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Density-matrix renormalization group study of the linear conductance in quantum
wires coupled to interacting leads or phonons
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In a previous paper [Bischoff and Jeckelmann, Phys. Rev. B 96, 195111 (2017)] we introduced a density-
matrix renormalization group method for calculating the linear conductance of one-dimensional correlated
quantum systems and demonstrated it on homogeneous spinless fermion chains with impurities. Here we present
extensions of this method to inhomogeneous systems, models with phonons, and the spin conductance of
electronic models. The method is applied to a spinless fermion wire-lead model, the homogeneous spinless
Holstein model, and the Hubbard model. Its capabilities are demonstrated by comparison with the predictions of
Luttinger liquid theory combined with Bethe ansatz solutions and other numerical methods. We find a complex
behavior for quantum wires coupled to interacting leads when the sign of the interaction (repulsive/attractive)
differs in the wire and leads. The renormalization of the conductance given by the Luttinger parameter in purely
fermionic systems is shown to remain valid in the Luttinger liquid phase of the Holstein model with phononic
degrees of freedom.
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I. INTRODUCTION

Confining electrons to one dimension results in various
surprising properties because of the fermionic nature of the
particles [1–3]. In practice, one-dimensional electron sys-
tems can be realized in semiconductor wires [4], atomic
wires deposited on a substrate [5,6], carbon nanotubes [7],
or atomic and molecular wire junctions [8–11]. In contrast
to the behavior of a three-dimensional metal, which is well
described by the Fermi liquid paradigm, theory predicts that
one-dimensional conductors should exhibit the behavior of a
Luttinger liquid [2]. In particular, the transport properties have
been studied and controversially discussed for more than three
decades [2,3].

In a previous paper [12] we introduced a density-matrix
renormalization group method (DMRG) for calculating the
linear conductance of one-dimensional correlated quantum
systems with short-range interactions at zero temperature
based on the Kubo formalism [13,14]. By taking advan-
tage of the area law for the entanglement entropy [15] the
DMRG method provides us with the most efficient method
for calculating the properties of these systems [16–19]. Our
method combines DMRG with a finite-size scaling of dynam-
ical correlation functions to compute the conductance in the
thermodynamic limit. The method was demonstrated on the
homogeneous spinless fermion chains with impurities [12],
for which well-established results were available [2,20–22].

In this paper we develop the method further to treat a
variety of more complex models. We present extensions to
wire-lead systems with different interactions in the wire and
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leads, to electron-phonon models, and to spinful fermions
(electrons). These extensions are necessary steps toward fu-
ture studies of more realistic models that are able to de-
scribe quantitatively the experimental realizations of one-
dimensional electronic conductors [4–11]. Here, we apply
our method to a spinless fermion wire-lead model, the ho-
mogeneous spinless Holstein model, and the Hubbard model
to demonstrate its current capabilities and limitations using
the predictions of Luttinger liquid theory combined with
Bethe ansatz solutions and numerical results found in the
literature.

The method is summarized in the next section. The ex-
tension and results for inhomogeneous systems such as the
spinless fermion wire-lead system are presented in Sec. III.
The extension to systems with phonon degrees of freedom
and the results for the spinless Holstein model are shown
in Sec. IV. Section V describes the generalization to spinful
fermion (electron) models and to the calculation of the spin
conductance as well as our results for the spin conductance of
the Hubbard model. Finally, Sec. VI contains our conclusion
and outlook.

II. METHOD

In this section we summarize our DMRG method for
calculating the conductance of one-dimensional correlated
quantum systems. It is based on the approach developed by
Bohr et al. [14]. Full details can be found in our previous
paper [12]. We consider a one-dimensional lattice of M sites.
It consists of left and right segments (called leads) with
approximately (M − MW )/2 sites each and a central segment
(called the wire) of MW sites. A current can be generated
by applying a potential bias. We assume that the potential
remains constant in the leads and drops linearly in the wire;
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FIG. 1. Schematic of the wire-lead layout for calculating the
conductance. The chain of M sites is made of left and right leads
and a central wire of MW sites. These three different sections are
defined by the profile C( j) of the external perturbation (e.g., applied
bias voltage). Additionally, the wire and leads may include different
sites, degrees of freedom, or interactions represented by the solid and
empty circles, respectively.

i.e., it has the shape

C( j) =

⎧⎪⎪⎨
⎪⎪⎩

1
2 , for j � j1,

− j− j1
j2− j1

+ 1
2 , for j1 � j � j2,

− 1
2 , for j � j2,

(1)

where j1 and j2 are the first and last site in the wire, respec-
tively. This is illustrated in Fig. 1.

The resulting linear conductance can be calculated directly
from dynamical current-current correlation functions in the
thermodynamic limit using Kubo’s linear response theory
[13]. The dynamical DMRG method [23,24] can be used
to compute the imaginary part of the frequency-resolved
current-current correlation functions for a finite lattice
size M,

GJ,η(ω) = 〈0|J η

(E0 − H + h̄ω)2 + η2
J|0〉, (2)

where H is the Hamilton operator, |0〉 is its ground state, E0 is
the ground-state energy, J is the current operator in the wire,
and η > 0 is a small number. The Hamilton operator and the
current operator depend on the system studied and thus will
be given explicitly in the next sections where we present our
results for specific models. We note that the conductance can
also be calculated from static correlation functions with the
time-independent DMRG method [25].

For the DMRG calculations presented here we used up to
400 density matrix eigenstates. The discarded weights were
smaller than 10−6 and thus we estimate that the DMRG
truncation errors are negligible compared to finite-size effects.
We observed some DMRG convergence problems for the
phononic systems only; see Sec. IV.

It is important to realize that the wire segment (and conse-
quently both lead segments) is defined by the potential profile
(1) and thus, in practice, by the lattice region, where the cur-
rent operator J acts. It is possible but not necessary to include
any information about the wire-lead layout in the Hamilton
operator H , such as different interactions or different degrees

of freedom for the wire and leads. In fact, in our first work
we tested our method with homogeneous systems only; i.e.,
the degrees of freedom and interactions were identical for all
sites, but for the presence of up to two impurities (on-site
potentials) in the middle of the wire.

From the DMRG data for (2) we can calculate the “finite-
size conductance”

G(M ) = q2

ω
[GJ,η(M )(ω) − GJ,η(M )(−ω)]|ω=0 (3)

for a given system size M using the scaling η(M ) = C/M,
where q is the charge carried by each fermion. The constant C
depends on the properties of the system investigated. For all
results presented here we used C = 48t or 96t . Extrapolating
G(M ) to infinite system length M yields our estimation of the
conductance G in the thermodynamic limit. Here, we used
chain lengths up to M = 2000.

For a noninteracting tight-binding chain it can be shown
analytically that G(M ) converges to the exact result for M →
∞, i.e., the quantum of conductance

G0 = n
q2

h
, (4)

where n = 1 for spinless fermions and n = 2 for electrons.
For correlated systems we can only compute (2) and (3)
numerically. In practice, there are two main practical issues.
First, DMRG must be able to calculate G(M ) with enough
accuracy for large system sizes M. Second, G(M ) should
converge neatly to the actual value of the conductance for
M � 1. In our previous work we showed that this method
yields correct results for the renormalized conductance of the
one-component Luttinger liquid in the homogeneous spinless
fermion chain as well as for one and two impurities added to
the chain. In the next sections we will show that this approach
can also be applied to inhomogeneous systems, electronic
Hamiltonians, and models with phonons.

In all our numerical results and figures we use q = 1 and
h̄ = 1. This yields G0 = n

2π
. Therefore, we show 2πG(M ) in

our figures.

III. INHOMOGENEOUS WIRE-LEAD SYSTEM

As mentioned above our method was demonstrated in
Ref. [12] for homogeneous systems only. In real systems,
however, the wire and leads are of different nature. For
instance, it is often assumed that metallic leads are Fermi
liquids and thus they are modeled by noninteracting tight-
binding chains attached to the interacting wire [14,26–34].
Additionally, one can introduce a weaker link (hopping term)
between leads and wires [14,28,29]. (We will not study this
possibility here because it would require a smaller η and
possibly a different scaling of η with M). More generally, one
may have to consider different interactions in the leads and
in the wire as well as additional degrees of freedom (such as
phonons) in the wires.

Therefore, we have generalized our method to this situation
and tested it on a spinless fermion model with different
nearest-neighbor interactions in the wire (VW ) and in the leads
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(VL). Explicitly, this corresponds to the Hamiltonian

H = − t
M∑

j=2

(c†
j c j−1 + c†

j−1c j )

+ VW

j2∑
j= j1+1

(
n j − 1

2

)(
n j−1 − 1

2

)

+ VL

j1∑
j=2

(
n j − 1

2

)(
n j−1 − 1

2

)

+ VL

M∑
j= j2+1

(
n j − 1

2

)(
n j−1 − 1

2

)
. (5)

The operator c†
j (c j ) creates (annihilates) a spinless fermion at

position j (= 1, . . . , M) while n j = c†
j c j counts the number

of spinless fermions on this site. The hopping amplitude is
identical for the wire and leads and sets the energy unit t = 1.
We assume that the system has an even number of sites M and
is occupied by M/2 spinless fermions (half filling).

From the potential profile (1) follows that the current
operator is given by

J = 1

MW − 1

it

h̄

j2∑
j= j1+1

(c†
j c j−1 − c†

j−1c j ). (6)

In principle, the wire edge sites j1 and j2 in the definition
of the Hamiltonian (5) could be different from those used for
the potential profile (and thus the current operator). Here we
assume that the screening of the potential difference between
source and drain occurs entirely (and linearly) in the wire and
thus we use the same values for j1 and j2 in both the Hamilton
operator (5) and the current operator (6).

Field-theoretical approaches predict that the conductance
of a homogeneous Luttinger liquid is renormalized as

G = KG0, (7)

where K is the Luttinger parameter [20–22]. We could repro-
duce this result in our previous work for the homogeneous
spinless fermion model, i.e., for VW = VL in (5). On the con-
trary, field-theoretical approaches predict that the conductance
through a Luttinger liquid wire connected to leads is not renor-
malized by interactions in the wire and is entirely determined
by the lead properties [35–39]. In particular, if the leads are
Luttinger liquids their Luttinger parameter KL determines the
conductance through (7) [36,38]. However, field-theoretical
approaches assume perfect contacts, i.e., without any single-
particle backscattering [38]. Numerical calculations for lattice
models of quantum wires connected to noninteracting leads
show that the conductance deviates from the lead conductance
G0 when backscattering is taken into account. In the lattice
model (5) single-particle backscattering is due to the sharp
change of the on-site potential at the boundaries between
the wire and leads [−VW in the wire, −VL in the leads, and
−(VW + VL )/2 on the boundary sites j1 and j2], which is
required to maintain a constant density in equilibrium.

We have found that the calculation of the frequency-
resolved correlation function (2) with dynamical DMRG is
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FIG. 2. Scaling of the finite-system conductance G(M ) with the
inverse system length 1/M for spinless fermions in a short interacting
wire (MW = 10) between noninteracting leads (VL = 0). The wire
interaction strength is given in the inset. Lines are polynomial fits.

not more difficult for an inhomogeneous system (VW �= VL)
than for a homogeneous one (VW = VL). To investigate the
conductance of a Luttinger liquid between leads, however, we
would have to compute the conductance G(M ) in the limit
of long wires MW � 1 while maintaining much longer leads
(M � MW ). In our study of homogeneous systems [12] we
found that the conductance scales with MW /M and thus we
were able to determine its value in the thermodynamic limit
using a fixed (and small) value of MW . For the wire-lead
system (5) with VW �= VL considered here, we have found that
the scaling with M and MW (up to MW = 82) is much more
complicated. As a consequence, it is not possible to compute
the conductance of an infinitely long wire in most cases.
Thus we discuss here the results obtained for short wires and
present only results for MW = 10.

In Fig. 2 we show the scaling of G(M ) with the system
length M for noninteracting leads (VL = 0) and various in-
teraction strengths VW in the wire. The extrapolated values
G = limM→∞ G(M ) are shown in Fig. 3. For repulsive in-
teractions (VW > 0) we observe a progressive decrease of G
with increasing coupling VW . The conductance of the spinless
fermion model connected to noninteracting leads was investi-
gated previously for repulsive interactions using DMRG and

- 2 - 1 0 1 2 3
0.0

0.25
0.5

0.75
1.0

1.25
1.5

V W

2π
G

FIG. 3. Conductance of a short interacting wire connected to
noninteracting leads as a function of the wire interaction VW : Extrap-
olated values G = limM→∞ G(M ) of the data in Fig. 2 for MW = 10
(circles) and DMRG data from Ref. [26] for 12-site wires (triangles).
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FIG. 4. Same as Fig. 2 but with a repulsive interaction VL = 2t
in the leads.

the functional renormalization group method [26,27]. Our
results for G agree quantitatively with the (DMRG) results
presented in Ref. [26] for a slightly longer wire (MW = 12),
as shown in Fig. 3. In contrast, we observe in Fig. 2 that G(M )
tends to G0 (i.e., the conductance of the noninteracting leads)
for attractive interactions 0 > VW > −2t . The nonmonotonic
behavior of G(M ) for VW = −1.9t in Fig. 2 and the resulting
large deviation of the extrapolated value from G0 in Fig. 3
illustrate the problems that one encounters when analyzing
finite-size effects in the wire-lead system.

For an interaction VW > 2t the homogeneous half-filled
spinless fermion model is in an insulating charge-density-
wave (CDW) phase and thus we expect that G diminishes
exponentially with increasing wire length MW . In the Lut-
tinger liquid phase with repulsive interactions (2t � VW > 0)
a power-law suppression of G with increasing wire length
was observed previously [27]. This deviation from the field-
theoretical predictions mentioned above is due to the single-
particle backscattering caused by the sharp change of the
interaction at the wire boundaries. The scaling of G with the
wire length in the attractive Luttinger liquid phase (−2t <

VW < 0) is not known. As explained above, we cannot deter-
mine the conductance for an infinitely long wire (MW → ∞)
with the present method. Nevertheless, our data suggest that
for attractive wire interactions within the Luttinger liquid
regime the noninteracting leads determine the conductance
of the system in agreement with field theory. This is in
stark contrast to repulsive wire interactions, for which even
a small VW > 0 results in a reduction of G from the nonin-
teracting lead conductance G0, as already reported previously
[26,27,38].

While there are numerous studies of the conductance of
wires connected to noninteracting leads [14,26–28,30–39],
there seem to be only a few field-theoretical results for inter-
acting leads [33,36,38]. Figure 4 shows the scaling of G(M )
with the system size M for leads with a repulsive interaction
VL = 2t . From the Bethe ansatz solution of the homogeneous
spinless fermion model we know that this corresponds to
a Luttinger liquid parameter KL = 1/2 [40] and thus to a
conductance G = G0/2 for perfect contacts according to field
theory. Clearly, all our results for G(M ) with VW > 0 converge
toward this value and thus agree with the field-theoretical
predictions. Surprisingly, this also holds for the wire with
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FIG. 5. Same as Fig. 2 but with an attractive interaction VL = −t
in the leads.

VW = 3t , which would correspond to a CDW insulator in
the thermodynamic limit MW → ∞. Therefore, we expect
that G will decrease with increasing MW for VW = 3t . For
a noninteracting wire or an attractive interaction in the wire
(0 � VW > −2t), however, we observe in Fig. 4 a different,
nonmonotonic behavior of G(M ), which hinders the extrapo-
lation of G(M ) to the limit M → ∞. Apparently, G is lower
than the lead conductance G0/2 for VW = 0 and −t .

Figure 5 shows the scaling of G(M ) with system length
M for leads with an attractive interaction VL = −t . This
corresponds to a Luttinger liquid parameter KL = 3/2 [40]
and thus to a conductance G = (3/2)G0 for perfect contacts
according to field theory. We see in Fig. 5 that G(M ) seems to
converge to different values for different repulsive couplings
in the wire (VW > 0). Unfortunately, we cannot determine
the limit G = limM→∞ G(M ) accurately even with system
lengths up to M = 2000. The values of G(M ) for M = 2000
are above the conductance of a homogeneous Luttinger liquid
with the corresponding interaction VW . They seem to increase
further with M but to converge to lower values than the
lead conductance G = (3/2)G0. Therefore, it appears that
the conductance of the wire-lead system is lower than the
lead conductance in that case, similarly to what is found for
noninteracting leads due to single-particle backscattering. For
VW = 3t the conductance seems again to converge to a finite
value. As for noninteracting leads it should vanish in the
limit MW → ∞ as this interaction strength leads to a CDW
insulating state in the wire. For a noninteracting wire and for
attractive interactions in the wire (0 � VW � −2t), however,
we find that G ≈ (3/2)G0 as predicted by field theory but it
is difficult to extrapolate G(M ) reliably close to the Luttinger
phase boundary VW = −2t .

In summary, our results agree with the known results for
the conductance of the spinless fermion wire-lead system and
thus confirm the validity of our method. Moreover, they also
reveal complex qualitative differences in the attractive and
repulsive interaction regimes. The conductance seems to be
given by (7) with the lead Luttinger parameter (as predicted
by field theory) only when the interactions have the same
sign in the wire and leads. The properties of short wires
with attractive interactions connected to leads with repulsive
interactions (or vice versa) seem to be more complex than
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anticipated from the results reported so far (using field theory)
and should be investigated further.

IV. HOLSTEIN CHAIN

The interaction between charge carriers and phonons plays
an important role for transport properties [41–43], in partic-
ular for atomic or molecular wire junctions between leads
[8–11]. Therefore, we have to generalize our method to
models that include phonon degrees of freedom coupled to
the charge carriers. It is relatively straightforward to extend
a DMRG program to models with phonons if one uses a
truncated eigenbasis of the boson number operator with at
most Nb states to represent each phonon mode [44]. The only
real challenge is the computational cost that increases as N3

b
and thus limits most applications to small Nb. For Einstein
phonons (i.e., dispersionless) and purely local couplings with
the fermion degrees of freedom it is possible to speed up
DMRG calculations using a pseudosite representation for
bosons described in [45].

Therefore, we have tested our method on the simplest
model with these properties, the spinless fermion Holstein
model [46], which is defined by the Hamiltonian

H = − t
M∑

j=2

(c†
j c j−1 + c†

j−1c j ) + ωb

M∑
j=1

b†
jb j

− gωb

M∑
j=1

(b†
j + b j )n j, (8)

where ωb is the frequency of the Einstein phonons created
(annihilated) by the boson operators b†

j (b j) and g is the dimen-
sionless coupling between spinless fermions and phonons.
The spinless fermion operators c†

j , c j , and n j have the same
meaning as in the previous section and the hopping term again
sets the energy unit t = 1, while we consider a system with an
even number of sites M filled with M/2 spinless fermions.
This Hamiltonian is homogeneous and thus the wire and lead
sections are defined by the potential profile (1) only. The
current operator is again given by (6).

We have found that calculating the conductance with our
method is more difficult for the Holstein model than for purely
fermionic models such as (5). This is due not only to the in-
crease of the computational cost with the phonon cutoff Nb but
also to the fact that the dynamical DMRG algorithm [23,24]
often fails to converge in a reasonable time for large M. Thus
we can compute G(M ) systematically for smaller system sizes
M than in fermionic systems and we show here results for
M up to 800 sites only. (One calculation for this system size
requires about 600 CPU hours and 4 GB of memory. Thus
one could certainly treat larger systems using supercomputer
facilities.) In contrast, the scaling of G(M ) with the system
size is regular in the homogeneous Holstein wire as found
previously for homogeneous fermionic systems [12]. Thus we
can estimate the conductance G in the thermodynamic limit
despite the short system lengths as illustrated in Fig. 6 for the
adiabatic regime (ωb = 0.1t) and in Fig. 7 for the intermediate
regime (ωb = t).
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FIG. 6. Scaling of the finite-system conductance G(M ) with the
inverse system length 1/M for the spinless fermion Holstein model in
the adiabatic regime (ωb = 0.1t). The coupling g between fermions
and phonons is given in the inset. Lines are polynomial fits.

The phase diagram of the half-filled spinless fermion Hol-
stein model was determined previously with DMRG [47]
and quantum Monte Carlo computations [48]. It exhibits
a Luttinger liquid phase at weak coupling or high phonon
frequency. The Luttinger liquid parameter K was calculated
from the long-wavelength limit of the static structure factor
[47,48]. This corresponds to the parameter K determining
the exponents in the power-law correlation functions of the
Luttinger liquid theory for purely fermionic systems [2].

As seen in Fig. 6, we have found that the conductance
corresponds to K = G/G0 ≈ 1 in the adiabatic regime ωb =
0.1t for a coupling up to at least g = 1.5 in agreement with
the values determined from the structure factor [47,48]. In the
intermediate regime ωb = t shown in Fig. 7, the conductance
G(M ) clearly decreases with increasing coupling g. The ex-
trapolated values of G for 1/M → 0 yield parameters K =
G/G0 that agree well with the values determined from the
structure factor in Ref. [47], as shown in Fig. 8. In particular,
we do not observe any sign of superconducting fluctuations
(K > 1 or G > G0). Unfortunately, we are not able to deter-
mine the conductance close to the metal-insulator transition
because this requires too many computational resources (the
phonon cutoff Nb should be larger than the value Nb = 4 used
here).
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FIG. 7. Same as Fig. 6 but for an intermediate phonon frequency
ωb = t .
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FIG. 8. Luttinger parameter K of the spinless fermion Holstein
model with ω = t as a function of the coupling g. K was determined
from the extrapolated value of the conductance G in Fig. 7 (circles)
and from the charge structure factor in Ref. [47] (triangles).

In summary, our results for the conductance in the spinless
fermion Holstein model agree with the Luttinger parameter K
defined from the power-law decay of correlation functions (or
equivalently from the static structure factor). This confirms
the validity of our method for models with charge carriers
coupled to phonon degrees of freedom. It also shows that
the relation (7) for the conductance, which was derived for
purely fermionic systems using field theory [2,20–22], re-
mains valid for the Luttinger liquid phase of models including
phonons.

V. HUBBARD CHAIN

A necessary but simple extension of our method is the
generalization to electrons (i.e., fermions with spin 1

2 ). To
illustrate this extension we consider the one-dimensional ho-
mogeneous Hubbard chain with the Hamiltonian

H = −t
M∑

j=2

∑
σ

(c†
j,σ c j−1,σ + H.c.) + U

M∑
j=1

n j,↑n j,↓, (9)

where c†
j,σ (c j,σ ) creates (annihilates) an electron with spin

σ (=↑,↓) on site j and nj,σ = c†
j,σ c j,σ is the corresponding

particle number operator. The strength of the on-site coupling
between electrons is given by the Hubbard parameter U and
the hopping term again sets the energy unit t = 1. We assume
that the system length M is even and that the system contains
M/2 electrons of each spin (half filling).

The current operator for the electrons with spin σ in the
wire is a simple generalization of (6):

Jσ = 1

MW − 1

it

h̄

j2∑
j= j1+1

(c†
j,σ c j−1,σ − c†

j−1,σ c j,σ ). (10)

The current operator for the charge transport is then given by

JC = J↑ + J↓. (11)

Using this definition in Eqs. (2) and (3) we obtain the (charge)
conductance G(M ) of the electronic system. The current
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FIG. 9. Spin conductance GS (M ) of the homogeneous Hubbard
chain as a function of the inverse system length 1/M. The Hubbard
interaction U is given in the legend. Lines are polynomial fits.

operator for the spin transport is similarly given by

JS = J↑ − J↓. (12)

Using this definition in Eqs. (2) and (3) we obtain the spin
conductance GS (M ) of the electronic system. This describes
the linear response of the system to an external magnetic field
with the profile (1).

The one-dimensional Hubbard model is exactly solvable
using the Bethe ansatz method [49,50]. Its low-energy prop-
erties are characterized by a separation of charge and spin
excitations and its gapless excitation modes are described by
the Luttinger liquid theory. At half filling there is an exact
symmetry between the charge (spin) properties for U and the
spin (charge) properties for a coupling −U . In particular, the
ground state is a Mott insulator with gapped charge excitations
and gapless spin excitations for U > 0, while it is a Luther-
Emery liquid [2] with gapless charge excitations and gapped
spin excitations for U < 0.

We have found that calculating the (charge or spin) conduc-
tance with our method is only slightly more difficult for the
homogeneous electronic model (9) with U �= 0 than for the
homogeneous spinless fermion model. This is understandable
because in both cases there is only one gapless excitation
mode in the system. As expected the charge conductance
G(M ) for any U is equal within the numerical errors to the
spin conductance GS (M ) for an interaction −U . Thus we
discuss only the latter case.

In Fig. 9 the scaling of GS (M ) with M is plotted for sev-
eral values of the interaction U . For noninteracting electrons
GS (M ) approaches G0 as expected. [Note that the quantum
of conductance (4) for electrons (n = 2) equals 2πG0 = 2 in
our units.] The scattering of the GS (M ) data and the resulting
poor extrapolation are due to the lesser accuracy of DMRG for
a chain with two gapless excitation modes (i.e., for U = 0)
than for a single one (i.e., for U �= 0). For U < 0, GS (M )
vanishes in the thermodynamic limit as required for a phase
with gapped spin excitations. The qualitatively different be-
haviors for weak and strong attractive interactions is probably
due to the different correlation length, which is smaller than
MW = 10 for U = −8t but larger for U = −2t . The Luttinger
liquid parameter for the spinless spin excitations is KS = 1
in the Mott insulating phase at half filling for any U > 0.
Concordantly, we observe in Fig. 9 that GS (M ) approaches
G0 for a weak repulsive interaction (U = 2t). For stronger
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interactions the convergence of GS (M ) toward G0 is less clear
as shown by the results for U = 8t in Fig. 9. This is due to the
small bandwidth of the gapless spin excitations (on the order
of 4t2/U for large U ) which requires a smaller broadening
η ∼ 4t2/U and thus a larger M to reach the same resolution
for the dynamical correlation functions (2).

VI. CONCLUSION AND OUTLOOK

We have extended the DMRG method for the linear con-
ductance of one-dimensional correlated lattice models to more
complex systems including interacting leads, coupling to
phonons, and the electron spin properties. The tests conducted
in this work reveal intriguing differences when the sign of the
interaction (attractive/repulsive) differs in the wire and leads
and confirm that the renormalization of the conductance by the
Luttinger parameter (7) remains valid for the Luttinger liquid
phase of homogeneous models with coupling to phonons.
Unfortunately, we have found that we cannot determine the
conductance of a Luttinger liquid wire between leads with
a different interaction but can only investigate short wires
because of the complicated finite-size scaling. Moreover, for
models with coupling to phonon degrees of freedom the high

computational cost of dynamical DMRG calculations limits
the system sizes that can be used.

Nevertheless, the extensions presented in this work will
certainly allows us to compute the conductance of short
electron-phonon-coupled wires connected to interacting leads
(without phonons). Therefore, we will be able to study more
realistic models for realizations of quasi-one-dimensional
electronic conductors such as atomic or molecular wire junc-
tions [8–11]. Moreover, we point out that our approach is
not limited to the charge and spin conductance but could be
extended to other transport properties that are described by a
local current operator, such as the energy current [51–54].
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