a radius R1 is
characterized by a large Zeeman term Emax

Z , while the outer
region with the outer diameter R2 is set to Emin

Z = 0. The
Zeeman term is varied smoothly within the region defined by
an interval of r given by R1 < r < R1 + R, resulting in a
smooth variation of the wave functions across the disk and
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avoiding spurious effects originating from an abrupt change
of the Zeeman splitting. When there are eight electrons on the
disk, the allowed single particle states have angular momen-
tum 0 � m � 11. Thus R2 = √

22lm = 4.8lm. We design the
central region in such a way that it contains half of the elec-
trons, corresponding to the condition R1 + R = √

11lm =
3.3lm. We set R1 = 2.9lm and R = 0.4lm. We anticipate that
the resulting spin density will reflect that electrons should be
spin-polarized in the central region and spin-unpolarized in
the outer region in the difference of spin densities in inner
and outer regions. Note that due to a strong penetration of
electron wave function from the outer R1 < r < R2 region
into the inner r < R1 region of the disk, the central region
will contribute significantly to average spin polarization of
all states. We shall see that this contribution of the central
region leads to a decrease in the difference of the average spin
splitting

∫
ψ (r)∗EZ (r)ψ (r)d2r for the modes on the two sides

of the domain wall to about <6%, similar to the experimental
conditions of Ref. [24].

The electron Hamiltonian is given by

Hd = 1

2m∗
∑

i

(
p + eA

c

)2

i

+ Ez(ri )σ
(i)
z + Ui

+
∑

i j

e2

ε|ri − r j | . (15)

The first term and the second term in Eq. (15) are kinetic
energy and Zeeman energy respectively. The third term is
the parabolic confinement U (r) = Cr2, confining electrons
to the disk, with C = 0.036e2/εl3

m, and the last term is the
Coulomb interaction between electrons. This Hamiltonian is
diagonalized using a configuration interaction method. The
states are classified by their projections of the total angular
momentum on the z axis, Lz, and the total spin of electrons, Sz.
We exactly diagonalize this Hamiltonian for eight electrons in
a spatially varying Zeeman energy that models the coexistence
of spin polarized and unpolarized states at a filling factor ν =
2/3. The exact diagonalization spectra are given in Fig. 3(c).
We have identified the ground state, which is spin-polarized in
the center and unpolarized in the outer region of the disk, as
well as the edge states flowing close to the boundary between
spin polarized and spin unpolarized regions. Their number and
spin density distributions are calculated. The results are shown
in Figs. 4(a)–4(f).

The ground state has a total angular momentum Lz = 46
and a total spin Sz = 2. The total spin indicates that six
electrons are in spin up state and two electrons are in spin
down state, as expected. In the CF picture, there are N
electrons with N/2 occupying �0↑ and N/4 occupying �1↑
in the center region and �0↓ in the outer region. The total
angular momentum of the ground state is

Lz = pN (N − 1) + LCF
z = N (N − 1)

−
[

N

4

(
N

2
− 1

)
+

(
N

4
− 3

)
N

8
+

(
3N

4
− 1

)
N

8

]

= N (N − 1) − N (N − 3)

4
= N (3N − 1)

4
. (16)

FIG. 4. (a) The ground-state electron density (red) and spin
density (blue) for eight electrons on the disk containing the domain
wall between polarized and unpolarized states at a filling factor
2/3 in a magnetic field. (b) The density profile (red) and spin
polarization (blue) for the edge state M = 45. (c) The density profile
(red) and spin polarization (blue) for the edge state M = 47. (d) The
differences of density (red) and spin (blue) between M = 45 edge
state and the ground state. (e) The differences of density (red) and
spin density (blue) between M = 47 edge state and the ground state.
(f) Spin density difference between edge state M = 45 and 47.

For N = 8, Lz = 46 indeed, coinciding with our numerical
result. The ground state is separated by a gap from the rest
of the spectra as shown Fig. 3(c), and does not carry the
electric current. From the spin profile in Fig. 4(a), the ground
state is indeed spin-polarized in the center of the disk and
spin-unpolarized in the outer region.

The lowest energy excitations that have spin polarization of
the ground state and correspond to a substraction or addition
of a single flux have Lz = 45 and 47, see Figs. 4(b) and
4(c). These are the modes that carry an electrical current.
When compared to the ground state, they have L = −1 and
L = 1, respectively. This indicates that these two edge states
have opposite components of linear velocities. The differences
in density and in the spin polarization density between the two
edge states and the ground state are shown in Figs. 4(d) and
4(e). We observe that the density differences are large only
around the internal edge, which confirms that these two edge
states correspond to the internal boundary between regions
with large and small Zeemann interactions, i.e., the domain
wall. In Fig. 4(f), we show the results for the difference
of spin densities of the two modes near the domain wall
between polarized and unpolarized region. Despite the finite
size effects in a small system, the exact diagonalization clearly
identifies that the two edge states in the domain wall area

075155-6



PARAFERMIONS, INDUCED EDGE STATES, AND DOMAIN … PHYSICAL REVIEW B 100, 075155 (2019)

have components of spin density with opposite orientation.
Our numerical study clearly shows that there are two counter-
propagating edge states in the domain wall with different spin
polarizations, which is consistent with our analysis in Sec. II.

IV. NUMERICAL CALCULATIONS ON THE TORUS

In this section, we will numerically study the system in a
torus geometry. The advantage of the torus geometry is that
it allows to avoid considering the edge between the fractional
quantum Hall liquid and a vacuum that is present in the disk
configuration. Hence physics of the induced edge between
spin polarized and unpolarized regions is elucidated.

The torus geometry is represented as a rectangular cell
with periodic boundary conditions. This geometry has been
considered in Ref. [44] for the 1/3 FQH state. We apply
the method of Ref. [44] to our case. We take the coordinate
system such that the boundary of the rectangular cell is
given by x = 0, x = a, y = 0, y = a, with the vector potential−→
A = (0, xB). We have 2π l2

B
N
a2 = ν, therefore a = √

24π lB =
8.68lB, and there are m = N

ν
= 12 single electron orbitals in

the cell. The wave functions of these orbitals are given by

φ j (
−→r ) =

(
1

aπ1/2lB

) 1
2 ∞∑

k=−∞
e

[
i

(Xj +ka)y

l2B
− (Xj +ka−x)2

2l2B

]
, (17)

where j labels the jth orbit, 1 � j � m, and Xj = j
m a is

the coordinate of the guiding center. The Hamiltonian of the
system can be written as

Ht = 1

2m∗
∑

i

(
p + eA

c

)2

i

+ Ez(ri )σ
(i)
z

+
∑

i j

V (ri − r j ). (18)

The first and the second terms are the kinetic and Zeeman
term, correspondingly. The third term is the Coulomb inter-
action of electrons in real space, and due to the boundary
conditions, it is given by

V (r) =
∑

s

∑
t

e2

ε|r + sax̂ + taŷ| , (19)

where x̂ and ŷ are unit vectors along x and y directions, s and
t are integers. The Coulomb matrix elements are determined
by

Vj1 j2 j3 j4 = 1

2

∫
d2r1d2r2φ

∗
j1 (r1)φ∗

j2 (r2)V (r1−r2)φ j3 (r3)φ j4 (r4)

= 1

2a2

2πe2

εq

′∑
q

∑
s

∑
t

δqx,
2πs

a
δqy,

2πt
a

δ′
j1− j4,t

× exp

[
− l2

Bq2

2
− 2π is

j1 − j3
m

]
δ′

j1+ j2, j3+ j4 . (20)

Here the symbols with prime are defined modulo m and the
summation over q excludes q = 0. From the above expression,
we observe that the total angular momentum is conserved only
modulo m. Therefore we are going to use the total angular

FIG. 5. (a) The torus geometry for a spatially varying Zeeman
energy. (b) The amplitude of Zeeman energy along the toroidal
direction. (c) Spectra of eight electrons on the torus without Zeeman
splitting. The ground state has threefold degeneracy. (d) Spectra of
eight electrons on the torus with a profile of Zeeman energy shown
in Fig. 5(b). Electrons are characterized by a total angular momentum
(mod 12) Lz and a total spin Sz of particles. Ground state is the
Lz = 0 and Sz = 2 state, circled red. Edge excitations with the same
Sz = 2 as in the ground state with Lz = 1, 11, which correspond to
the addition or subtraction of a single flux, are circled black.

momentum M(mod m) and the total spin S to classify the
quantum states.

We first exactly diagonalize the eight-electron Hamiltonian
in the lowest Landau level in the absence of the Zeeman
term. In this case, only the Coulomb terms play a role. The
spectra are shown in Fig. 5(c). We find that the ground-
state state has the degeneracy three, which is consistent
with Ref. [45], in which the degeneracy is shown to be
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FIG. 6. (a) The ground-state electron density (red) and spin den-
sity (blue) for eight electrons on a torus containing the domain wall
between spin-polarized and unpolarized states at a filling factor 2/3
in a magnetic field. (b) The density profile (red) and spin polarization
(blue) for the edge state M = 1. (c) The density profile (red) and spin
polarization (blue) for the edge state M = 11. (d) The differences
of density (red) and spin (blue) between M = 1 edge state and the
ground state. (e) The differences of density (red) and spin (blue)
between M = 11 edge state and the ground state. (f) Spin difference
between edge state M = 11 and M = 1.

given by |det(K )|. Equation (4) indeed gives the degeneracy
three.

Now we turn on the spatially dependent Zeeman term
defined by Figs. 5(a) and 5(b). We divide the torus into four
equal regions. One of these regions has large Zeeman energy
Emax

Z , while the opposite side of the torus is subject to zero
Zeeman energy. Zeeman energy varies smoothly in the regions
between these two from zero to Emax

Z . Exact diagonalization
leads to spectra shown in Fig. 5(d). We observe that there is
a single ground state with M = 0 and S = 2 circled red in
Fig. 5(d). The reason for the lifted degeneracy is a broken
symmetry of magnetic translations in the presence of the
spatially varying Zeeman term.

We find the density profile and the spin polarization of the
ground state, shown in Fig. 6(a). The density is fluctuating
slightly around ν = 2/3, as expected. The spin polarization is
almost unity within the region where EZ = Emax

Z (region A)
and has a dip in the region EZ = 0 (region B). This clearly
indicates that the electrons are spin-polarized in the region A
and spin-unpolarized in the region B. Therefore our numerical
calculation indeed simulate the state in which spin-polarized
and spin-unpolarized fractional quantum Hall phases coexist.

We now study the edge states. Comparison of Figs. 5(c)
and 5(d) shows several low-energy excitations. We are most
interested in the two states with the same total spin as the
total spin in the ground state. The two states correspond to to
single edge state quanta flowing in the positive and negative

poloidal directions. These states are circled black in Fig. 5(d).
Their total spin equals 2, and their angular momenta are
L = 1 and 11, respectively. Their density distributions and
spin polarizations, as well as the differences between these
densities and those in the ground state are calculated, see
Figs. 6(b)–6(e). In order to compare the spin polarizations
of the edge states, we also calculate the difference in spin
polarizations S11 − S1, plotted in Fig. 6(f). We see indeed
that a domain wall (spin transition) emerges between regions
A and B. Therefore our numerical study on the torus also
supports the conclusion that there are two counterpropagating
edge states with opposite spin polarizations in the domain wall
between spin-polarized and spin-unpolarized states.

V. EMERGENCE OF PARAFERMION MODES

From the qualitative arguments, analytic theory and numer-
ical calculations, we found that the edge states comprising
the domain wall have opposite components of velocity and
spin. Therefore, these states can potentially be coupled to an
s-wave superconductor, a pre-requisite for generating topo-
logical superconductivity. In the integer quantum Hall fer-
romagnets, proximity superconducting coupling has resulted
in topological superconductivity in the domain wall region
and in the Majorana zero modes at the boundaries between
topological and trivial superconducting regions [23]. In the
FQH regime, we anticipate the emergence of parafermions
due to the fractional charges and fractional statistics of states
comprizing the domain wall in much the same way as in
Ref. [18]. In this section, we will quantitatively show how
the parafermions emerge and can be controlled when coupled
to an s-wave superconductor in the presence of spin-flipping
interactions discussed in Appendix.

The physics of the edge modes is described by the action
Eq. (5) with K matrix given by Eq. (14). To simplify the ex-
pressions, we redefine the fields φ11 = φ1, φ12 = φ2, φ21 =
φ3, and φ22 = φ4. After quantizing these fields, we have the
following commutation relations [17,46]:

[φ1α (x), φ1β (x′)] = iπ
[
(K−1)αβsgn(x − x′) + iσ y

αβ

]
, (21)

[φ2α (x), φ2β (x′)] = iπ
[
(−K−1)αβsgn(x − x′) + iσ y

αβ

]
, (22)

[φ1α (x), φ2β (x′)] = iπ
[
(−K−1)αβ + iσ y

αβ

]
. (23)

From the analysis of Sec. II, the remaining edge modes are
generated by the fields φ2 and φ4. From Eqs. (21) to (23), we
find their commutation relations:

[φ2(x), φ2(x′)] = iπ

3
sgn(x − x′), (24)

[φ4(x), φ4(x′)] = − iπ

3
sgn(x − x′), (25)

[φ4(x), φ2(x′)] = iπ

3
. (26)

Therefore φ2 and φ4 satisfy exactly the same commutation
relations as φR and φL in Ref. [18]. We now discuss the
emergence of parafermions. We observe that the path that
lead to parafermions in Ref. [18] cannot work in the present
case. The reason is, the spin-orbit interactions for electrons
in the ground level are exceedingly small (see Appendix) and
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FIG. 7. (a) A schematic plot of experimental realization of
parafermion zero modes. (b) The spatial profile of the superconduct-
ing pairing and Zeeman-induced amplitudes (x) and T (x) induced
by proximity effects in Fig. 7(a).

cannot sufficiently gap the two counterpropagating modes. We
will analyze the possibility to generate transitions between
counterpropagating edges with opposite spin by applying the
in-plane magnetic field. It is important that the orbital part of
the wave functions of the two counterpropagating edge modes
are nearly the same, a small difference exists only because
these states are subject to opposite electric fields, due to the
gradient of Zeeman splitting of the opposite spin states in the
domain wall region. Thus it is sufficient to mix spins by an in-
plane magnetic field in order to generate transitions between
the edge states. This hybridization results in the tunneling gap.
At the same time, moderate in-plane magnetic fields keep the
spin states of neighboring quantum Hall liquids unchanged.
Coupling the domain wall area to a conventional s-type su-
perconductor, we introduce all ingredients for emergence of
parafermions, and can apply a general argument discussed in
Ref. [18].

We envision the following architecture of the parafermion
setting. For the proximity superconductivy, preliminary con-
siderations show that proximity coupling to the edge quan-
tum Hall states requires contacts with small Shottki barriers,
allowing to control propagation of the Cooper pairs and
electrons by the applied voltage. We assume that a proximity
superconductors contact the domain wall area from the sides,
as opposed to traditionally invisioned superconductor on the
top of the semicoducting wire, quantum dot or a quantum
well. Side configuration has additional advantage of grad-
ually changing induced superconducting coupling from the
contact to the region inside the domain wall area. When the
competition of superconducting and tunneling gap leading to
transition from trivial to topological proximity superconduc-
tivity depends on relative value of gaps, spatial dependence of
the superconducting coupling will allow to tune the boundary
between normal and topological superconductivity, where
parafermions are expected to reside, by tuning this relative
value. However, to simplify our consideration of emergence of
parafermions, we follow [18] and consider the architecture in
Fig. 7(a), assuming for simplicity that two trivial supercon-
ducting regions are separated by a region, which produces
a spin flip between edge states, i.e., the tunneling gap. The
spatial profile of the pairing potential and tunneling for this
simplified picture is given in Fig. 7(b). We redefine the fields

φ2/4 = ϕ ± θ . The Hamiltonian of the interface is given by
H = H0 + H1, where

H0 = mv

2π

∫
dx[(∂xϕ)2 + (∂xθ )2], (27)

m = 3, and

H1 ∼
∫

dx[−(x) cos(2mϕ) − T (x) cos(2mθ )]. (28)

Assuming that angles θ and ϕ obey ϕx<x1 = πn1
ϕ/m,

θx∈(x1+l,x2 ) = πnθ /m, ϕx>x2+l = πn2
ϕ/m, we have[

n2
ϕ, nθ

] = i
m

π
. (29)

At low energy, we can focus on the interval between x j and
x j + l governed by the effective Hamiltonian

Heff = mv

2π

2∑
i=1

∫ xi+l

xi

dx[(∂xϕ)2 + (∂xθ )2]. (30)

We identify the operators

a j → ei(π/m)(n j
ϕ+nθ ), s (31)

which commute with Heff and represent zero modes bound to
areas between superconducting regions and the region where
the gap between edge states is induced by tunneling. These
modes obey the following relations:

a2m
j = 1, a ja j′ = a j′a je

i(π/m)sgn( j′− j). (32)

Therefore they are parafermion operators producing the 2m-
fold ground-state degeneracy.

VI. NUMERICAL CALCULATIONS OF THE
PARAFERMION ZERO MODES

Having demonstrated that parafermions emerge in the sim-
ple model of the previous section, we now show numerically
that parafermions arise when an s-wave superconductivity
and tunneling are added to the quantum Hall states in a
microscopic model. In the numerical simulation here, the ap-
pearance of parafermion modes is indicated by an emergence
of a sixfold degenerate ground state.

The Hamiltonian of the system is given by

H = Ht + Hsc + Hbx − μN̂ + C(N̂ − N̂0)2. (33)

The first term Ht is given by Eq. (18). As illustrated in Secs.
II and IV, two domain walls form in the boundary regions
between the spin polarized and unpolarized quantum Hall
liquids. The boundary regions are the intermediate regions
between Emax

Z and 0 in Fig. 8(b), which occur in the intervals
[a/4, a/2] and [3a/4, a]. Each domain wall supports two coun-
terpropagating edge modes with opposite spin polarizations.
The second term Hsc is the superconducting pairing term

Hsc =
∫

dr((r)�†
↑(r)�†

↓(r)+∗(r)�↓(r)�↑(r)), (34)

where (r) is the Bogoliubov-De Gennes pairing potential.
This pairing potential generally has to be determined self-
consistently. Quite obviously, (r) depends on the chosen
gauge describing an application of magnetic field to the
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FIG. 8. (a) A schematic plot of the system. The superconducting
order couples predominantly only closest states comprising domain
wall. When induced on the top half of the torus, it results in dominant
coupling of domain wall counterpropagating states with opposite
spins and small coupling of all other states. An in-plane magnetic
field is is confined in the domain wall and assumed to affect the
bottom half of the torus. (b) (Top) the rectangular representation
of the torus. The green shaded region is subject to in-plane mag-
netic field and is located near one of the domain walls. (Bottom)
The profile of the Zeeman coupling caused by the component of
magnetic field in z direction, which is perpendicular to the plane of
the rectangular. Domain walls form in two regions [a/4, a/2] and
[3a/4, a].

system, like generally gauge-dependent �↓(r) and �↑(r) in
Eq. (34).

Whilst self-consistent evaluation of (r) is beyond the
scope of the present paper, in order to capture superconducting
correlations in our system we use the following physical
considerations. We take first (r) equals constant value 1 =
 on the top half of the torus, and constant value 2 = 0 on
the bottom half of the torus, see Fig. 8(a). If we express the
field operators �(r) in terms of the creation and annihilation
operators a†

j and a j that add or annihilate an electron in
states given by Eq. (17), the superconductong pairing becomes
Hsc = ∑

j,n  jna†
j↑a†

n↓ + H.c., with j, n = 1, 2, . . . , m. When
the total number of states m is an even number, we obtain for
j + n = m, 2m

 jn =
∑

k+q=−1

1

2
√

π

∫ a

0
dx exp

[
−

(
(Xj + ka − x)2

2

+ (Xn + qa − x)2

2

)]
, (35)

where Xj = a j
m . For j + n odd numbers, we obtain

 jn =
∑
k,q

i(−1)

2π
3
2 m(k + q + j+n

m )

∫ a

0
dx

× exp

[
−

(
(Xj + ka − x)2

2
+ (Xn + qa − x)2

2

)]
.

(36)

In these two equations we observe a Gaussian dependence
on the distance between guiding centers of Landau states
on the torus. The superconducting pairing goes down expo-
nentially for states being far from the domain wall. We will
now assume that a single matix element Eq. (36) with j = 4
and n = 3, which corresponds to coupling of closest domain

wall states defined by the wave functions (17), describes the
superconducting correlations in our system. All other matrix
elements are considered vanishing [47]. We note that such
treatment corresponds to experimental conditions, for which
superconducting pairing is envisioned only for the edge states
comprising the domain wall.

The third term Hbx in Eq. (33) is a spin-flipping tunneling
term. In this section, this is the in-plane Zeeman coupling
along the x axis [x and y directions on the torus are de-
fined in Fig. 8(b)]. In an in-plane magnetic field, Hbx =∑

i
1
2 gμB(ri)σ (i)

x . In our numerical calculations, B(r) = B if
x ∈ [0.35a, 0.45a] and y ∈ [0, 0.5a], where a is the length of
the torus in x and y directions. Otherwise B(r) = 0, as shown
in Fig. 8(b). In the second quantization representation, Hbx =∑

j,n B jna†
j↑an↓ + H.c., with j, n = 1, 2, . . . , m. For j = n,

we have

Bjn =
∑
k=q

gμB

4
√

π

∫ 0.45a

0.35a
dx exp

[
−

(
(Xj + ka − x)2

2

+ (Xn + qa − x)2

2

)]
. (37)

For the difference j − n being odd numbers, the Bjn is
given by

Bjn =
∑
k,q

i
gμB

2π
3
2 m(k − q + j−n

m )

∫ 0.45a

0.35a
dx

× exp

[
−

(
(Xj + ka − x)2

2
+ (Xn + qa − x)2

2

)]
.

(38)

The fourth term in Eq. (33) is the chemical potential, and the
fifth term is the charging energy similar to that introduced in
Ref. [48]. It represents the capacitor energy associated with
the change of the number of electrons. These two terms are
used to tune the electron number in the ground state of the
system to the desired number.

We now consider the Hilbert space of the numerical sim-
ulations. Here we take minimal possible number of four
electrons in the six orbitals defined in Eq. (17), so m = 6.
Two electrons (half of the total number) have the same spin,
representing spin-polarized phase, and other two electrons
represent the other half in spin-unpolarized state and have
opposite spins. Thus three electrons have spin up, and one
electron is in spin down state, so the total spin of electrons
S = 1. We use the pair (N, S) to represent the set of states
with total electron number N and total spin S. Without super-
conductivity and tunneling, the Hilbert space is (4, 1). The
superconducting term Hsc emerging from coupling of domain
wall counterpropagating states with opposite spins mixes the
states with different numbers N , and the spin-flipping term
HBX mixes the states with different total spins S. Therefore
our Hilbert space in numerical calculations is the following
set of pairs{(6, 2), (6, 1), (6, 0), (4, 2), (4, 1), (4, 0), (2, 1),
(2, 0)}.

If Hamiltonian contains only Ht , the lowest energies of
the N = 2, 4, 6 sectors are shown in Fig. 9(a). The N =
6 sector has a lower energy than N = 4 sector. However
choosing μ = 0, C = 0.2, we find that the lowest energy
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FIG. 9. (a) The lowest energies in N = 2, 4, 6 sectors of Ht .
(b) Including μ = 0, C = 0.2, the lowest energies has been shifted
so N = 4 sector has the lowest energy and it is in the (4,1) sector.

is in the N = 4 sector, see Fig. 9(b). The lowest energy
state is in the (4, 1) sector because of our special choice
of the profile of the Zeeman coupling in z direction [see
Fig. 8(b)], guaranteeing that (4, 1) states are more stable than
(4, 2) and (4, 0) states. There are other ways to choose μ

and C in order to make (4, 1) the lowest energy states. We
choose this special set because the half width of the BCS
wave function is of the order of

√
N [49] so N = 2, 4, 6

sectors all play important roles in the ground-state properties.
Therefore a change of μ and C will not affect the topological
properties of the system. Experimentally C should be a fixed
number for the system and we only need to tune the chemical
potential μ.

Now we include the Hsc and Hbx into the simulations. The
special choice of a localized Hbx allows us to focus only on
a single domain wall. The edge states on the other domain
wall will be gapped out due to the proximity superconducting
order. In our system, the emergence of the parafermion mode
means the appearance of a sixfold ground-state degeneracy.
Exactly diagonalizing Hamiltonian Eq. (33), we obtain the
spectra shown in Fig. 10. In Fig. 10(a), we fixed the value of
B and change the superconducting pairing . We find that the
system evolve from a single ground state to a threefold ground
state, and finally to a sixfold ground state. Based on general
consideration of Sec. V, we assume that this sixfold ground-
state degeneracy represents the emergence of parafermions.
The six states do not have exactly the same energy like in
Sec. V. The reason is, arguments of Sec. V apply, strictly
speaking, for 1D systems, while our simulation treats a 2D
system. Hence the degeneracy is lifted because of a possible
tunneling between the edge states and other bulk orbitals. We
observe that when the pairing potential is further increased,
the system evolves into a threefold degenerate state. The
reason for this effect can be the system entering a gapped
phase dominated by . In Fig. 10(b), we fix the value of
the order parameter  and change the in-plane field B. We
observe that the sixfold degenerate ground states appear at
experimentally feasible B of a few tesla that will not alter
the spin state of the fractional quantum Hall liquid. When
B is increased further, provided the spin states of neigboring
FQHE liquids are not altered, the system can enter a tunneling
dominated gapped regime with threefold degenerate ground
state. Thus by exact diagonalization we find that the system
can enter a phase which has sixfold degenerate ground state.
In our calculation with six particles, charging energy restric-
tion made the relevant values of  and B quite experimentally
feasible. The calculation, of course, must be extended to
systems with larger number of particles in order to confirm
this result.

FIG. 10. (a) The energy dependence on superconducting pairing
potential  with a fixed B = 1 T. Red rectangles indicate the range
of parameters for the sixfold degenerate ground-state subspace,
which is separated from the bulk by a gap. This is the evidence
for the appearance of parafermion modes. Green reactngle corre-
sponds to a region, in which degeneracy tends to threefold. (b) The
energy dependence on the in plane magnetic field with a fixed  =
0.05 meV. The sixfold ground-state degeneracy also appears and per-
sists for a broader parameter regime. The energy is measured in units
of e2

εlB
.

To analyze the properties of the system further, we plot the
phase diagram of the system in a wide range of  and B in
Fig. 11. We find that the phase A, which has sixfold ground-
state degeneracy (represented by red in Fig. 11), is separated
from other gapped phases by a gapless incompressible regime.
When we go from other gapped phases to phase A, the gaps
first close and then reopen. A quantum phase transition may
occur during this process. Combining numerical results with
the analytic consideration, we conclude that it is legitimate to
call the phase A the topological superconducting phase that
supports parafermions.
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FIG. 11. The phase diagram of our system. The red region rep-
resents states which has sixfold ground-state degeneracy. The green
region represents states which has threefold ground-state degeneracy.
Black region represents gapless states. We identify a gap, when the
maximum energy difference between candidate states should be at
least two times as large as the second maximum energy difference. In
this phase diagram, we observe that the sixfold ground-state degener-
acy regime are separated from other gapped states by gapless regions,
which means that a quantum phase transition may occur between
these regimes. We identify the phase represented by the red region as
the topological superconducting phase supporting parafermion zero
modes.

VII. PARAFERMION SETTINGS BASED
ON ν = 4/3 AND 5/3 SPIN TRANSITIONS

Spin transitions in the fractional quantum Hall effect can
also be observed at filling factors ν = 4/3 and 5/3. In experi-
ments on CdMnTe such a prominent transition at ν = 5/3 was
observed in [43]. CdMnTe experiment at ν = 4/3, although
less prominently, also suggests a possible spin transition.
These transitions can be easily understood both in terms of
electron Landau level and composite fermion Landau (�)
level pictures.

In terms of electron Landau levels, at low but quantizing
magnetic fields, the splitting between spin-resolved Landau
levels is dominated by a large positive contribution of s − d
exchange between electrons and Mn ions. The ground orbital
Landau level in CdMnTe in magnetic fields about 3 T is the
ground orbital Landau level with spin down (0,↓)e, and the
next partially filled electron Landau level (1/3 or 2/3 filled
for ν = 4/3 and 5/3, correspondingly) is the first excited
orbital Landau level with the same spin, (1,↓)e. While a pos-
itive exchange contribution to Zeemann splitting Eex becomes
saturated at low magnetic fields and is independent of the
magnetic field, the bulk negative g factor leads to decrease of
the Zeemann splitting h̄�Z with an increase of the magnetic
field. At the magnetic field such that h̄ωe − h̄ωZ − Eex = 0,
levels (0,↑)e and (1,↓)e would cross in the absence of spin-
orbit interactions. Instead, spin-orbit interaction leads to an
anticrossing of Landau levels and anticrossing of the corre-
sponding edge states [22,23,50]. Nevertheless, at magnetic
fields higher than the anticrossing field, the electron Landau
level that is predominantly (0,↑)e becomes partially filled.
Due to this transition the total electron spin polarization
decreases from 5/3 = 1 + 2/3 to 1/3 = 1 − 2/3 for ν = 5

3 ,
and from 4/3 = 1 + 1/3 to 2/3 = 1 − 1/3 for ν = 4/3, while
the spin polarization of electrons in the first excited electron
Landau level changes sign.

While this electron picture does not take into account
electron-electron interactions, it is important for understand-
ing these transitions, because it clearly shows that the transi-
tion involves anticrossing of levels and can be controlled via
spin-orbit interactions. However, in order to understand the
edge states of the system, we turn our attention to considera-
tion of the composite fermion picture.

The ν = 4/3 fractional quantum Hall state is a particle-
hole symmetric to the principal states, 4/3 = 2 − 2/(4 − 1)
and can be described by two filled composite fermion Lan-
dau levels. In quantizing but sufficiently low magnetic fields
in CdMnTe, these two filled CF hole levels are (0,↓)c f

and (1,↓)c f , representing a spin-polarized CF phase. At
sufficiently high magnetic fields, the two filled levels are
(0,↓)c f and (0,↑)c f , and composite fermions become spin-
unpolarized. At the true boundary of the sample, the edge
starts with bulk density 4/3, raises to density 2, decreases to
density 1 and then goes to 0 [26]. The edge corresponding
to the filled ground level ν = 1 goes around the sample,
and can be removed from low-energy theory from the inter-
nal boundary between two differently spin-polarized regions.
At this boundary, for one of the phases we have two hole
composite fermion edges responding to (0,↓)c f and (1,↓)c f

Lambda levels closer to the bulk of the corresponding region,
followed by the outer edge corresponding to the electron
Landau level (1,↓)e. For the other phase region, the internal
CF hole edges correspond to (0,↓)c f and (0,↑)c f � lev-
els, and the outer edge corresponding to electron Landau
level (0,↑)e. The question now arises whether any of the
edges can be removed from low-energy picture. Generally
1/3 charge quasiparticles cannot tunnel through the region
of charge 1 quasiparticles, and that is a correct statement
for the true edge of the sample. However, the closest edge
states in the domain wall originating from the Landau levels
(1,↓)e and (0,↑)e become hybridized and form a helical
domain wall, which conducts in the presence of impurities
or smooth random potential and constitutes a compressible
region [23]. Hence there is no longer a prohibition for 1/3
charge channel to tunnel and couple to another 1/3 charge
through this compressible channel. Then, by using the argu-
ment similar to that in Sec. II, we can remove edge states
corresponding to (0,↓)c f in both phases from the low-energy
sector. The remaining (0,↑)c f and (1,↓)c f states constitute
two counterpropagating hole charge 1/3 states with opposite
spin. Interestingly enough, they coexist with a helical domain
wall made of hybridized (1,↓)e and (0,↑)e electron channels.
However, the superconducting coupling and spin-flipping in-
teraction can still produce gaps for1/3 charge counterprop-
agating states with opposite spins, leading to parafermions.
At the same time, a helical domain wall made of hy-
bridized (1,↓)e and (0,↑)e channels will result in Majrorana
modes [23].

The ν = 5/3 fractional quantum Hall state and spin tran-
sition is desribed similarly, see Fig. 12. 5/3 = 2 − 1/(2 + 1)
and can be described by one filled composite fermion hole
Landau level. In weaker magnetic fields, this is the (0,↓)c f

level, and in higher magetic fields, this is the (0,↑)c f hole
level. However, analysis shows that at the domain wall bound-
ary between two phases with different spin polarization, these
two CF edge states are again separated by a helical domain
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FIG. 12. The domain wall and edge states at ν = 5/3. Electrons
occupy (0, ↓)e and (0,↑)e Landau levels in a phase with total spin
density 5/3 and (0,↓)e and (1,↓)e Landau levels in a phase with
total spin density 1/3. The outermost black edge channel around
both regions is integer (0, ↓)e edge. Closest edges in the domain
wall area are edges corresponding to integer levels (0,↑)e(blue) and
(1, ↓)e (red). The innermost levels are composite fermion hole �

levels (0,↓)c f (red) and (1,↑)c f (blue)

wall made of hybridized (1,↓)e and (0,↑)e electron channels.
Similarly to ν = 4

3 domain wall, ν = 5
3 domain wall suggests

coexistense of parafermions and Majorana fermions. The
structure of the domain wall in this case exhibits coexisting
(1,↓)e and (0,↑)e edges and (0,↓)c f (1,↑)c f edges.

An interesting question emerges whether the spin-flip gap-
ping mechanism for the (0,↑)c f and (1,↓)c f counterpropa-
gating CF hole states, can be stronger due to spin-orbit inter-
actions, in contrast to similar CF states discussed in Sec. II.
For ν = 2/3 states, composite fermion states are produced
by default from electron states of the ground Landau level.
If our starting point is these ground Landau level states, and
we consider spin-orbit interactions as a perturbation, then
all intra-Landau level spin-orbit matrix elements vanish, and
spin-orbit coupling does not have any effect in the bulk.
In the Appendix, we demonstrate that for the domain wall
that defines a mid-plateau peak in the resistivity, the edge
states of (0,↑)c f and (1,↓)c f composite fermions levels are
characterized by an extremely small spin-orbit gap.

The ν = 4/3 states in CdMnTe originate from full (0,↓)e

Landau level and (0,↑)e Landau level in the phase with 2/3
total spin polarization, and from full (0,↓)e Landau level and
from (1,↓)e Landau level in the phase with 4/3 total spin
polarization. In the latter case, if we include (1,↓)e level
into a starting point for composite fermions, we clearly go
beyond lowest Landau level approach to composite fermions.
However, large exchange splitting that is nearly independent
of magnetic feild in CdMnTe makes the (1,↓)e Landau level

much lower in energy than (0,↑)e state in a wide range of
magnetic fields. Lowest Landau level restriction is justified,
of course, in the limit of very large magnetic fields. However,
spin transitions, crossing and anticrossing of levels take place
at much smaller fields, and their consideration with inclusion
of higher electron Landau levels is justified. Once the (1,↓)e

level is included in the Hilbert space for evaluating interac-
tions, the spin-orbit effects become important.

To illustrate the importance of spin-orbit effects, it is also
worth emphasising that when spin-orbit effects are sizable,
it is of interest to consider the problem explicitly taking
into account spin-orbit interactions right from the start of
investigating the quantum Hall system. CdMnTe quantum
wells are affected by the spin-orbit interactions of Rashba type
[51], which can be described by the spin-dependent vector
potential [52–54], which acts together with electromagnetic
vector potential defined by the magnetic field. In a perpendic-
ular magnetic field H = (0, 0, H ) the electron Hamiltonian is
given by

H = 1

2m∗

(
p − e

c
A + Aso

)2

+ 1

2
(gμH + Eex)σz, (39)

where A is the magnetic vector potential, the spin-dependent
vector potential Aso = αm(σy,−σx, 0), m∗, and g is the
effective electron mass and g factor, correspondingly, and
Eex is the contribution of Mn ions in the spin splitting of
electron levels taken in the mean-field approximation. We
assume the Rashba constant to be spatially independent and
include constant energy term α2m into electron Hamiltonian.
The energy eigenvalues for this problem are given by

E0 = 1
2 (h̄ωc + gμH + Eex) + α2m, (40)

En,± = h̄ωcn + α2m

±
√

1
4 (gμH + Eex + h̄ωc)2 + (h̄α/�m)2n. (41)

The eigenfunctions have the following form:

ψ0 =
(

u0

0

)
; ψn,± =

(
an,±un

bn,±un−1,

)
, (42)

where spinor coefficients an,± and bn,± are nonzero,and
|an,±|2 + |bn,±|2 = 1

For electrons in CdMnTe at small magnetic fields, due to
large Eex, the ground-state energy is E1,−, and the first excited
level has energy E2,−. The electron spectrum is characterized
both by crossings, e.g., of E0 and E1,− levels, and by anticross-
ings, e.g., of E2,− and E0 levels. Is is noteworthy that spin in
the ground level at small fields deviates from z direction due
to spin-orbit interactions, hence it is certainly important for
composite particles in this regime.

We now include spin-orbit interactions in the Chern-
Simons procedure. The mean-field Hamiltonian of the system
reads

H= 1

2m∗

(
p − e

c
A∗ + Aso

)2

+ 1

2
(gμH + Eex)σz + V, (43)

where A∗ is the effective vector potential that takes into
account both external magnetic and average Chern-Simons
magnetic field, and V are electron-electron interactions. The
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naive solution for energies of composite fermion levels
becomes

E0 = 1
2 (h̄ω∗

c + gμH + Eex) + α2m, (44)

En,± = h̄ω∗
c n + α2m

±
√

1
4 (gμH + Eex + h̄ω∗

c )2 + (h̄α/�∗
m)2n, (45)

Thus, in the naive solution, in addition to the effective mag-
netic field defining the cyclotron frequency, the spin-orbit
term is also expressed in terms of magnetic length character-
izing the effective rather than the external magnetic field. It
is, of course clear, that this spectrum has to be renormalized
by interactions. Nevertheless, it is apparent that it can be char-
acterized by both crossings and anticrossings. Edge channels
originating from CF levels that experience anticrossing can be
strongly gapped by spin-orbit interactions.

VIII. SUMMARY

In this paper, we have considered first the domain wall
between spin-polarized and spin-unpolarized regions of the
2D electron liquid in ν = 2/3 fractional quantum Hall state.
Analytic considerations show that the domain wall between
the spin-polarized and spin-unpolarized regions of the 2D
electron liquid hosts two edge states that are counterprop-
agating and have opposite spin polarization. This picture is
confirmed using numerical calculations in a disk and torus
geometries. We proved both analytically and numerically that
the edge states can support parafermions when the domain
wall area is proximity-coupled to an s-wave superconductor.
Hilbert space for exact diagonalization study significantly
increases due to account of superconducting correlations. We
have discussed control of parafermion zero modes due to
hybridization of edge states by spin-flipping interactions. In
GaAs for ν = 2/3 spin transitions, a tilted magnetic field
with an in-plane component controlling spins can be used
for gapping edge channels, while spin-orbit interactions are
negligible. In ν = 4/3 and 5/3 spin transitions in fractional
quantum Hall effect in CdMnTe, parafermions modes also
emerge and can be controlled by electrostatic gates due to
sizable spin-orbit anticrossing gap. We discuss near absence
of spin-orbit coupling for composite fermions at ν = 2/3
for all principal composite fermion states, and emergence of
spin-orbit interactions in systems like CdMnTe in the presence
of exchange splitting of electron states. In these systems,
spin-orbit interactions arise for states that are particle-hole
symmetric to the principal states in the presence of spin, such
as ν = 4/3 and 5/3.

Experimental observation of spin phase transitions in frac-
tional quantum Hall effect is not limited to the lowest orbital
Landau level spin states even in nonmagnetic semiconductors
[42]: s state with filling factor 8/3 has been shown experi-
mentally to support a spin transition in GaAs. This obser-
vation further validates inclusion of the first excited Landau
level spin spin states into composite fermion picture, as we
discussed for filling factor 4/3 and 5/3 states. In terms of
composite fermion model of spin transitions based on crossing
of CF Landau levels, filling factor 8/3 state is similar to 2/3
in the ground Landau level. This supports the idea of possible

parafermionic states in the setting of first excited electron
Landau level and potentially opens experimental opportunities
to use lower range of magnetic fields, improving conditions
for generating superconducting order in induced domain walls
between different spin phases.
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APPENDIX: SPIN-FLIPPING INTERACTIONS IN THE
LOWEST LANDAU LEVEL

Tunneling between two counterpropagating fractional
quantum Hall edge states with opposite spin polarization
requires spin-flip interactions. One candidate is spin-orbit
interaction suggested for setting considered in Ref. [18], and
the other is spin-flip due to an in-plane component of a
tilted magnetic field. We now analyze the viability of these
interactions for generating tunneling gap.

The crossing in quasiparticle spectra in our system occurs
between composite fermion levels. In consideration at the
level of composite fermions, the “orbital quantization” energy,
or cyclotron frequency is entirely determined by the intra
lowest Landau level electron-electron processes. Landau level
mixing can not change the picture as long as one always
considers electrons of the ground electron level as giving
rise to composite fermion quasiparticles. For this reason, the
dispersion of composite fermions is defined by the Coulomb
energy, and the effective band mass of electron plays no role.
Composite fermions couple to the effective magnetic field,
defined by a compensation of the external magnetic field
and the Chern-Simons field. In contrast, Zeeman coupling of
composite fermions is described by the value of the electron g
factor and an external magnetic field.

Considering composite fermions microscopically, one gen-
erally has to start from spin up and down electrons of the
ground Landau level and include electron-electron interac-
tions. Spin-orbit interactions, such as the Rashba or Dressel-
haus spin-orbit coupling can be included perturbatively. It is
clear, however, that for the “bulk” 2D electrons, the matrix
elements of the spin-orbit coupling between up and dow states
with the same orbital wave function simply vanish. That is not
the case for transitions between “edge” modes. Indeed, our
setting includes either two electrostatic gates with differing
voltages, leading to different electron densities underneath
them and ultimately to composite fermion level structure
shown in Fig. 2(a), or can be described by the varying elec-
tron Zeeman coupling leading to the same picture. In both
cases, electrons in the domain wall that eventually become
composite fermion edge states are subject to a spin-dependent
potential and the corresponding electric field that is opposite
for the two electron spin directions.
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Then the lowest Landau level wave functions for two spin
directions in the Landau gauge with magnetic field H ‖ z
vector potential A = (0, Hx, 0) and spin-dependent electric
fields in x direction with magnitude E are given by

�↑ = exp ikyy
exp

[ − 1
2

( x−x↑
lm

)2]
√

lm
, (A1)

�↓ = exp ikyy
exp

[ − 1
2

( x−x↓
lm

)2]
√

lm
, (A2)

where

x↑ = −l2
mky − eEl2

m

h̄ωc
, (A3)

x↓ = −l2
mky + eEl2

m

h̄ωc
, (A4)

ωc is the electron cyclotron frequency and ky is the electron
wave vector along the domain wall. � ′s are the wave functions
in the corresponding crossed electric and magnetic fields.
These two wave functions are not orthogonal due to different
x↑ and x↓. The matrix element of the, e.g., Rashba spin-
orbit interaction described by the Hamiltonian HR = α(σxky −
σykx ), with kx = −i ∂

∂x , is given by

〈�↑|HR|�↓〉 = α
eE

h̄ωc
exp

[
−

(
eElm
h̄ωc

)2
]
. (A5)

At electric field E = 0, the spin-orbit matrix element van-
ishes, as it should be in the bulk 2D electrons case. Equation
(A5) is a perturbative result obtained using the lowest Lan-
dau orbital wave functions, but it contains h̄ωc in the de-
nominator as if it is related to an admixture of a higher
Landau level. This is not accidental. Indeed using considera-
tion of Rashba interaction in the previous section, the result
(A5) can then be obtained in the leading order by calcu-
lating the matrix element of the interaction describing the

spin-dependent electric field, HE = eExσz between two exact
bulk spin-orbit states.

We now consider the magnitude of the spin-orbit gap
for edge modes, which is governed by the magnitude of
the electric field E . The experimentally possible narrowest
domain wall (in the x direction) is approximately 50 nm, and
so that the magnitude of the gap is defined by the difference
of energies of the like spins underneath the two electrostatic
gates, Fig. 2(a). This value of this energy difference, however,
is strongly restricted by the requirement that the fractional
quantum Hall system underneath both gates is within the
ν = 2/3 quantum Hall plateau. Such restriction means that
the difference of energies on the left and right of the domain
wall is limited by the Zeeman energy that corresponds to the
length of the interval of magnetic fields corresponding to the
plateau, i.e., the plateau width. In experiments [24], where
the domain wall in the fractional quantum Hall effect was
observed and electrostatically controlled, the measured width
of the plateau is δB = 0.35T . In this case the magnitude of
the spin-orbit matrix element in GaAs system is negligibly
small ∼1–2 μeV.

Therefore for the domain wall setting, experimentally fea-
sible in-plane Zeeman field of order of 1 T, that leads to a
tunneling gap sufficient for the emergence of parafermions in
our modeling, becomes a preferential mechanism for gener-
ating a hybridization of edge states with opposite spin and a
corresponding tunneling gap.

The situation changes, however, for a settings based on
spin transitions at ν = 4/3 and 5/3 in a system like CdMnTe
[43] discussed in Sec. VII. In both of these cases, edge states
near a tentative spectral crossing belong to different electron
Landau levels, and spin-orbit interactions result in anticross-
ing with an anticrossing gap in CdMnTe of the order to
50 μeV [23]. This spin-orbit gap can be effectively controlled
by the electrostatic gate, which then can control emerging
parafermions similarly to control of Majorana zero modes
in Ref. [23]. This allows then to use in-plane magnetic field
as an independent knob, opening additional opportunities for
performing braiding operations [55,56].
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