
PHYSICAL REVIEW B 100, 075150 (2019)

Density wave states in the presence of an external magnetic field
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We investigate the effect that density wave states have on the Hofstadter butterfly. We first review the problem
of the d-density wave on a square lattice and then numerically solve the d-density wave problem when an
external magnetic field is introduced. As the d-density wave condensation strength is tuned the spectrum evolves
through three topologically distinct butterflies, and a relativistic quantum Hall effect is observed. The chiral
p + ip-density wave state demonstrates drastically different Hofstadter physics—inducing a destruction of the
gaps in the butterfly which causes electrons’ cyclotron orbits to not obey any type of Landau quantization, and
the creation of a large gap in the spectrum with Hall conductance σxy = 0. To investigate the quantum phases
in the system we perform a multifractal analysis of the single particle wave functions. We find that tuning the
d-density wave strength at a generic value of magnetic flux controls a metal-metal transition at charge neutrality
where the wave-function multifractality occurs at energy level crossings. In the p + ip case we observe another
metal-metal transition occurring at an energy level crossing separated by a strongly multifractal quasi-insulating
island state occurring at charge neutrality and strip dimerization of the lattice.
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I. INTRODUCTION

When electrons in two dimensions are subjected to both
a periodic potential of a crystalline lattice and a uniform
magnetic field the two competing length scales, that of the
Landau cyclotron orbits and that of the crystalline lattice,
give rise to quantum fractal spectra. This system has provided
an interesting basis for much research over the years. The
effects of mutual Coulomb interactions in GaAs [1] and
graphene [2,3] have been considered, as well as disorder [4],
impurity effects [5], and much more. Despite the beauty and
the complexity of the structure it has remained somewhat
elusive because these length scales are typically severely mis-
matched. Advances in experimentally measuring the fractal
energy spectrum in GaAs heterostructures [6,7] as well as in
the moiré superlattice of bilayer graphene [8] have opened
up the possibility of investigating emergent behavior within
a fractal landscape. Furthermore, the theoretical study of the
unconventional superconductivity recently detected in slightly
twisted bilayer graphene [9] has predicted electronic ordering
instabilites which favor density wave states [10]. Motivated by
these results we investigate the effect density waves have on
the Hofstadter butterfly.

Unlike Cooper pair condensation (particle-particle conden-
sation) density wave states are comprised of particle-hole
condensates. The particle-hole condensate wave function does
not have to obey the same spin/orbital antisymmetry require-
ments that Cooper pair wave functions do because particles
and holes are distinct objects. A particularly interesting den-
sity wave state is the dx2−y2 -density wave, also known as the
staggered flux state. The staggered flux state breaks time-
reversal symmetry and is visualized as a series of staggered
currents on the bonds of the square lattice [11] (see Fig. 1).
We briefly review particle-hole condensation in this angular
momentum channel on the square lattice in the following.

On the mean-field level the single-particle Hamiltonian for
electrons in an external magnetic field with singlet particle-
hole pairing in the dx2−y2 channel on the square lattice in
position space is written as [12,13]

H =
∑
n,m

(
−t1 + i

W0

4
(−1)n+m

)
eiφx |m + 1, n〉〈m, n|

+
(

−t2 − i
W0

4
(−1)n+m

)
eiφy |m, n + 1〉〈m, n|

− t3eiφxy |m + 1, n + 1〉〈m, n|
− t4eiφyx |m + 1, n − 1〉〈m, n| + H.c., (1)

where each φ is the Peierls phase associated with each
unique hopping element, W0 is the d-density wave strength,
we subtracted off the chemical potential, and we included
only nearest neighbor (NN) and next-nearest neighbor (NNN)
terms. For the remainder of the paper we take t1 = t2 = t , and
omit spin indices.

When there is no external magnetic field present the stag-
gered flux causes the unit cell’s size to double—comprised
of an n + m = even, n + m = odd. Ignoring NNN hopping
we write the Hamiltonian in the absence of external magnetic
field as

H = −t̃
∑
n,m

e−2iαnm |m + 1, n〉〈m, n|

+ |m, n + 1〉〈m, n| + H.c., (2)

where we have a new variable, t̃ =
√

t2 + (W0/4)2, and αnm

= arctan(W0/4t )(−1)n+m. In this language the dispersion is
written as

E = ±2t̃
√

cos2(kx ) + cos2(ky) + 2cos(2α)cos(kx )cos(ky),

(3)
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FIG. 1. Real space lattice corresponding to the dx2−y2 state.
Arrowed lines indicate current.

where α = |αnm| and

cos(2α) = 1 − (W0/4t )2

1 + (W0/4t )2
. (4)

We see that as the density wave strength is tuned on from 0 the
dispersion evolves smoothly from the free electron case to the
π -flux fermion case at α = π/4. With this in mind we rewrite
the Hamiltonian in the suggestive form

H = −t̃
∑
n,m

e−2iαnm |m + 1, n〉〈m, n|

+ (cos2(2α) + sin2(2α))|m, n + 1〉〈m, n| + H.c., (5)

which is equivalent to

H = cos(2α)H0 + sin(2α)Hπ , (6)

where

H0 = −t̃
∑
n,m

|m + 1, n〉〈m, n|

+ cos(2α)|m, n + 1〉〈m, n| + H.c., (7)

and

Hπ = −t̃
∑
n,m

−i(−1)m+n|m + 1, n〉〈m, n|

+ sin(2α)|m, n + 1〉〈m, n| + H.c. (8)

Here, H0 is a a typical tight binding Hamiltonian, and Hπ is a
Hamiltonian for π -flux fermions.

II. BUTTERFLIES

A. Nearest neighbors

Turning on an external magnetic field in the d-density
wave problem amounts to the usual Peierls substitution [14].
Taking the Landau gauge �A = (−By, 0, 0), the m direction
hopping elements in the Hamiltonian [Eq. (6)] are modi-
fied via |m + 1, n〉 → e−i2πn�/�0 |m + 1, n〉, where 2π�/�0

is the dimensionless magnetic flux penetrating an elementary
plaquette. We numerically diagonalize the Hamiltonian on a
20 × 20 lattice using periodic boundary conditions and plot
the energy (in units of t) versus �/�0 at the highest symmetry
in Figs. 2, 3, and 4.

When α = 0 we recover the usual Hofstadter butterfly, and
when α = π/4 we recover the π -shifted butterfly governed by

FIG. 2. Plot of the butterfly for α = 0.

the form of Eq. (8). As α is tuned away from 0, linear Landau
levels emerge from the edges of the spectrum at π flux, and
relativistic levels emerge at 0 and 2π flux at charge neutrality
yielding a spectrum similar to that of the honeycomb lattice
[15]. All emerging Landau levels are accompanied by gap
openings with odd Chern number, which will be discussed
further in the following section. The relativistic Landau level
energy eigenvalues emerging from 0 flux are given by (see the
Appendix)

εn = ±2

√
e0B|W0|t

c
n. (9)

FIG. 3. Plot of the butterfly for α = π/8.
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FIG. 4. Plot of the butterfly for α = π/4.

As W0 is tuned from 0 to 4t the Hall conductances, σxy, change
for a given flux and Fermi energy. Due to the global nature
of the transformation of the topological phase diagram (the
Hofstadter butterfly) we categorize the topologically different
types of butterflies instead of investigating topological phase
transitions local to a given flux and Fermi energy in the
following section.

B. Topological maps of the dx2−y2 -density wave butterfly

To characterize the defining topological characteristics of
each butterfly we start with the extremum of the transforma-
tion controlled by the density wave strength. First of all, con-
sider the situation when α = π/4. Directly from our Gauge-
transformed Hamiltonian we see that the total flux penetrating
a plaquette is � ± 4|α| = � ± π , where the plus or minus
indicates that we are at an even/odd plaquette, respectively.
Thus the Hamiltonian can be written as

H = −
√

2t
∑
n,m

e−i(�+π )n|m + 1, n〉〈m, n|

+ |m, n + 1〉〈m, n| + H.c., (10)

because the Hamiltonian in the absence of density wave
condensation is symmetric about � = ±π .

This observation explicitly shows that the density wave
parameter W0 controls a smooth transformation between the
typical butterfly and the π -shifted, or butterfly. The Hall con-
ductances for the gaps can be written down immediately for
these two extremum of the transformation via a Diophantine
equation [16], but because the particular Diophantine equation
which governs the region 0 < α < π/4 is not immediately
obvious we follow a different prescription.

To describe the global distribution of Chern numbers in the
gaps of the butterflies we closely follow work done by Naumis
[17] on the “Cut and Projection” solution to the Diophantine

FIG. 5. Skeleton of the butterfly for α = 0. Solid (dashed) blue
lines correspond to σxy = 1 (−1), solid (dashed) red lines correspond
to σxy = 2 (−2), and solid (dashed) yellow lines correspond to σxy =
3 (−3).

equation

σr = q

{
φr + 1

2

}
− q

2
. (11)

Here σ is the Hall conductance, r is the gap index, the
curly braces indicate taking the fractional part of the quantity
contained, and φ = �/�0 = p/q where p/q is a fully reduced
fraction. The filling factor for a gap’s Chern number at a given
flux is defined as

f (φ, σ ) = {φσr}. (12)

Plotting f (φ, σ ) against the flux yields the Wannier diagram
[18], or the “skeleton,” of the butterfly. The form of f (φ, σ )
dictates the distribution of Hall conductances in the gaps of
the butterflies. We find the skeletons for α = 0, π/4 using this
solution to the Diophantine equation (see Figs. 5 and 6).

To construct the Wannier diagram for values of 0 < α <

π/4 we note the following: As soon as W0 is nonzero all
gaps that are not associated with the normal butterfly, but are
associated with the π -flux butterfly, emerge (in the Appendix
we see that regardless of how small W0 is all Landau levels
indexed by n emerge). Furthermore, the Chern numbers as-
sociated with all gaps are topological invariants and thus will
not change due to perturbations to the Hamiltonian. Taking
these facts into account we draw the topological map for the
region 0 < α < π/4 as the combination of the two extremum
butterfly skeletons—see Fig. 7. Because our topological map
is a combination of the normal butterfly skeleton and the π -
shifted butterfly skeleton we see a doubling of lines associated
with odd Hall conductances, while the even Hall conductances
remain stationary.

At α = 0, π/4, π/2 the odd numbered Hall band doubling
disappears and one is left with topological maps associated
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FIG. 6. Skeleton of the butterfly for α = π/4. Solid (dashed)
blue lines correspond to σxy = 1 (−1), solid (dashed) red lines cor-
respond to σxy = 2 (−2), and solid (dashed) yellow lines correspond
to σxy = 3 (−3).

with Fig. 5. Notice, however, that α = π/2 is an unphysical
region in which W0/t → ∞. Thus we see that there are three
topologically distinct phase diagrams associated with the

FIG. 7. Skeletons of the butterflies for 0 < α < π/4. Solid
(dashed) blue lines correspond to σxy = 1 (−1), solid (dashed) red
lines correspond to σxy = 2 (−2), and solid (dashed) yellow lines
correspond to σxy = 3 (−3). The vertical green line acts as a guide,
indicating that for the regime 0 < W0 < 4t , at a fixed flux, one would
cross double the amount of odd Chern numbered gaps than those of
the typical butterfly as one tunes the Fermi energy from the minimum
value of the dispersion’s energy to its maximum.

FIG. 8. Butterfly with labeled characteristic Hall conductances
for α = 0. Solid (broken) blue lines correspond to σxy = 1 (−1),
solid (broken) red lines correspond to σxy = 2 (−2), and solid
(broken) yellow lines correspond to σxy = 3 (−3).

d-density wave problem in an external magnetic field, and that
these maps change only at W0 = 0, and W0 = 4t .

Using the structure of our obtained diagrams as a guide
we label the Hall conductances for all gaps associated with
all butterflies (see Figs. 8, 9, and 10). Due to the odd Hall
conductance line doubling for 0 < α < π/4 there exists a

FIG. 9. Butterfly with labeled characteristic Hall conductances
for α = π/4. Solid (broken) blue lines correspond to σxy = 1 (−1),
solid (broken) red lines correspond to σxy = 2 (−2), and solid
(broken) yellow lines correspond to σxy = 3 (−3).
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FIG. 10. Butterfly with labeled characteristic Hall conductances
for α = π/8. Solid (broken) blue lines correspond to σxy = 1 (−1),
solid (broken) red lines correspond to σxy = 2 (−2), and solid
(broken) yellow lines correspond to σxy = 3 (−3).

relativistic quantum Hall effect at low fields near charge
neutrality (akin to that of graphene [19]) in the sense that the
Hall conductances are quantized via

σxy = ±e2

h
2(2N + 1), (13)

where N is an integer and we included a factor of 2 due to spin
degeneracy. The typical integer quantum Hall conductances
persist at the edges of the spectrum near 0 flux and the odd
Chern numbered gaps only disappear completely when α =
π/4 where the remaining gaps have

σxy = ±e2

h
2(2N ), (14)

where, again, we multiplied by a factor of 2 due to spin
degeneracy.

III. p + ip DENSITY WAVE ORDER

The singlet �Q = (0, π ) px + ipy-density wave state also
breaks translation and time-reversal symmetry, and is visual-
ized as both a series of staggered currents pointing along the
x direction, and bonds of zero net current that connect nearest
neighbors along the y direction [11] (see Fig. 11). For this
�Q = (0, π ) px + ipy-density wave the Hamiltonian is

H =
∑
n,m

(
−t − i

W0

2
(−1)n

)
eiφx |m + 1, n〉〈m, n|

+
(

−t + W ′
0

2
(−1)n

)
eiφy |m, n + 1〉〈m, n| + H.c., (15)

FIG. 11. Real space lattice corresponding to the px + ipy den-
sity wave state. Arrowed lines indicate current whereas arrowless
lines indicate bonds with no net current with energetically favored
hopping.

where the density wave order parameter is

〈ψ†(�k + �Q)ψ (�k)〉 = ±(W0sin(kx ) + iW ′
0sin(ky)). (16)

In the following we take W0 = W ′
0 , and define α = arctan(W0

2t ).
We plot the butterflies at two characteristic points for a 20 ×
20 lattice in Figs. 12 and 13. We see that chiral p-density
wave condensation breaks the butterfly’s reflection symmetry
about π flux, opens bubbles of σxy = 0, and causes major
band gaps to collapse (a phenomenon well known to occur in
lattices with anisotropic hoppings [20])—in fact, at α = π/4,
when the system is completely dimerized along the y direction
and the lattice is composed of disjointed 2 × L (L being the
side length of the lattice along the x direction in units of
the lattice constant) cylindrical strips of alternating density-
wave-induced fluxes, we find that the butterfly is completely
destroyed and all gaps have collapsed except for a major gap
near charge neutrality emanating from π flux. For the p − ip-
density wave case the spectrum is obtained via a reflection of

FIG. 12. Plot of the butterfly for α = π/8.
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FIG. 13. Plot of the butterfly for α = π/4.

the p + ip spectrum about π flux—implying that the σxy = 0
gap would be detectable at modest magnetic field strengths.
For either type of chiral p-wave condensation at W0 = 2t the
electrons would not obey any type of Landau quantization of
their cyclotron orbits. Furthermore, because Chern numbers
follow a “zero sum” rule, this major gap at α = π/4 must
have σxy = 0—thus, using the arguments highlighted in the
previous section, the topological map of Hall conductances
associated with this density wave state for 0 < W0 < 2t is
given by the typical square lattice skeleton (Fig. 5) and a
f (φ, σ ) = 0 line.

IV. MULTIFRACTAL ANALYSIS

Multifractality is a defining characteristic of wave function
fluctuations at criticality [21]. In the following we investigate
the nature of the quantum phase transitions that occur as we
increase the density wave strength utilizing a basic multifrac-
tal analysis of the generalized inverse participation ratio. Via
this procedure we find that, at a fixed value of magnetic flux,
the zero-energy eigenfunctions undergo metal-metal transi-
tions separated by energy level crossings and single-particle
wave function multifractality.

The generalized inverse participation ratio (IPR) scales
with the system size

Pq =
∑
m,n

|ψ (rm,n)|2q ∼ L−τ (q) (17)

at a fixed energy, where the summation is taken over the real
space lattice defined by rm,n. The exponents τ (q), indexed
by a continuous variable q, are given by τ (q) = Dq(q − 1),
where Dq = d for delocalized metallic states and Dq = 0 for
exponentially localized insulating states. Exponents τ (q) that
depend on q in a nonlinear fashion indicate wave function
multifractalilty. In our analyses we focus on the behavior of
the system near charge neutrality—thus, to obtain the wave

FIG. 14. Energy versus d-density wave strength calculated at
�/�0 = 1/4 for a 28 × 28 lattice.

functions pertinent to Eq. (17), we diagonalize the magnetic
Hamiltonian in real space (as we did when plotting the butter-
flies) and find the corresponding zero energy eigenvectors of
the system for a fixed pair of � and W0.

We choose values of �/�0 such that there exists a zero en-
ergy eigenvalue for all W0. Numerically there is a difficulty in
calculating the IPR of a single degenerate energy eigenvector.
To remedy this we add a small amount of flux 
 = 1 × 10−15

to �/�0 which does not alter the spectrum, or eigenvectors
in any appreciable manner but does separate (on the order of

) the degenerate zero energy eigenvalues from one another
enough for us to calculate the IPR of a single zero energy
eigenvector as a function of W0 without mixing in the IPR of
the other degenerate zero energy eigenvectors.

As W0 is tuned a level crossing occurs in the spectrum.
At this (highly degenerate) crossing point the Chern numbers
of the bands participating are no longer well defined, but
still follow the requirement that the sum of all Cherns in
the spectrum is zero. For a 28 × 28 lattice we plot both
the spectrum and the IPR(q = 2) at �/�0 = 1/4 + 
 (see
Figs. 14 and 15). All listed values of W0 are in units of t .
At this particular flux there is an energy level crossing which
occurs at W ∗

0 = 4tan( π
8 ) which is accompanied by a singular

behavior of the IPR(q = 2)—indicating a rapid change in
the behavior of the single-particle wave function fluctuations
at the point where the energy levels touch. We find that
the multifractal exponents reveal that the zero energy wave
functions demonstrate multifractality at W ∗

0 —see Fig. 16. The
behavior of the multifractal exponents at this critical point
indicate a weakly multifractal behavior (sometimes dubbed
“quasimetallic”) with τ (q)’s leading nonlinear dependance
(found using a least squares fitting method) ≈ −0.115q(q −
1) in the region 0 < q < 3. Furthermore, we find that on either
side of the critical point τ (q) ≈ 2(q − 1) which is a signature
of delocalized metallic states in two spatial dimensions. Due
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FIG. 15. Numerically calculated IPR (q = 2) as a function of W0

of one of the zero energy wave functions for a 28 × 28 lattice at
�/�0 = 1/4 + 
.

to both the level crossing and the real space multifractality of
the wave functions near the central peak shown in Fig. 15, we
find that the d-density wave strength controls a metal-metal
transition at �/�0 = 1/4 + 
 at charge neutrality.

Physically this critical point, which is generally given by
W ∗

0 = 4tTan(π �
2�0

) for arbitrary �/�0, marks the point at
which the local effective magnetic fields penetrating neighbor-
ing plaquettes flip from aligned to anti-aligned (see Fig. 17).
This can be seen directly by calculating the total effective
dimensionless flux 2π�T /�0 per plaquette utilizing the phase

FIG. 16. Values of −ln(Pq )/ln(L) = τ̃ (q) calculated for a 28 ×
28 lattice at �/�0 = 1/4 + 
 for three characteristic values of W0.

FIG. 17. Pictorial representation of the local magnetic field (per-
pendicular to the lattice) per plaquette for different values of W0 for
the d-density wave case. The size of the arrow indicates the strength
of the field.

factor in Eq. (2)

2π�T /�0 = 2π�/�0 ± 4α. (18)

For W0 < W ∗
0 the flux per plaquette is alternaing but always

positive. At W0 = W ∗
0 the flux alternates between 4π�/�0

and 0. For W0 > W ∗
0 the total effective flux per plaquette is

alternaing in magnitude and sign (see Fig. 17).
For the case of p + ip-density wave condensation wave

functions tend to behave in a localized fashion at W0 = 2
for all � > 0 due to the dimerization that occurs in the
lattice along the y direction. We calculate the wave functions’
multifractal exponents near charge neutrality as we did in the
d-density wave case and plot the spectrum and IPR with �

fixed in Figs. 18 and 19. The wave functions in this case
display strong multifractality at W0 = 2 (see Fig. 20) where
the electrons are strongly localized to a strip of the lattice and
there is another level crossing similar to that observed in the
d-density wave case. For W0 = 2 we find the nonlinear de-
pendance of τ (q) ≈ 0.503q2 + 2.60

√
q for 0 < q < 1 using

the fitting method mentioned above.

FIG. 18. Energy versus p + ip-density wave strength calculated
at �/�0 = 1/4 for a 28 × 28 lattice.
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FIG. 19. Numerically calculated IPR (q = 2) as a function of W0

of one of the zero energy wave functions for a 28 × 28 lattice at
�/�0 = 1/4 + 
.

V. DISCUSSION

In this work we studied and characterized the topologically
different forms of the Hofstadter butterflies generated in the
presence of density wave condensations in the dx2−y2 , and
px ± ipy angular momentum channels and investigated the
quantum phase transitions that occur at charge neutrality as
density wave strength increases. Directly from the skeleton
diagrams obtained for the dx2−y2 -density wave problem we see
a doubling in the odd-Hall conductance lines which implies
that the density wave strength controls a relativistic quantum

FIG. 20. Values of −ln(Pq )/ln(L) = τ̃ (q) calculated for a 28 ×
28 lattice at �/�0 = 1/4 + 
 for three characteristic values of W0.

Hall effect with σxy = ± e2

h 2(2N + 1). Furthermore, we find
that the p + ip-density wave both causes band gap collapses
in the butterfly, and causes the opening of 0 Hall conductivity
bubbles. The effects of density wave states in the presence
of an external magnetic field can be detected both at modest
magnetic field strengths in two-dimensional square crystal
lattices (via a measurement of an unusual quantum Hall effect
for the d-wave, or via a measurement of the system which
shows both a lack of Landau levels and the opening of σxy = 0
gaps near charge neutrality), and in optical lattice systems
with the appropriate staggered fluxes present.

Our results show that different types of metal-metal tran-
sitions, controlled by density wave strength and separated in
phase space by single-particle wave functions exhibiting mul-
tifractality, would be detectable in systems emulating density
wave states at nonzero flux at half filling. These quantum
phase transitions occur generically for both density wave
condensations due to the nonanalyticity introduced when the
energy levels cross in the spectrum at strip dimerization for
p + ip-density waves, or at the critical value of the staggered
flux at W ∗

0 = 4tan( π�
2�0

) for d-density waves. We note that in
the presence of moderate disorder the energy levels would
be broadened but the physics outlined in our work would be
effectively the same—the effects of strong disorder, on the
other hand, should be considered in future work. Furthermore,
future work might also investigate how mutual Coulomb
interactions would affect the multifractal wave functions and
quantum phase transitions that occur as a function of density
wave strength.
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APPENDIX: LANDAU LEVELS

To see how the relativistic Landau levels emerge in the
spectrum we follow the standard analysis [22] and expand the
tight binding Hamiltonian in the even-odd basis

H0(�k) = −2t̃

[
0 e−2iαcos(kx ) + cos(ky)

e2iαcos(kx ) + cos(ky) 0

]
,

(A1)

about one of the charge neutrality points �k = (π/2, π/2)

H0(�k) ≈ 2t̃

[
0 e−2iαkx + ky

e2iαkx + ky 0

]
. (A2)

When introducing a magnetic field one makes the substitution

kx → kx + eBy

c
= k̃x, (A3)

where e is the electron’s charge and c is the speed of light.
Because k̂y and ŷ do not commute with one another we place
hats on all crystal momentum and position variables in the
Hamiltonian with the understanding that we will work in
the real space (k̂y = −i∂y) representation of these operators

075150-8



DENSITY WAVE STATES IN THE PRESENCE OF AN … PHYSICAL REVIEW B 100, 075150 (2019)

FIG. 21. Plot of the butterfly and the associated first few nonzero
Landau levels for α = π/8.

henceforth. Rearranging the Schrödinger equation

2t̃

[
0 e−2iα ˆ̃kx + k̂y

e2iα ˆ̃kx + k̂y 0

][
ψn

φn

]
= εn

[
ψn

φn

]
(A4)

yields two decoupled wave equations

ε2
nψn = 4t̃2(e−2iα ˆ̃kx + k̂y)(e2iα ˆ̃kx + k̂y)ψn, (A5)

ε2
nφn = 4t̃2(e2iα ˆ̃kx + k̂y)(e−2iα ˆ̃kx + k̂y)φn. (A6)

For the time being we solve Eq. (A5). Foiling out this wave
equation we yield

ε2
n

4t̃2
ψn(y, kx ) =

((
k̂x + eBŷ

c

)2

+ k̂y
2

+cos(2α)

{
k̂x + eBŷ

c
, k̂y

}

− isin(2α)
eB

c
[ŷ, ky]

)
ψn(y, kx ), (A7)

where we used the fact that [k̂x, k̂y] = 0.
We define

y0 = kx
c

e0B
, ω = e0B

mc
, (A8)

where e0 is the absolute value of the electron charge e. Notice
that because the Hamiltonian is independent of x̂ we can
replace k̂x with it’s eigenvalue kx. With these definitions in
mind we rearrange Eq. (A7)

ε2
n

8mt̃2
ψn(y) =

(
1

2
mω2(y − y0)2 + 1

2m
k̂y

2 − ω

2
sin(2α)

− ω

2
cos(2α){y − y0, k̂y}

)
ψn(y). (A9)

FIG. 22. Plot of the butterfly and the associated first few nonzero
Landau levels for α = π/4.

The solutions to this differential equation are of the form

ψn(y) = eimω( y2

2 −yy0 )e2iα

{
C1Hn[

√
mω|sin(2α)|(y − y0)]

+C21F1

[
−n

2
; 1/2; (mω|sin(2α)|(y − y0)2)

]}
,

(A10)

where Hn(y) is the Hermite polynomial of degree n and
1F1(− n

2 ; 1/2; y2) is the Kummer confluent hypergeometric
function. We find the energy eigenvalues of this system by
requiring the index of the Hermite polynomials to be of integer
value. Using this prescription we find

εn = ±t̃
√

8|sin(2α)|mωn, (A11)

or, in terms of the density wave condensation strength,

εn = ±2

√
e0B|W0|t

c
n. (A12)

Solving Eq. (A6) in the same fashion yields shifted levels

εn = ±2

√
e0B|W0|t

c
(n + 1), (A13)

where n = 0, 1, 2, 3, · · · , for both expressions. Due to the
lack of the zero energy Landau level in Eq. (A13) we see that
the single-particle wave functions will be nonzero only on the
even sublattice for index n = 0, whereas wave functions will
have nonzero amplitude on both even and odd sublattices for
all n > 0.

Solving for the low energy behavior near the (kx, ky) =
(−π/2,−π/2) Dirac point yields the same eigenenergy
expressions obtained for the (π/2, π/2) case whereas we
find the inverse of this even-odd behavior for the (kx, ky) =
(π/2,−π/2), (−π/2, π/2) points. The Landau level
expressions near these points can be obtained by flipping
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the signs in front of both of the cos(2α), sin(2α) terms
in Eq. (A9). In this case we find opposite wave function
behavior—the single-particle wave functions will be nonzero
only on the odd sublattice for index n = 0, and wave functions
will have nonzero amplitude on both odd and even sublattices
for all n > 0.

From this analysis we see that for W0 �= 0 levels emerge
from charge neutrality, regardless of the magnitude of W0;
this is due to the d-density wave’s symmetry breaking nature.
We plot characteristic butterflies and the first few nonzero
Landau levels according to Eqs. (A12) and (A13) in Figs. 21
and 22.
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