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Avoiding ergodicity problems in lattice discretizations of the Hubbard model
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The Hubbard model arises naturally when electron-electron interactions are added to the tight-binding
descriptions of many condensed matter systems. For instance, the two-dimensional Hubbard model on the
honeycomb lattice is central to the ab initio description of the electronic structure of carbon nanomaterials,
such as graphene. Such low-dimensional Hubbard models are advantageously studied with Markov chain Monte
Carlo methods, such as hybrid Monte Carlo (HMC). HMC is the standard algorithm of the lattice gauge
theory community, as it is well suited to theories of dynamical fermions. As HMC performs continuous, global
updates of the lattice degrees of freedom, it provides superior scaling with system size relative to local updating
methods. A potential drawback of HMC is its susceptibility to ergodicity problems due to so-called exceptional
configurations, for which the fermion operator cannot be inverted. Recently, ergodicity problems were found in
some formulations of HMC simulations of the Hubbard model. Here, we address this issue directly and clarify
under what conditions ergodicity is maintained or violated in HMC simulations of the Hubbard model. We
study different lattice formulations of the fermion operator and provide explicit, representative calculations for
small systems, often comparing to exact results. We show that a fermion operator can be found which is both
computationally convenient and free of ergodicity problems.
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I. INTRODUCTION

Modern lattice QCD simulations are performed using the
hybrid Monte Carlo (HMC) algorithm [1,2]. While the basic
structure of the HMC algorithm has remained unchanged
since it was introduced, much effort has been directed toward
the development of efficient iterative solvers, with accelerated
convergence [3]. Such highly optimized solvers have been
instrumental in tearing down the so-called computational
“Berlin wall,” which for a long time prevented simulations
with dynamical fermions at the physical pion mass, for sys-
tems of a realistic size [4–8]. An interesting aspect of lattice
QCD is that a large freedom of choice exists for the formula-
tion of the lattice action, provided that the proper continuum
limit is recovered as the lattice spacing a → 0. This freedom
has been exploited to formulate lattice actions that conserve
more symmetries at finite a, or sacrifice exact symmetries
in order to gain computational performance or scaling with
system size V . This is particularly true for chiral symmetry
in lattice QCD, which is intimately connected to the fermion
“doubling problem” through the Nielsen-Ninomiya theorem
[9,10]. While lattice actions have been formulated which
circumvent the doubling problem, and maintain exact or near-
exact chiral symmetry at nonzero a (such as overlap [11–14]
or domain wall [15–17] fermions), they typically come at a
high computational cost compared with lattice actions where
exact chiral symmetry needs to be recovered by extrapolation.
For this reason, the development of lattice QCD has tended to
emphasize computational simplicity and efficiency, together

with Symanzik improvement [18,19] of the lattice action,
which accelerates the approach to the continuum limit by the
systematic removal of lattice artifacts.

Remarkably, HMC has rarely been applied to problems in
condensed matter physics. In part, this can be traced back to
the higher dimensionality of QCD—lattice QCD researchers
have few options besides relying on the expected ∼V 5/4 scal-
ing of HMC [20]. In contrast, Monte Carlo (MC) simulations
of Hamiltonian theories with electron-electron interactions,
such as the Hubbard model [21–23], are usually performed
using one of the many possible formulations of auxiliary
field quantum Monte Carlo (AFQMC). In the Blankenbecler-
Sugar-Scalapino (BSS) algorithm [24–27], the four-fermion
interactions are split by means of a Hubbard-Stratonovich
(HS) or “auxiliary” field φ, which is sometimes taken to be
discrete [25], in analogy with lattice models of spin systems.
Unlike the case of lattice QCD, early attempts at combining
BSS with HMC updates [28,29] were not pursued further,
largely because the configuration space of auxiliary fields
becomes increasingly fragmented into regions with positive
and negative fermion determinant at low temperatures. The
HMC algorithm requires a continuous (rather than discrete)
auxiliary field, and furthermore M[φ] should be invertible
at every point during the HMC Hamiltonian update, or tra-
jectory, for a new configuration proposal. At the boundaries
between regions of different sign det M[φ] vanishes, which
causes HMC to become trapped in the region of the starting
configuration. As a result, algorithms which combine BSS
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with HMC updates are in general not ergodic.1 Note that
similar ergodicity problems appear for overlap fermions in
Lattice QCD, which has prompted the development of a
class of HMC algorithms which can reflect from or refract
through boundaries where det M[φ] changes sign [30–32].
However, such algorithms are rather costly computationally,
which suggests that a more amenable approach is to find a
lattice action free from ergodicity problems.

The Hubbard and Hubbard/Coulomb models are key com-
ponents of the ab initio description of electron-electron inter-
actions in low-dimensional materials [33,34] (e.g., graphene),
so the problem of combining HMC with the Hubbard Hamil-
tonian has recently been revisited.2 The dimensionality of
such systems is between that of QCD and problems of great
interest in applied condensed matter physics and materials sci-
ence, such as quantum dots and nanoribbons [35,36]. For any
2d lattice, one therefore expects that the (expected) superior
scaling with V of HMC over BSS would be advantageous
in the study of critical phenomena, such as high-Tc super-
conductivity for the square lattice or the antiferromagnetic
Mott insulating (AFMI) phase for the honeycomb lattice (and
possibly other types of spin-liquid phases) which appears at
moderate values of the on-site electron-electron coupling U
[37–39]. Recently, new attempts have been made by Beyl
et al. in Ref. [40] to circumvent the ergodicity problem of
the BSS + HMC method by making the auxilliary field φ

complex-valued. While this doubles the number of lattice
degrees of freedom, it would represent an acceptable trade-off,
if the computational scaling would be dramatically improved.
However, it was found that HMC simulations of the complex-
ified theory failed to deliver the expected ∼V 5/4 scaling. For
the Su-Schrieffer-Heeger (SSH) electron-phonon Hamiltonian
[41], which lacks the ergodicity problem of the Hubbard case,
this scaling was realized. The recent studies of Ref. [42] also
found favorable scaling with HMC when using Hasenbusch
preconditioning.

From the perspective of the lattice QCD community, MC
simulations of the Hubbard model have several attractive
features. Some of these features are the apparent simplic-
ity of the Hubbard model in comparison to the QCD La-
grangian, the possibility to identify the spatial lattice dis-
cretization a with the physical lattice spacing, and the po-
tential of applying the versatile and sophisticated toolbox of
numerical methods developed for Lattice QCD to a prob-
lem with many promising applications. The seminal work
of Ref. [43] introduced the Brower-Rebbi-Schaich (BRS)
algorithm for the Hubbard model, which is inspired by lat-
tice QCD methods. The BRS algorithm has recently been

1We stress that the BSS algorithm with discrete auxiliary fields is
ergodic, and we do not consider such algorithms further in this paper.

2We restrict our presentation for simplicity to the Hubbard model,
but our conclusions hold for the Hubbard/Coulomb model because,
as we will see, the ergodicity problems we address here depend only
on the fermion operator, and not on the form of the Gaussian part of
the action of the auxiliary field, where fermion-fermion interactions
ultimately appear.

applied not only to graphene [44,45], but also to carbon
nanotubes [46,47]. The BSS and BRS algorithms are closely
related. The main differences are the treatment of the hop-
ping matrix h in the fermion operator M and that BRS
uses a purely imaginary auxiliary field. Specifically, BSS
uses a “compact” operator M[φ] ∼ 1 − exp(h) exp(φ) (as
in AFQMC) where both the hopping term and the auxil-
iary field appear as arguments of exponentials, while BRS
uses the “half-compact” operator M[φ] ∼ 1 − h − exp(iφ)
(as in lattice QCD, where the phase is replaced by the
parallel transporter, or gauge link). Reference [45] found
that “noncompact” formulations with M[φ] ∼ 1 − h − iφ
are numerically unstable due to round-off error. These studies
in terms of BRS found no indication of an ergodicity problem.

Still, the ergodicity of BRS remains controversial. It has
been noted [40,48,49] that the ergodicity problem related
to the use of HMC with BSS cannot be eliminated simply
by switching to an imaginary auxiliary field, as in BRS.
Irrespective of whether the auxiliary field is purely real or
purely imaginary, the BSS fermion determinant det M[φ] fac-
torizes, becoming proportional to real-valued function which
is not positive definite. Hence, the configuration space of BSS
should remain fragmented into regions separated by bound-
aries of exceptional configurations, which have vanishing de-
terminant, that HMC cannot cross. However, Ref. [40] found
that using a complex auxiliary field solved the ergodicity
problem of BSS. The argument for factorization of Ref. [48]
only applies to the compact version (BSS) of M[φ], which
may explain why no ergodicity problem was found in previous
BRS simulations. Here, we show in detail that BRS avoids the
ergodicity problem associated with factorization of det M[φ],
and we also reproduce the ergodicity problems reported in
earlier work using BSS + HMC (with both real-valued and
imaginary-valued auxiliary fields). We note that the com-
pact and half-compact versions of M[φ] are equivalent, up
to terms of higher order in the Euclidean time step δ. We
also discuss the relative merits of each formulation including
the extrapolation of observables to the temporal continuum
limit δ → 0. It can be argued that BRS represents a case
where symmetries of the continuum theory are sacrificed on
the lattice, in order to improve computational scaling and
gain the applicability of the computational toolbox of lattice
QCD. Unlike the complexified BSS formulation, we find no
indication of adverse computational scaling with BRS. A
thorough analysis of the computational scaling will be given
in an upcoming publication.

This paper is organized as follows. We describe HMC and
the Hubbard model in Sec. II, including different choices of
basis and discretization, the associated symmetries, and the
properties of the fermion matrix M and its eigenvalues. We
study the ergodicity problem in Sec. III, and show its connec-
tion to the eigenvalues of M. We also give explicit examples
for small numbers of lattice sites, which demonstrates how
and when ergodicity issues appear. We explore possible ways
to circumvent such issues in Sec. IV. By taking into account
the symmetries of the system, we propose novel ways to effect
large jumps between configurations, thereby crossing regions
of low or zero probability. We recapitulate and conclude
in Sec. V.

075141-2



AVOIDING ERGODICITY PROBLEMS IN LATTICE … PHYSICAL REVIEW B 100, 075141 (2019)

II. FORMALISM

We start by giving a cursory description of the HMC
algorithm and describing the different discretizations of the
Hubbard model in the literature. Throughout, we assume the
system is at half-filling (with zero chemical potential) and
when we discretize the number of time slices Nt is even.

A. Hybrid Monte Carlo

The hybrid Monte Carlo (HMC) algorithm is a Markov
chain Monte Carlo (MCMC) method which can be used to
estimate multidimensional integrals(

Nd∏
d=1

∫
dφd

)
W [φ]O[φ] � 1

Nc

Nc∑
i=1

O[φ(i)], φ(i) ∼ W, (1)

using importance sampling according to W [φ]. Each HMC
step generates a new configuration, or integration point φ(i)

in the Nd -dimensional space, based on the previous configu-
ration φ(i−1) in the Markov chain. The larger the integration
probability density W [φ(i)] for a configuration φ(i), the higher
the probability that φ(i) will be generated during the MC
evolution. Once an ensemble consisting of Nc configurations
{φ(1), . . . , φ(Nc )} has been generated, operator expectation val-
ues can be estimated stochastically, by performing the sum
over i in (1).

HMC is a global algorithm: all Nd field components of
a configuration φ are updated simultaneously. Each field
component φd is assigned a canonically conjugate momentum
component πd , and the resulting (φ, π ) system is evolved in
a fictitious time by numerical integration of the Hamiltonian
equations of motion. This is done using the hybrid Molecular
dynamics (HMD) algorithm, which combines the stochastic
Langevin and deterministic molecular dynamics (MD) meth-
ods. Specifically, each Langevin update (where the conjugate
momenta are refreshed from a random Gaussian distribution)
is interspersed with a number of MD integration steps, where
the field φ follows a trajectory through the field space. The
key advantage of HMC is the treatment of the HMD update
as the proposal machine for the Metropolis algorithm. In
principle, energy is conserved during an MD trajectory, but
as numerical integration schemes have finite truncation errors
energy conservation is violated. This violation is incorporated
into the acceptance criterion of the Metropolis test—if the
energy were exactly conserved, every proposed configuration
would be accepted. Unlike HMD and similar algorithms,
HMC does not require extrapolation of the step size of the MD
integration rule to the continuum. The computational scaling
of HMC as a function of system size V is expected to be ∼V 5/4

[20,42], superior to the cubic (or nearly cubic) scaling of local
updates in theories of dynamical fermions. For this reason,
HMC is the method of choice for computing ensembles of
configurations in high-dimensional theories, such as lattice
QCD.

Viewed as a Markov process, HMC converges to the de-
sired equilibrium probability distribution W [φ] if

(1) the detailed balance condition W [φ]�(φ → φ′) =
W [φ′]�(φ′ → φ) is satisfied, where W [φ] is the normal-
ized Boltzmann distribution exp(−S[φ])/Z , and S[φ] the

Euclidean action of the theory. Also, �(φ → φ′) is the transi-
tion probability from configuration φ to φ′.

(2) The Markov chain is ergodic meaning that the equi-
librium distribution W [φ] is unique and independent of the
starting configuration of the chain. In other words, given a
configuration φ for which W [φ] �= 0, every other configura-
tion φ′ for which W [φ′] �= 0 should be reachable from φ in a
finite number of steps (or amount of MC time).

For detailed balance to be satisfied, the MD integration
should be performed with an integration rule which is re-
versible and symplectic (such as the leapfrog and Omelyan
integrators). Such integrators also ensure that the accep-
tance rate of HMC only depends weakly on V , as there is
a priori no guarantee that HMC can perform large global
updates with significant decorrelation between successive
configurations.

The second criterion is much harder to enforce, especially
for multidimensional probability densities. While indicators
for ergodicity issues can be monitored during the generation
of configurations (for example one can monitor the force,
watch for large changes in the acceptance rate, or the freezing
of observables), a formal proof that HMC is ergodic for a
particular system is usually not available. In some cases, a
physical understanding of ergodicity problems is possible,
such as the difficulty of tunneling between different topolog-
ical sectors in lattice QCD. Note that the ergodicity problems
referred to here should not be confused with the lack of
ergodicity in algorithms that effect updates in terms of pure
MD trajectories, with no periodic refreshment of the conjugate
momenta or Metropolis accept/reject step.

The violation of energy conservation during the MD tra-
jectory should remain small if an HMC update should be
accepted with high likelihood. The classical MD evolution
is driven by the functional derivative F [φ] = −δS[φ]/δφ, the
HMC force term. HMC is susceptible to barriers or discontinu-
ities in the landscape of W [φ]. Such barriers can occur when
W [φ0] = 0 and exceptional configurations φ0 can separate the
integration domain into disconnected regions. As exceptional
configurations correspond to singularities in the force term,
attempts to cross the barrier generate a large energy violation,
and the HMC update is rejected with a high probability. The
inability of the standard HMC algorithm to cross barriers
between disconnected regions of W [φ] leads to an ergodicity
problem. In other words, the HMC Markov chain becomes
locked in a region with boundaries φ0, where W [φ0] = 0.
It should be noted that HMC can cross such boundaries
infrequently if the numerical integration of the Hamiltonian
equations of motion is sufficiently coarse. In general too
coarse MD updates cannot maintain a high acceptance rate
as V is increased.

As we have already noted, an ergodicity problem appears
whenever the fermion determinant det M[φ] becomes propor-
tional to a real-valued function f [φ] which is not positive
definite [48]. While such a problem can appear also for
complex-valued φ and det M[φ], it is usually more severe
in theories where φ and det M[φ] are real-valued, such as
the overlap formulation of chiral fermions in lattice QCD.
Another example is the AFQMC treatment of Ref. [28], which
combined the HMC algorithm with the BSS formulation of
the Hubbard model. There, the fermion matrix M[φ] is not
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guaranteed to satisfy det M[φ] > 0, which becomes apparent
at low T and at strong on-site coupling U , where the energy
landscape fragments into multiple regions of the positive and
negative det M[φ]. For overlap fermions, specialized HMC
algorithms have been developed which can tunnel through
or reflect from infinite-force barriers in a reversible manner,
maintaining ergodicity and a high acceptance rate [30–32].
Here, we take a different approach and instead seek an op-
timal representation of M[φ], which minimizes or eliminates
ergodicity problems altogether.

B. Choice of basis

The nearest-neighbor tight-binding Hamiltonian H0,

H0 = −κ
∑
〈x,y〉

(a†
x,↑ay,↑ + a†

x,↓ay,↓) (2)

contains a kinetic term only, which describes free electrons of
spin ↑ and spin ↓ hopping between different lattice sites with
hopping parameter κ . The bracket 〈x, y〉 denotes pairs of near-
est neighbors. The Hubbard model adds on-site interactions

H = H0 − U

2

∑
x

(nx,↑ − nx,↓)2 (3)

where number operator nx,s ≡ a†
x,sax,s counts electrons of spin

s at position x.
We can change basis via a particle-hole transformation on

the spin-↓ electrons

b†
x,↓ ≡ ax,↓, bx,↓ ≡ a†

x,↓. (4)

Up to an overall irrelevant constant, the Hamiltonian under
this transformation is

H = −κ
∑
〈x,y〉

(a†
xay − b†

xby) + U

2

∑
x

(nx − ñx )2, (5)

where the number operator ñx ≡ b†
xbx counts spin-↓ holes at

position x. The degrees of freedom here are electrons of spin ↑
and holes with spin ↓. This lets us drop the spin indices. Both
bases describe the same system and give the same relative
spectrum.

In the case of bipartite lattices (like the honeycomb lattice
of graphene and carbon nanotubes), it is possible to modify

transformation (4) to switch signs on one sublattice,

b†
x,↓ ≡ Pxax,↓, bx,↓ ≡ Pxa†

x,↓, (6)

where Px is +1 if x is on one sublattice and −1 if it is
on the other. This keeps H0 invariant under the particle-hole
transformation, but still flips the sign of the on-site interaction
compared to (3),

H = −κ
∑
〈x,y〉

(a†
xay + b†

xby) + U

2

∑
x

(nx − ñx )2; (7)

we recognize the first term as simply the tight binding Hamil-
tonian H0 given in (2) with b in lieu of a↓ and spin labels
dropped. We henceforth specialize to bipartite lattices. We
say that this Hamiltonian is written in the particle/hole basis,
while (3) is in the spin basis. The only difference between (3)
and (7) is the sign in front of the on-site interaction term.

It is possible to write down a Hamiltonian that includes
both types of interactions, parameterized via α ∈ [0, 1] as

H = H0 + α
U
2

∑
x

(nx,↑ − nx,↓)2

− (1 − α)
U

2

∑
x

(nx,↑ − nx,↓)2. (8)

Ignoring the superficial difference in labeling of spin-↓ elec-
trons or spin-↓ holes, when α = 0 one recovers the Hamilto-
nian of the spin basis (3) while α = 1 yields the Hamiltonian
in the particle/hole basis (7) if U = U . For arbitrary α ∈ (0, 1),
Hubbard-Stratonovich transformations will introduce auxil-
iary fields with both real and imaginary components, as
thoroughly investigated in Ref. [40], which found ergodicity
problems for the extreme values 0 and 1.

As our investigations revolve around issues related to er-
godicity, in what follows we concentrate only on the extreme
values α = 0, the spin basis, and α = 1, the particle/hole
basis. Sometimes we use α to label the different bases for
brevity.

C. Discretization

Discretizing the Hubbard model path integral, and the
introduction of auxiliary fields φ by Hubbard-Stratonovich
transformation, has been discussed before (see Refs. [43–46],
for example). After discretization, the partition function in the
spin basis, up to an overall normalization, can be written

Z↑↓ =
∫ [∏

x,t

dφxt

]
W [φ] =

∫ [∏
x,t

dφxt

]
det M[φ] det M[−φ] exp

(
− 1

2Ũ

∑
x,t

φ2
xt

)
(9)

=
∫ [∏

x,t

dφxt

]
exp

(
− 1

2Ũ

∑
x,t

φ2
xt + ln det M[φ] + ln det M[−φ]

)
, (10)

where W [φ] is the probability weight of a configuration φ and M[φ] is the fermion matrix. M is also a function of the hopping
matrix hx′,x = κ̃δ〈x′,x〉 which corresponds to the nearest-neighbor connections in the tight-binding Hamiltonian H0 with hopping
strength κ̃ = κδ, with δ = β/Nt the discretization of the inverse temperature into Nt evenly spaced slices. The interaction strength
is Ũ = Uδ.

The partition function in the particle/hole basis uses imaginary fields in the fermion matrix which is a consequence of the
different sign in front of the on-site interaction term in (7) compared to (3). The partition function is otherwise identical to the
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one in the spin basis

Zph =
∫ [∏

x,t

dφxt

]
exp

(
− 1

2Ũ

∑
x,t

φ2
xt + ln det M[iφ] + ln det M[−iφ]

)
. (11)

A negative sign in front of the interaction requires completely real auxiliary fields, whereas a positive sign requires completely
imaginary fields.

Differences in discretizations manifest themselves in the structure of the fermion matrix M. In Refs. [38,40,48], for example,
matrix elements of the fermion operator have the form

Me[φ]x′t ′,xt = δx′,xδt ′,t − [eh]x′,xeφxtBt ′δt ′,t+1 (exponential discretization), (12)

where space and time directions are combined and x′t ′ denote the row and xt the column index. Bt ′ = +1 for 0 < t ′ < Nt and
B0 = −1 explicitly encodes the antiperiodic boundary condition in time. In Ref. [45], on the other hand, the matrix elements are

M	[φ]x′t ′,xt = δx′,xδt ′,t − (hx′,x + eφxt δx′,x )Bt ′δt ′,t+1 (linear discretization), (13)

Finally, in Refs. [43,46,47], the hopping term is moved to the time diagonal,3

Md [φ]x′t ′,xt = (δx′,x − hx′,x )δt ′,t − eφxt δx′,xBt ′δt ′,t+1 (diagonal discretization). (14)

This last discretization is more akin to what is done in lattice
gauge theories, where the gauge links (parallel transporters)
reside between discretization slices. The exponential, linear,
and diagonal discretizations in Eqs. (12), (13), and (14) for-
mally agree up to O(δ2), and thus have the same continuum
δ → 0 (Nt → ∞) limit. Observables calculated with these
different discretizations should only be compared after a con-
tinuum limit extrapolation. In this work, we will focus on the
exponential and diagonal discretizations, only occasionally
commenting on the linear discretization.

It will prove useful to consider the matrix S = M − 1 for
the various discretizations with matrix elements

Se[φ]x′t ′,xt = −[eh]x′,xeφxtBt ′δt ′,t+1 (exponential), (15)

Sd [φ]x′t ′,xt = −hx′,xδt ′,t − eφxt δx′,xBt ′δt ′,t+1 (diagonal), (16)

which in the exponential case is entirely off-diagonal. Each
eigenvalue of M differs from an eigenvalue of S by 1.

D. Symmetries, fermion determinants, and fermion
matrix eigenvalues

Understanding the symmetries and limits of the physical
problem and the discretizations will prove valuable for later
discussion and inspiration for how to alleviate some ergod-
icity problems. The impatient reader may prefer to skip this
detailed discussion, though we do rely on observations here
throughout the rest of the paper.

It is useful to consider the probability weight of a field
configuration φ

W [φ] = det M[φ] det M[−φ] exp

(
− 1

2Ũ

∑
x,t

φ2
xt

)
(17)

3In addition to moving the hopping term to the time diagonal, in
Refs. [46,47], a mixed forward and backward differencing scheme
was applied to the underlying sublattices.

that appears in the spin-basis partition function (10) and its
analog in (11) where the arguments of the fermion matrices
get an i.

1. Charge conjugation

The first, most obvious symmetry of the probability weight
is the change of the sign of φ. When one sends φ → −φ the
quadratic piece is invariant and the determinants change roles,
so that

W [φ] = W [−φ]. (18)

The two determinants arise from the different spins or species,
depending on the basis. Thus, sending φ → −φ exchanges
the spins, or exchanges particles and holes. This symmetry
is broken when away from half filling, or, put another way,
with nonzero chemical potential. Away from half filling one
must also negate the chemical potential to achieve equality
of W . This is the analog to charge conjugation symmetry
C. Interestingly, for nonbipartite lattices the sign of the tight
binding Hamiltonian differs between the two determinants,
and φ → −φ fails to be a symmetry, even at half filling.

2. Characteristic polynomials

To go beyond this observation it will prove useful to have
a firm understanding of the fermion matrix, its eigenvalues,
and its determinant in the four different cases described in the
previous section. It is simpler to consider the eigenvalues of
S = M − 1, given in (15) and (16). We restrict our attention
to even Nt for simplicity.

We will demonstrate equalities of the characteristic poly-
nomial of S,

P[φ](s) = det(S[φ] − s1). (19)

When s is a root of P[φ] it is an eigenvalue of S[φ], and λ =
s + 1 is an eigenvalue of M[φ]. Note that since M = S + 1,
we know det M[φ] = P[φ](−1). In the fully general case P
also depends on the chemical potential and on the sign of the
adjacency matrix. We suppress these dependencies for clarity
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and focus on the bipartite, half-filling case and only comment
when ignoring these assumptions invalidates a conclusion.

First let us consider the exponential case with even Nt . We
will use the identity (A11) shown in Appendix A, letting

Dx′,x = −sδx′,x, [Tt ]x′,x = −[eh]x′,yFt [φ]y,x, (20)

where

Ft [φ]x′,x =
{

e−φx(t−1)δx′,x α = 0

e−iφx(t−1)δx′,x α = 1
(21)

is a diagonal matrix of auxiliary fields on a given time slice
and the t index is understood modulo Nt .4 Note that F has the
property

Ft [φ]−1 = Ft [−φ] (22)

generally and

Ft [φ]∗ =
{

Ft [φ] α = 0

Ft [−φ] α = 1
. (23)

Then the characteristic polynomial is given by

Pe[φ](s) = det
(−s1Nx

)Nt det

(
1Nx + 1Nx

s
ehFNt −1

1Nx

s
ehFNt −2 · · · 1Nx

s
ehF0

)

= det
(
sNt1Nx

)
det

(
1Nx + s−Nt ehFNt −1ehFNt −2 · · · ehF0

)
= det

(
sNt1Nx + ehFNt −1ehFNt −2 · · · ehF0

)
, (24)

which is a polynomial in the variable sNt . So, if s is a root of Pe[φ], any other s with the same Nt th power is also a root. This
establishes that, in the fully interacting exponential case, if s is an eigenvalue, so is s exp(2π i/Nt ), which can be bootstrapped all
the way around the circle. That is, the eigenvalues come equally spaced around rings in the exponential case, independent of α.

In the diagonal case we use (A12), an equivalent determinant identity also shown in Appendix A but now with

Dx′,x = −sδx′,x − hx′,x [Tt ]x′x = −Ft (φ)x′,x. (25)

One finds, dropping Nt powers of minus signs,

Pd [φ](s) = det
(
FNt −1 · · · F0

)
det

(
1 + F0

−1
(
s1Nx + h

) · · · FNt −2
−1

(
s1Nx + h

)
FNt −1

−1
(
s1Nx + h

))
=

(∏
t

det(Ft )

)
det

(
1 + F0

−1
(
s1Nx + h

) · · · FNt −2
−1

(
s1Nx + h

)
FNt −1

−1
(
s1Nx + h

))
. (26)

This is not a polynomial in sNt and we do not expect to find
perfect rings—were h = 0 we would.

In the linearized case (13), the diagonal of S is again zero, s
can be gathered in the characteristic polynomial as for Pe[φ],
and we expect perfect rings. We have verified this expectation
numerically.

3. Field shifts and periodicity

From (21) it is clear that in the α = 1 case, F remains
invariant if any field component changes by 2π , and the
determinant is therefore invariant under such a shift. In fact,
we can make a more generic transformation,

φxt → φxt + θt (27)

shifting the all the fields on time slice t by a constant θt . Under
that transformation, F changes by an overall phase

Ft [φ + θ ] = Ft [φ]e−iθt−1 . (28)

In the exponential case, the characteristic polynomial of the
transformed configuration,

Pe[φxt + θt ](s)

= det
(
sNt1 + ehFNt −1e−iθNt −2 · · · ehF1e−iθ0 ehF0e−iθNt −1

)
= det

(
sNt1 + e−i

∑
t θt ehFNt −1 · · · ehF0

)
(29)

4Note that here we have explicitly included the α-dependent factor
of i in F so that we can always just think of φ as real.

which is equal to Pe[φ](s), so long as∑
t

θt ≡ 0 (mod 2π ). (30)

The same condition holds for the diagonal discretization,
analogously. Of course, these shift transformations are only
symmetries of the fermion determinant; the Gaussian part
of the action changes, in general. These shifts leave each
Polyakov loop, the time-ordered product of links around the
temporal direction,

Px =
∏

t

eiφxt = ei�x �x =
∑

t

φxt (31)

invariant.
In the α = 0 case, we can make analogous field shifts

to each time slice. However, rather than finding a periodic
requirement on the sum of the shifts, the requirement to get
the same eigenvalues is that the sum of the shifts vanishes,∑

t θt = 0, as the links in the Polyakov loop lose their factor
of i.

We also see that if we send an even number of Fs to minus
themselves, the determinant is invariant. When α = 1 we can
flip a single F by shifting all of the fields on a single time slice
by ±π , making an independent choice for each,

φx → φx + π jx, (32)

where each jx is an odd integer. In fact, we can think of this
transformation as a composition of individual 2π jumps and
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FIG. 1. In the four panels, we show as lighter red points the spectrum of a fermion matrix with a particular α and discretization, as indicated,
for a four-site honeycomb lattice with Nt = 96. The darker, black points are the spectrum of the noninteracting case (φ = 0), which depends
only on which discretization is used. We show light gray rings to guide the eye for the eigenvalue rings as described by (33). There are four
rings because there are four spatial sites; each ring has Nt = 96 points. In all four cases, we use the same configuration φ which was randomly
sampled from a Gaussian with width

√
Uβ/Nt , where Uβ = 60.

the coordinated field shift (27), setting θt = π . One choice
that leaves the sum of all the field variables invariant on a
bipartite lattice is jx = ±Px, where Px is +1 on one sublattice
and −1 on the other, as in the particle-hole transformation (6).
As long as an even number of time slices get so transformed,
the eigenvalues are invariant, though the Gaussian part of the
action may change.

4. The noninteracting case

In the noninteracting U = 0 case, we can solve the fermion
matrix exactly. The Gaussian controlling the auxiliary field φ

in Eqs. (10) and (11) becomes infinitely narrow and we need
only consider φ = 0, so all Fs are the identity matrix. In this
case, we can find the exact spectrum of the fermion matrix. In-
dependent of whether α is 0 or 1, the eigenvalues are given by

si,n =
{

eδεi+iωn exponential

−δεi + eiωn diagonal
, λi,n = si,n + 1, (33)

where the Matsubara frequencies ωn = 2π
Nt

(n + 1
2 ) for n in

the integers from 0 to Nt − 1 and εi are the noninteracting
eigenvalues of H0/κ .

In the exponential case, the eigenvalues of M come in rings
concentric around 1, as discussed following (24), with radii
ri = exp δεi. When the hopping is bipartite, the eigenvalues
ε come in additive-inverse pairs and the corresponding radii
are multiplicative inverses. That is, if one ring has a radius r,
another has radius 1/r—if s is an eigenvalue of S, so is 1/s∗.
We will show, below, that this remains true in the exponential
α = 1 case and that generally, in the interacting exponential
case, if s is an eigenvalue for one species, 1/s is an eigenvalue
for the other, a statement of exact chiral symmetry.

In the diagonal case, the eigenvalues of M come in rings,
all of radius 1, centered on 1 − δεi. In the continuum limit
δ → 0 both discretizations give the same Nx-degenerate ring
of eigenvalues, as expected. In both cases, the eigenvalues
are evenly distributed around their respective rings, at angles
given by the Matsubara frequencies; with interactions this
perfect spacing is true for the exponential case, as already
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shown. Figure 1 shows in black the noninteracting eigenvalues
for the four-site honeycomb lattice, which has ε in {±1,±3},
with Nt = 96.

In both discretizations, the eigenvalues in (33) come in
complex conjugate pairs. However, this simple picture of
perfect rings is broken when φ �= 0, corresponding to U �= 0.
Moreover, once interactions are turned on the spectra differ
depending on α. Figure 1 shows in red an example fermion
matrix spectrum for the same example lattice, using the same
field configuration for each discretization.

5. Reality of the probability weight

Starting from (24) and using the fact that det(A∗) =
det(A)∗, one finds

P[+φ](s) = det
(
(s∗)Nt1 + ehF ∗

Nt −1 · · · ehF ∗
0

)∗

=
{

P[+φ](s∗)∗ α = 0

P[−φ](s∗)∗ α = 1
, (34)

where we used the properties of F under complex conjugation
in (23) and the fact that h is real. In the α = 0 case, the
eigenvalues of a single fermion matrix come in complex-
conjugate pairs or as real singletons, each determinant is
independently real, and so the probability weight is real. In the
α = 1 case, the probability weight is guaranteed to be real and
positive because, as (34) shows, the particle eigenvalues are
the complex conjugates of the hole eigenvalues. An analogous
argument starting from (26) shows that (34) holds for the

diagonal discretization as well. We will return to the question
of positivity in the α = 0 in Sec. II D 11.

In the case of nonzero chemical potential, (34) it is not
enough to show the reality of the probability as the exchange
of determinants also requires flipping the chemical potential
and the right-hand side is not the characteristic polynomial for
the other species. Similarly, in the case of nonbipartite lattices,
the sign of h flips for the other species but is unchanged by this
manipulation and we again find an identity between charac-
teristic polynomials, but not the ones we need to demonstrate
reality. Thus we expect a sign problem at nonzero chemical
potential or on nonbipartite lattices; the difficulty of those sign
problems is a question for future work.

6. Particle-hole symmetry

We can take advantage of the bipartite structure of the
adjacency matrix. Let � be a diagonal matrix that is +1 on
one sublattice and −1 on the other. Then

�2 = 1Nx , �h� = −h, �F� = F. (35)

By repeatedly inserting �2, we see that

P[+h, φ](s) = P[−h, φ](s) (36)

independent of discretization or choice of α. In the general
case without applying (6) one species’ characteristic polyno-
mial naturally occurs with a −h; in the bipartite case, the sign
of h can be flipped without repercussion for the eigenvalues
of the fermion matrix.

When Nt is even we see that the eigenvalues come in
additive inverse pairs,

Pd [−h, φ](s) =
(∏

t

det(Ft )

)
det

(
1Nx + F0

−1
(
s1Nx − h

) · · · FNt −1
−1

(
s1Nx − h

))

=
(∏

t

det(Ft )

)
det

(
1Nx + (−1)Nt F0

−1
(−s1Nx + h

) · · · FNt −1
−1

(−s1Nx + h
))

= Pd [+h, φ](−s) (37)

so that if s is a root of Pd [φ], −s is too. In the exponential
case, this is already guaranteed by the fact that the eigenvalues
come evenly spaced around rings.

7. Temporal shifts

By using Sylvester’s determinant identity

det(1 + AB) = det(1 + BA), (38)

we can cyclically permute matrices around the determinant.
In particular, from both (24) and (26), we see immediately,

by shifting both the hopping and the first F , that

P[φt ](s) = P[φt+1](s), (39)

where φt+1 is the field configuration φt but shifted by one
time slice (modulo Nt ). Since φ is bosonic, we need not
worry about antiperiodic boundary conditions; they are built
into the fermion matrix directly through Bt . This shift can

be repeatedly applied and ultimately guarantees the time-
translation invariance of the probability weight, independent
of discretization scheme and α.

8. Time reversal

We also immediately see that φ has a time-reversal symme-
try T . Since the determinant is invariant under transposition,
starting from (24) one sees

P[φ+t ](s) = det
(
sNt1� + F0

�eh� · · · FNt −1
�eh�)

= det
(
sNt1 + F0eh · · · FNt −1eh

)
= det

(
sNt1 + ehF0 · · · ehFNt −1

)
= P[φ−t ](s), (40)

where we used the fact that h is symmetric, F is diagonal,
and Sylvester’s identity (38). This shows that the field con-
figuration φ−t , which is time-reversed with respect to φ+t , so
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that φ−t on the first time slice is φ+t on the last and so on,
yields the same eigenvalues. An analogous proof holds for the
diagonal case, starting from (26). Thus time reversal T holds
independent of discretization scheme and α.

9. Spatial symmetries

The spatial lattice may have some rotational, translational,
or parity or reflection symmetries. An operation P of these
kinds permutes spatial sites,

x → Px (41)

and is a symmetry if its application commutes with the Hamil-
tonian (8).5 Since every on-site interaction is of the same
strength U it is automatically invariant under any relabeling of
sites; the symmetries of the lattice are those permutations that
commute with the tight-binding Hamiltonian or h, [P, h] = 0.
Two configurations related by one of these symmetries have
the same weight in the path integral. They manifestly have the

same Gaussian factor. Note that the action of a permutation P
on F [φ] is

PF [φx]P−1 = F [φPx], (42)

where φPx is configuration where the fields have changed sites
according to the permutation. Since P commutes with h (and
also, obviously, eh), we may insert 1Nx = P−1P everywhere,
and find

P[φx](s) = P[φPx](s) (43)

independent of discretization scheme and α.

10. Exact chiral symmetry

We can calculate the characteristic polynomial in the ex-
ponential case using the other identity, (A12), and massage it
such that we can identify (24),

Pe[+h,+φ+t ](s) = det
(
ehFNt −1 · · · ehF0

)
det

(
1Nx + F0

−1e−hs1Nx · · · FNt −1
−1e−hs1Nx

)
=

(∏
t

det(Ft )

)
det

(
sNt1Nx

)
det

(
s−Nt1Nx + F0

−1e−h · · · FNt −1
−1e−h

)

=
(∏

t

det(Ft )

)
det

(
sNt1Nx

)
Pe[−h,−φ−t ](1/s)

=
(∏

t

det(Ft )

)
det

(
sNt1Nx

)
Pe[−h,−φ+t ](1/s), (44)

where we used the fact that the determinant of eh is unity to
simplify the leading factor, and we applied the time reversal
identity for the characteristic polynomial (40). This identity
shows that the eigenvalues s for one species are the reciprocal
of the eigenvalues for the other, even without the assumption
of a bipartite lattice. Using the “other” determinant identity for
the diagonal case yields no useful identity, because s does not
appear alone, but rather in combination with the tight binding
Hamiltonian, and cannot be gathered together and factored
out. In the linearized case of (13), we also find no useful
identity, as suggested in Ref. [49].

Since, in the exponential case, the off-diagonal blocks
in S are the time slice-to-time slice transfer matrices, (44)
shows that the transfer matrix for one species has the inverse
eigenvalues of the transfer matrix for the other. This is the
exact chiral symmetry discussed in Ref. [49], and only appears

5Strictly speaking, an operation commuting with the Hamiltonian is
not enough to guarantee an invariance of the discretized action for a
particular field configuration. On the honeycomb lattice, for example,
some parity symmetries of the lattice exchange sublattices. In the
mixed differencing scheme of Refs. [46,47], those sublattices have
different differencing operators and the weight is not guaranteed to
be invariant under those parity operations. However, those operations
followed by a time reversal and charge conjugation keep the overall
action invariant.

in the exponential case. Note that this identity does not rely on
particle-hole symmetry.

Using (36) in the bipartite case and (34) in the α = 1 case,
we arrive at

Pe[φ](s) =
(∏

t

det(Ft )

)
det

(
sNt1Nx

)
Pe[φ](1/s∗)∗ (α = 1).

(45)

As long as s �= 0, if s is a root of Pe[φ], so is 1/s∗. This
demonstrates that in the exponential α = 1 case each ring of
eigenvalues has a partner ring with a reciprocal radius and the
same angular alignment, as we observed in the noninteracting
exponential case. We say that Pe[φ] is proportional to its
own conjugate reciprocal polynomial Pe[φ]†. The conjugate
reciprocal polynomial p† of a polynomial p is given by

p†(z) = zn p(z̄−1) (46)

here we use the overbar to indicate complex conjugation to
avoid confusion with the asterisk that sometimes indicates the
reciprocal polynomial.

Essential to demonstrating this conjugate reciprocity in
the interacting case was (34) and therefore the properties of
F (23). Although it is true for the noninteracting case and
it is visually plausible for the interacting exponential α = 0
example in Fig. 1, the radii are not, in fact, multiplicative
inverses.
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Also essential was the particle-hole symmetry that allowed
us to flip the sign of h. Without that symmetry, we find a
relation between two characteristic polynomials, but not a
relation that can be used to show this conjugate reciprocity.

Recall that setting s = −1 in a characteristic polynomial
gives det(M[φ]). It is now helpful to return the α dependence
to the argument of M rather than implicit in F as in (21).
Starting from (44), using the particle-hole identity (36), and
plugging in s = −1 leads to the identity

det Me[+φ] = e+� det Me[−φ],

f [φ] = e−�/2 det Me[+φ] = e+�/2 det Me[−φ] = f [−φ],

(47)

where we define � = ∑
x,t φx,t , f [φ] = e−�/2 det Me[φ] and

immediately see that f is even. When α = 0, f [φ] must be
real, because the determinant is real, as shown in (34). When
α = 1, we can use (34) and find

f [iφ] = e−i�/2 det Me[+iφ] = e+i�/2 det Me[−iφ]

= e+i�/2 det Me[+iφ]∗ = f [iφ]∗ (48)

so that f is also real when α = 1. Put another way, starting
from (45), one finds

det(Me[iφ]) = ei� det(Me[iφ])∗. (49)

Writing, in radial coordinates, det(M[iφ]) = f [iφ]eiθ (φ), one
finds

θ (φ) = �

2
+ Qπ, (50)

where Q is an integer. So

e−i�/2 det M[iφ] ∈ R (51)

but of either sign, as discussed in (28) of Ref. [48].6 Since f is
continuous in φ, changing Q requires passing through f = 0.
This is the origin of formal ergodicity problems, as we discuss
later.

When α = 0 it is not guaranteed that f must take both
signs. Indeed, as we later show for the one-site problem (65)
and a simple two-site problem (78), it may be that the sign of
f [φ] is fixed in this case. That is, at least for some examples
f [φ] does not change sign and there are no formal ergodicity
problems, but we stress that this is not necessarily generic. We
will see, one way or the other, that there are also in-practice
problems in the exponential α = 0 case.

In the diagonal discretization, there is no analog of (44),
no natural factorization of the determinant emerges, and there
are no sectors that are separated by a vanishing determinant,
even when α = 1. Thus the diagonal discretization does not
formally suffer from the ergodicity problems the exponential
discretization suffers. In Sec. III C, we provide a simple two-
site example where this claim may be directly verified. If
one insists on writing det Md [φ] = e�/2 f [φ], in the α = 0

6Actually, Ref. [48] differs by a factor of two in the exponent.
For the one-site problem, we later give the explicit form in (66),
confirming our result. Note that one does get

∏
t det Ft = exp(−�)

in forms like (26) but no demonstration of a partitioning of the
configuration space follows.

case of course f will still be real, but only because the
determinant itself is real. We find no restriction forcing f [iφ]
to be real in the diagonal case. We later provide an example of
f wandering off-axis in the complex plane in Fig. 2.

As shown, the partitioning of the field space into sectors
is a result of the conjugate reciprocity of the bipartite, ex-
ponential, α = 1 case. It may be that in other cases there
are other as-yet formally undemonstrated partitionings. In
Sec. III A, we show examples of the determinant flipping sign
by crossing zero for both α = 0 cases.

Let us continue to focus on the α = 1 case and on the
properties of f [iφ]. Consider now what happens when we
increase one of the auxiliary field variables by 2π ,

φx,t → φx,t + 2πδx,x0δt,t0 , (52)

where x0 and t0 are the space and time coordinates of the field
we are changing. Since F is 2π -periodic in each field variable
individually, the determinants must be equal. Then, we find

f [iφx,t ]e
i�/2 = det Me[iφ] = det Me[iφ + 2π iδx,x0δt,t0 ]

= f [iφx,t + 2π iδx,x0δt,t0 ]ei(�/2+π )

f [iφx,t ] = − f [iφx,t + 2π iδx,x0δt,t0 ] (53)

so that shifting any field variable by 2π flips the sign of f .
Since this flip is independent of all other field variables, this
shows the manifolds of zeros are codimension 1.

11. Summary

We collect in Table I constraints on the eigenvalues in
the different discretizations and bases. Independent of dis-
cretization or basis we have, on a half-filled bipartite lat-
tice, charge conjugation symmetry, particle-hole symmetry,
temporal translation symmetry, time reversal symmetry, and
whatever spatial symmetries the lattice exhibits. In the expo-
nential case, we have exact chiral symmetry and when α = 1
conjugate reciprocity.

Earlier we showed the weight W was real. For a straightfor-
ward Monte Carlo method, W should have an interpretation as
a probability measure, and should therefore be positive. When
α = 1, each particle eigenvalue is the complex conjugate of a
hole eigenvalue. This guarantees positivity of the weight W .
When α = 0 the complex conjugate guarantee is not enough.
In the exponential case, we can use (47) to demonstrate posi-
tivity, though each determinant individually is not guaranteed
to be positive—but the chiral symmetry is enough to guarantee
that the two species determinants have the same sign.

Consider the α = 0 diagonal case. If s is real it is its
own complex conjugate. If the corresponding eigenvalue of
M, λ = s + 1, is real and negative it need not have another
negative partner in the eigenvalues of either spin species.
Thus, positivity is not, in general, guaranteed in this case. We
later give a simple example in (78) and find that positivity can
be guaranteed with small enough κ̃2. We observe that posi-
tivity can be lost when Nt is odd and κ̃ is large and have not
found an Nt -even example; we conjecture that this is generic
and positivity can always be guaranteed by increasing Nt and
approaching the continuum limit. Since we know of no large-
scale computational effort using this combination of basis,
discretization, and odd Nt we leave a precise determination
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TABLE I. Demonstrated relationships between the eigenvalues s
in the half-filled bipartite case. The eigenvalues of the fermion matrix
are these eigenvalues plus one. When no subscript is attached the re-
lationship is between eigenvalues for the same species. When α = 0
we attach ↑ and ↓ subscripts to indicate eigenvalues for the different
spin species; for α = 1, we attach p and h for particles and holes. The
last two relationships for the exponential α = 1 case imply conjugate
reciprocity and lead to a partitioning of the configuration space into
sectors separated by exceptional configurations.

Exponential Diagonal

α = 0 s ↔ se2π i/Nt s ↔ −s
s ↔ s∗ s ↔ s∗

s↑ ↔ 1/s↓

α = 1 s ↔ se2π i/Nt s ↔ −s
sp ↔ s∗

h sp ↔ s∗
h

sp ↔ 1/sh

of how large Nt must be to ensure positivity to future work.
We focus on Nt even.

Knowledge of eigenvalues of S can help us discover
eigenvectors of M. Solving the eigenvalue equation using a
known eigenvalue s, (S − s1)v = 0 yields the eigenvector v

of S. Since S = M − 1, S and M share all their eigenvectors.
However, S may be much better conditioned than M and thus
much easier to invert. It may also provide a numerical speedup
to find an additional eigenvector for the cost of a single solve if
the associated eigenvalue comes for free. We are investigating
the acceleration of the inversion of M using knowledge of the
relationships between eigenvalues in Table I.

E. Extreme limits

In the general case, it is hard to analytically extract features
of the probability weight function. However, in particular
limits, additional symmetries emerge and yield additional
information about the weight.

First, when U/κ gets very small, for fixed Uβ, the in-
teraction is effectively turned off and F gets close to 1Nx .
Then the path integral nearly factorizes into Nt copies of the
noninteracting path integral,

lim
U/κ→0

ZNt = (Z1)Nt (54)

where the right-hand side is Nt powers of the Nt = 1 problem
with the same Ũ . We call this limit the weak-coupling limit.

In the opposite limit—the limit of no hopping, κ → 0 with
fixed Uβ, the partition function on Nx sites factorizes into Nx

copies of the one-site the partition function,

lim
κ→0

ZNx = (Z1)Nx . (55)

where now the right-hand side is Nx powers of the one-
site problem. We call this limit the strong-coupling limit,
U/κ → ∞ (with Uβ held fixed implicit).

In the general case we have the charge conjugation sym-
metry discussed in Sec. II D 1,

φ → −φ (56)

In the two limits we can make independent negations of φ,

φx,t →
{

signtφx,t (weak coupling)

signxφx,t (strong coupling)
. (57)

In the general case, we have invariance under temporal
shifts and time reversal, as discussed in Secs. II D 7 and II D 8,

φt → φt+τ , φ+t → φ−t . (58)

In the two limits, we again can make a larger set of transforma-
tions. In the weak-coupling limit, the symmetry is enhanced
and we can arbitrarily permute the time slices,

φt → φT t (weak coupling), (59)

where T is a permutation. In the strong-coupling limit, we
can independently perform these operations on each thread of
spatial sites

φxt → φx(t+τx ) φxt → φx(signxt ). (strong coupling) (60)

In the general case, we have the spatial symmetries dis-
cussed in Sec. II D 9,

φxt → φ(Px)t (P a lattice symmetry), (61)

where the same operation P is a symmetry of the lattice and
is applied to every time slice. In the weak-coupling limit, we
can apply a different spatial transformation on each time slice
and in the strong-coupling limit, we can arbitrarily permute
the threads of spatial sites,

φxt →
{
φ(Pt x)t (weak coupling, P a lattice symmetry)

φ(Px)t (strong coupling, P any permutation)
.

(62)

These operations will provide inspiration for proposal ma-
chines which give large field transformations that are still
accepted often enough, helping overcome ergodicity problems
HMC may encounter. This strategy is discussed in Sec. IV C.

III. ERGODICITY PROBLEMS

We now turn to the issue of ergodicity, which is required for
an accurate, unbiased Markov-Chain Monte Carlo (MCMC)
algorithm. An ergodicity problem arises when the algorithm
for updating the state of the Markov chain is unable to visit
the neighborhood of every field configuration. In this case,
we can introduce bias and find inaccurate results. We can
further delineate between in-principle or formal ergodicity
problems and in-practice ergodicity problems. In a formal
ergodicity problem there are regions of configuration space
that the update algorithm cannot find, by any means. An
in-practice problem might arise when the update algorithm
could explore the whole space but is unlikely to find important
regions of configuration space in the finite amount of time you
are willing to run your computer. We emphasize that in this
context ergodicity is a property of an algorithm, and not of
physics itself.

As hybrid Monte Carlo (HMC) is an MCMC algorithm, it
relies on the previous state to propose a new state which is
subjected to the Metropolis-Hastings accept/reject step. This
final step is essential for maintaining detailed balance and ulti-
mately corrects (via the ensemble average) for any numerical
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errors in the evolution of the state [1]. The proposed state is
obtained by integrating the equations of motion (EoMs) de-
rived from an artificial Hamiltonian H in a newly introduced
time direction. In the case of the Hubbard model and α = 0,
this artificial Hamiltonian is the Legendre transform of the
action (10)

H[π, φ] = 1

2

∑
x,t

(
π2

xt + 1

Ũ
φ2

xt

)

− ln det M[φ] − ln det M[−φ], (63)

where π are newly introduced momenta conjugate to the field
variables φ. For α = 1 given by (11), replace φ → iφ in the
fermion matrices. Details of this method can be found in the
pioneering Ref. [1].

Areas where the integrand of the partition function [(10)
and (11)] has zero weight, for example when det M(φ) = 0,
are represented by infinitely tall potential barriers in the
Hamiltonian (63) which repel the state during the integration
of the EoMs. This, in general, is a wanted feature, since
such locations in configuration space contribute nothing to
the partition function and should thus be avoided. Problems
arise, however, when such barriers separate regions that do
contribute to the partition function. If there are manifolds in
configuration space of codimension 1 (NxNt − 1 dimensional,
when there is only one degree of freedom per site) the con-
figuration space is partitioned and HMC trajectories cannot
propagate to these different sectors, thereby violating ergod-
icity. This is an in-principle problem.

It may be that there are extended codimension-1 manifolds
in configuration space that terminate on boundaries, in which
case it is in principle possible for HMC to find a sequence
of updates that visits states on both sides of the manifold.
Whether this is a problem in practice depends on the model of
interest; if these manifolds are very big they might take a long
time to circumnavigate. The manifolds in the cases discussed
here are boundary-free.

If there are zero-weight manifolds of higher codimension,
the configuration space isn’t partitioned and HMC can always
explore the whole space, though there could still be a problem
in practice.

Reference [48] pointed out that the factorization (47) and
reality of f [iφ] implies a formal ergodicity problem for the
exponential discretization when α = 1. Since f [iφ] is real and
takes both positive and negative values, by the intermediate
value theorem, there must be zeros separating the two regions,
as discussed at the end of Sec. II D 10. As first suggested in
Ref. [48], there exist codimension-1 manifolds in φ where the
determinant is zero. We can understand this result by seeing
that Q in (50) cannot be changed by a continuous change in f
unless f passes through zero. Were the manifolds smaller in
dimension, HMC would find its way around, without having
to go through the barriers, though there could nevertheless
have been an issue in practice, as it might take a long time to
circumnavigate the zeros. Formally, an infinitely precise HMC
integrator cannot penetrate these barriers and is therefore not
ergodic.

When considering the diagonal discretization in (14), the
factorization (47) does not naturally emerge. As discussed in
Sec. II D 10, this factorization was the result of the exact chi-

ral symmetry found in the exponential discretization. When
considering the spin basis (α = 0) with these discretizations
the determinant is still real, and may (but need not) still have
both negative and positive values and the intermediate zeros
may obstruct the exploration of configuration space by HMC.

For the particle/hole basis using the diagonal discretization
in (14), the situation is quite different. The factorization still
does not naturally emerge. If one insists on writing it that
way, the function f [iφ] is complex and thus we can avoid the
conclusion of the intermediate value theorem that would force
HMC to go through a zero in order to change the sign of f .
The function f [iφ] may still have zeros, but there no longer
need be codimension-1 zero manifolds and thus the space is
not partitioned into regions that trap HMC trajectories. We
provide numerical examples of this in the following sections.

We stress that our arguments here do not prove unequiv-
ocally that the particle/hole basis using the diagonal dis-
cretization (14) does not suffer from any formal ergodicity
issues, only that it does not suffer from those identified in
Ref. [40]. However, we are not aware of any other formal
ergodicity issues this discretization may have. As one nears
the continuum limit, since the two discretizations must agree,
very tall potential barriers can rise between the exceptional
configurations. This raises the possibility of an in practice
problem; how difficult it is to overcome depends on the exact
example and how fine a temporal discretization one uses. This
is later demonstrated for a simple problem in Figs. 5 and 6.
When we propose a general solution to the formal ergodicity
problem of the exponential α = 1 case in Sec. IV C, such
a solution can also resolve the in-practice problem in the
diagonal α = 1 case that emerges near the continuum limit.

In the remainder of this section, we discuss the dynamics
of the eigenvalues and the role they play in formal ergodicity
problems, and then present numerical examples that support
our discussion above, detailing in-principle and in-practice
problems. We investigate small systems where we can per-
form direct comparisons with exact solutions. Though the
systems are small in dimension, they capture all the relevant
aspects of ergodicity (or lack thereof) that are present in larger
simulations, and provide the added benefit that these aspects
can be visualized.

In all our HMC simulations, unless otherwise stated, we
always target an acceptance rate �80% by adjusting the
accuracy of our numerical integration of the EoMs. As pre-
viously stated, the error in our integration is corrected by the
accept/reject step. A more accurate integration corresponds to
a higher acceptance rate, but the configuration space probed
by each trajectory is diminished. Conversely, a less accurate
integrator allows HMC to probe more configuration space at
the expense of a lower acceptance rate. Since these examples
are so small, we produce an ensemble of fields {φ} by thermal-
izing for a few thousand trajectories and generating 10 000 to
100 000 HMC trajectories per simulation. We compute corre-
lators only on every 10th configuration to reduce autocorrela-
tions. Our uncertainties are given by the standard deviation of
bootstrap samples of the particular quantity in question.

The HMC ensembles and correlator data are available
online in Ref. [50]. This data was generated using Isle [51],
a new library currently in development for HMC calculations
in the Hubbard model.
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A. Exceptional configurations and zero eigenvalues

An exceptional configuration is one with zero weight in the
path integral. The zero weight implies an infinite potential in
the classical EoMs used in HMC, and as a trajectory nears
an exceptional configuration the force diverges. In the case
of the Hubbard model these zeros arise from a vanishing
fermion determinant, which in turn corresponds to a vanishing
eigenvalue of the fermion matrix.

For α = 0, the fact that det M can be positive and negative,
and is always real, implies that manifolds of exceptional
configurations partition the configuration space; there is a
formal ergodicity problem. We observe that the frequency
with which exceptional configurations are encountered in-
creases as one approaches the continuum limit Nt → ∞. This
can be understood by considering the noninteracting eigenval-
ues in (33). Two factors drive the increased frequency. First, δ,
which vanishes with increasing Nt , controls how close eigen-
values are to the origin. In the exponential discretization, the
radii go to 1 with vanishing δ. In the diagonal discretization,
the rings’ centers converge on 1 with vanishing δ. The other
issue is that the rings of eigenvalues become increasingly
dense with Nt , as the Matsubara frequencies come closer
together. This observation also holds for the interacting case
with typical auxiliary field configurations.

The frequency of exceptional configurations also depends
on the spatial lattice. Again considering the noninteracting
limit and assuming the hopping term H0/κ has a vanishing
energy eigenvalue ε = 0. In the exponential case there is at
least one ring of eigenvalues with unit radius which puts the
eigenvalues close to the origin; in the diagonal case one of the
rings is centered exactly on 1.

Moreover, as the infinite-volume limit is taken the eigen-
values become more dense. For regular lattices with n nearest
neighbors, the nearest-neighbor hopping Hamiltonian H0/κ

has eigenvalues ε bounded by −n � ε � n. The number of
eigenvalues of the noninteracting Hamiltonian is given by the
number of sites; going towards the infinite volume limit means
more and more rings will appear and can get close to the
origin. This observation, again, is borne out of the interacting
case with typical auxiliary field configurations. Of course,
with a nonzero field configuration, the eigenvalues move and
the observations are only qualitatively true—the eigenvalues
are no longer exactly controlled by the noninteracting ener-
gies, for example.

Even when the lattice is large, some geometries may be
more favorable than others. The square lattice with periodic
boundary conditions always has a zero eigenvalue; the hon-
eycomb lattice only has a zero eigenvalue when the lattice
dimensions are congruent to 0 (mod 3).

In Fig. 1, we show the spectra of fermion matrix eigenval-
ues in the complex plane. The interacting eigenvalues for the
example exponential α = 0 configuration lie on rings centered
on 1 + 0i at angles determined by the Matsubara frequencies.
Were this generically true for all φ, the determinant would
always be positive and there would be no in-principle ergod-
icity problem. However, the eigenvalues are only constrained
to obey the partnerships in the exponential α = 0 portion of
Table I.

Another way to satisfy those relationships emerges when
two rings of eigenvalues have the same radius. Then, as φ

changes, the two rings can counter-rotate by the same angle,
still obeying the constraints of Table I. When the two counter-
rotated rings of eigenvalues eventually meet they can then
part, moving radially. Since the counter-rotation is always by
the same angle, when the rings part the eigenvalues always
lie on the rays determined by the Matsubara frequencies, or
exactly halfway between those frequencies—putting eigenval-
ues on the real axis. If one ring crosses r = 1, the determinant
changes sign.

We conjecture that once the eigenvalues are off of these
rays the only way to maintain all the symmetry properties of
the fermion matrix’s spectrum is to remain locked to the radius
where they first collided, and then once apart the symmetry
properties cannot be maintained unless the eigenvalues are
locked to the rays. We have not seen examples where more
than two rings all have the same radius and perform an
even more complicated dance, though such a dance may be
possible.

To illustrate the above statements, we track eigenvalues
of M from a configuration with positive determinant to a
configuration with negative determinant in Fig. 2. Animations
of the processes depicted in the figure are available in the
supplementary material [52]. In the animation of the α = 0
exponential case, one can see the inner ring crosses r = 1 be-
tween τ = 0.8430 and 0.8431 and the determinant flips sign.

We generated a single configuration φ− with a real, nega-
tive determinant for all four bases and discretization choices.
We show the spectrum of M[τφ−] where the fictitious time
τ runs from 0 (purple) to 1 (yellow), so that the spectrum
goes from the noninteracting spectrum, which has a positive
determinant, to the spectrum of φ− with negative determinant.
The two leftmost panels shows the eigenvalue trajectories
for the exponential α = 0 case, and f , related to the de-
terminant by (47). While it looks like the eigenvalues meet
and rotate around the point 1 at a radius r = 1, this is only
approximately true.

The other cases are similar to the exponential α = 0 case,
though the constraints on the eigenvalues are different. In
the exponential α = 1 case, the eigenvalues enjoy conjugate
reciprocity. If one eigenvalue crosses the origin, another
eigenvalue must cross in the opposite direction, preserving
the sign of the determinant. When instead two rings meet at
r = 1, the eigenvalues are their own conjugate reciprocals.
Then, the rings can rotate oppositely, though the angles they
rotate by need not be equal as there is no complex-conjugation
constraint as in the α = 0 case. The determinant changes sign
while the two rings rotate. When the two rings again meet,
they can part radially, preserving the conjugate reciprocity
constraint.

Eigenvalues in the α = 0 diagonal case are no longer
locked to the rays, because the eigenvalues do not come in
perfect rings. However, the complex-conjugate pairing still
means a real eigenvalue must cross the origin to flip the sign
of the determinant.

In the α = 1 diagonal case, the eigenvalues need not meet
at all to traverse from a real and positive determinant to a
real and negative determinant. We show the movement of
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FIG. 2. Eigenvalues λ and f as in (47) for φ = τφ−, where det M[φ−] < 0 in all cases. The fictional time τ runs from 0 (purple), so that φ

is the noninteracting case and the determinant is positive, to 1 (yellow) so that the determinant is negative; intermediate values of τ are shown
in the color bar on the right. The eigenvalue trajectories are described in the text. The eigenvalue locations were computed on an Nt = 20
four-site honeycomb lattice with κβ = 4. See Ref. [52] for animations of these eigenvalue dances.

eigenvalues and f (defined by (47) even for the diagonal case
where such a factorization does not naturally emerge) for each
case in Fig. 2.

B. The one-site problem

Strictly speaking, the one-site problem is not bipartite.
However, since there is no hopping in this case, the tight-
binding Hamiltonian H0 can be ignored (κ = 0) and the ex-
ponential, linear, and diagonal discretizations (12), (13), and
(14) are all equivalent

M[φ]x′t ′,xt = δx′,xδt ′,t − eφxt δt ′,t+1. (64)

The determinant of the fermion matrix in this case can be
expressed in closed form:

det M[φ] = 2 cosh

(
�

2

)
e�/2, (65)

det M[iφ] = 2 cos

(
�

2

)
ei�/2, (66)

where � = ∑Nt
t φt as in (31). We see that

f [φ] = 2 cosh(�/2), f [iφ] = 2 cos(�/2), (67)

that f is even, and that f [φ] does not go through zero, while
f [iφ] does. Thus we expect that the particle/hole basis has
infinite barriers in the artificial Hamiltonian, and formally has
ergodicity issues, while the spin basis has no formal ergodicity
issue.

However, as we shall show shortly, calculations in the spin
basis exhibit a bimodal distribution that becomes increasingly
separated for large Uβ. Though calculations in this basis do
not formally suffer from ergodicity issues as det M[φ] never
vanishes for any φ, in practice the separation of the modes for
large Uβ essentially separates two regions that are extremely
unlikely to be connected via HMC, regardless of the accuracy

of the integration of the EoMs. This presents an in practice
ergodicity issue.

Using (65) with (10), one finds that the weight of a field
configuration φ is given, up to an overall normalization, by

W [φ] = det M[φ] det M[−φ]e− 1
2Ũ

∑
t φ2

t

= 4 cosh2

(
�

2

)
e− 1

2Ũ

∑
t φ2

t (68)

= 4 cosh2

(
�

2

)
e− 1

2Uβ
�2

exp

(
− 1

4Uβ

∑
t1,t2

(φt1 − φt2 )2

)
.

(69)

Note that after completing the squares in the exponent, we
have completely exposed the � dependence of the probability
weight. The other factor,

exp

(
− 1

4Uβ

∑
t1,t2

(φt1 − φt2 )2

)
, (70)

can be shown to be independent of �, by directly differentiat-
ing with respect to � and using ∂�/∂φt = 1 and ∂φi/∂φ j =
δi j for simplification. Thus the distribution of � is bimodal, as

seen in the factor 4 cosh ( �
2 )

2
e− 1

2Uβ
�2

in (69). This distribution
is strongly peaked about � ≈ ±Uβ, implying that the peaks
of the modes are separated by a distance 2Uβ, and is expo-
nentially small in between. This analysis also shows that the
modes become further separated when either U is increased
(strong-coupling limit), or β is increased (zero temperature
limit), or both.

For the α = 1 case, using (66) with (11) gives

W [φ] = det M[iφ] det M[−iφ]e− 1
2Ũ

∑
t φ2

t

= 4 cos2

(
�

2

)
e− 1

2Uβ
�2

e− 1
4Uβ

∑
t1 ,t2

(φt1 −φt2 )2

. (71)
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FIG. 3. Contours of constant probability, (69) (left, α = 0) and (71) (right, α = 1) with Uβ = 18 and Nt = 2 for the one-site problem,
where the subscript on the Hubbard-Stratonovich fields φ indicates the time slice. The dark contours represent high probability density, which
decreases as the contours get lighter. The � axis runs from bottom left to top right. (Right) The diagonal (black) lines correspond to locations
where the probability weight (71) is exactly zero, creating barriers to HMC; their regular spacing is a consequence of the periodicity of the
determinant, discussed in Sec. II D 3. We show every tenth configuration of 10 000 configurations (generated with a very precise integrator) as
points. It is evident that the HMC algorithm was trapped in a region of high probability density in the α = 0 case by the wide separation with
low probability density and in the α = 1 case by the lines of zero weight.

The last factor is the same as before and is �-independent,
and thus the manifold of zeros is indeed codimension 1 so
that a precise HMC integrator cannot circumnavigate the zeros
and a formal ergodicity problem arises. The distribution of �

is determined by 4 cos2( �
2 )e− 1

2Uβ
�2

, a product of a Gaussian
of width

√
Uβ centered at � = 0 and a simple, periodic

cos2( �
2 ) function. The zeros of cos( �

2 ) dictate the zeros of the
kernel, and we find zeros at � = (2n + 1)π for all integers
n, independent of the value Uβ. This function is multimodal,
but the modes remain close together, even as U or β are taken
large. Rather than separating two important modes, taking
the low-temperature or strong-coupling limit broadens the
Gaussian and increases the number of important modes. We
can analytically determine the probability distribution for �,

W [�] = e− �2

2Uβ
− Uβ

4 cosh2
(

�
2

)
√

2πUβ cosh
(Uβ

4

) (α = 0), (72)

W [i�] = e− �2

2Uβ
+ Uβ

4 cos2
(

�
2

)
√

2πUβ cosh
(Uβ

4

) (α = 1). (73)

Note that these expressions depend only on the product Uβ,
and in particular are independent of Nt .

As a visual aid, we consider the Nt = 2 case. Here there
are only two Hubbard-Stratonovich degrees of freedom, φ1

and φ2. We plot contours of the kernels for the two bases
[(69) and (71)] in the case when Uβ = 18, so that the modes
in the α = 0 case are well-separated, in Fig. 3 and also show
the codimension-1 manifolds that produce a formal ergodicity
problem in the case of α = 1. Note that such lines are absent
in the α = 0 case. Nevertheless, in both cases we will get a bi-
ased result—the α = 0 case has an in-practice problem caused
by the isolation of modes by a region of very small probability
density. For both cases, we generated 10 000 configurations

using a precise HMC integrator (with 20 leapfrog steps for
a unit-length molecular dynamics trajectory, yielding a near
100% acceptance rate), shown as points. The � axis in these
plots runs along the diagonal from bottom left to top right,
and the numerical distribution generated by HMC is clearly
not symmetric around � = 0, a feature clear in the analytic
expressions (72) and (73) and guaranteed by the fact that f is
even (47).

We can also study problems with substantially larger Nt ,
or equivalently, finer discretizations. One observable that is of
interest is the correlation function Ci j (τ ), where i, j refer to
spatial locations. For the one-site problem, we are restricted
to i = j = 1. In the continuum limit, we can compute the
correlation function exactly

C11(τ ) ≡ 〈a(τ ) a†(0)〉

=
〈∑

t

(
M−1

11

)
t+τ,t

〉
= cosh(U (β − 2τ )/4)

2 cosh(Uβ/4)
, (74)

which, being a continuum-limit quantity, is independent of δ.
We can estimate C as an ensemble average over configurations
generated by HMC by

Ci j (τ ) ≈ 1

Nc

∑
φ∈{φ}

∑
t

M−1
i j

[{
φ if α = 0

iφ if α = 1

]
t+τ,t

, (75)

where Nc is the number of generated Hubbard-Stratonovich
field configurations in the ensemble {φ}. Lack of ergodicity in
our sampling of φ will give disagreement between simulated
and exact correlators. To demonstrate this, we consider in
Fig. 4 as case using a precise MD integrator (acceptance rate
>99%) with extreme U/κ = 10 and βκ = 6, so that when
α = 0 the modes are widely separated and when α = 1 many
modes contribute. The top row corresponds to α = 0, whereas
the bottom row is α = 1. The left column shows the histogram
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FIG. 4. Histograms of � and correlators for the one-site problem
with very fine integration. Monte Carlo evolution was started in
different lobes and the trajectories are stuck in those lobes, shown
by the different colors. All ensembles consist of 50 k thermalized
configurations. Single-particle correlators to the right are color coded
to match the histograms in the left column. Points where C(τ ) � 0
are not shown because of the logarithmic scale. The black lines show
the exact results. The histograms are all normalized but, because
HMC was trapped, the numerically generated histograms are much
taller and thinner than the exact results.

of � = ∑
t φt for different runs, while the right column shows

the calculated correlators. In all plots, the black line is the
exact result. Different HMC runs are differentiated by color.
For the α = 0 case, it is clear that the HMC trajectories are
trapped in one of the two modes (top left panel), despite
there being no regions with det M = 0. The corresponding
correlators calculated with these fields are color-matched and
shown in the top right panel. Clearly the sampling of fields is
grossly biased, and this is reflected in the large disagreement
between simulated and exact correlators. For the α = 1 case,
three different runs (red, blue, and green) were performed

with different starting points for �, each separated by a point
where det M = 0. From the histogram (lower left panel), it is
clear that the runs are trapped within their respective sectors,
and their corresponding correlators (color matched with the
histograms) each differ from the exact result. Presumably, the
correct linear combination of these correlators [with relative
weights given by (73)] would give the exact correlator. Of
course, in a more complicated system we do not know such
weights a priori, and therefore would not know how to
combine such correlators to produce the correct result.

These examples, though extreme, demonstrate how both
formal (for α = 1) and in practice (for α = 0) ergodicity prob-
lems can arise in HMC simulations, even when simulations
are of the same physical system. The choice of basis greatly
influences the behavior of the sampled field configurations,
and in turn can drastically impact calculated observables such
as the correlator.

C. The two-site problem

We now consider the two-site problem to demonstrate how
different discretizations can lead to ergodicity issues. To keep
the presentation reasonable, we restrict our analysis to the
exponential and diagonal discretizations given by (12) and
(14), respectively, using the α = 0 and 1 bases.7 In (14), the
term h is given by

hx′,x = κ̃δ〈x′,x〉 =
(

0 κ̃

κ̃ 0

)
, (76)

while the matrix in (12) is its exponential, given by

[eh]x′,x =
(

cosh κ̃ sinh κ̃

sinh κ̃ cosh κ̃

)
. (77)

For extreme simplicity, we turn to the problem of two sites
on a single time slice where, as in the previous section, there
are two degrees of freedom, φ1 and φ2, the label now indicates
the spatial site. Adopting the factorization shown in (47) of the
determinant of the fermion matrix, we have that

f [φ] =
{

2
[

cosh(�/2) + cosh
(

φ1−φ2

2

)
cosh(κ̃ )

]
exponential discretization

2
[

cosh(�/2) + cosh
(

φ1−φ2

2

) − κ̃2

2 e−�/2
]

diagonal discretization
, (78)

where again � = φ1 + φ2. Close inspection of the equations
above shows that both f [φ] and f [iφ] are always real in
the exponential discretization. In the diagonal discretization,
on the other hand, only f [φ] is real and f [iφ] is in general
complex.

The probability density

W [φ] ∝ f [φ] f [−φ]e− φ2
1 +φ2

2
2Uβ (79)

is positive semidefinite for both discretizations with α = 1
because f [iφ] f [−iφ] = | f [iφ]|2. In the exponential α = 0
case it is positive definite as well because f [φ] is. Positive
(semi)-definiteness is however not guaranteed in the diagonal
discretization with α = 0. For large enough values of κ̃ ,
the product f [φ] f [−φ] can become negative, which means

that (79) cannot be interpreted as a probability distribution.
Normally this is not an issue; we can increase Nt and positivity
is eventually assured. However, for this particular example,
we must enforce an additional constraint to maintain positiv-
ity, namely, κ̃2 � 1.

Figure 5 shows probability contours of this single-time
slice problem in the case when Ũ =Uβ = 18 and κ̃ = κβ = 1
for these different discretizations and bases as well as

7In simple cases, we have found that the linear discretization
(13) exhibits the same behavior as that of the diagonal discretization
(14) but have not explored the linear case as extensively. The lack of
conjugate reciprocity suggests there ought to be no formal ergodicity
problem when α = 1.
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FIG. 5. Contours of constant probability weight (79) using the exponential discretization (left column) and the diagonal discretization
(right column) with α = 0 (top row) and α = 1 (bottom row) for the two-site problem with Uβ = 18, κβ = 1, and Nt = 1. Contour colors
range from orange (light) for large to blue (dark) for small values in arbitrary units. In the bottom panels, the black diagonal squiggly lines and
regularly spaced black dots correspond to locations where (79) is exactly zero; their regular spacing is a consequence of the periodicity of the
determinant, discussed in Sec. II D 3. Crossing a black line changes the sign of the fermion determinant. The colored points show 10 k HMC
trajectories. For α = 0, evolution was started in different modes of the field space, shown in different colors. For α = 1, evolution was started
at the origin with a small random deviation. The outer histograms show the marginal distributions in φ1 and φ2 where the black lines are the
exact results obtained from (79).

field configurations generated by HMC with a fine integrator
(acceptance rate >99%).

Regardless of discretization, α = 0 exhibits no field con-
figurations of zero weight when κ̃ � 1, so there is no formal
ergodicity problem. HMC nevertheless gets trapped in single
lobes of the probability distribution, and there is a problem in
practice. In the case of the diagonal discretization, the two
modes are symmetric about the φ1 = φ2 line, and the his-
togram of � will not show evidence of this bimodal structure
as � is peaked about zero in both modes in the same way.

With α = 1 there are field configurations with zero weight.
With the exponential discretization given by (12) there are
entire lines of zero weight, separating the field space into dif-
ferent sectors, and giving rise to a formal ergodicity problem.
With a fine integrator, HMC gets trapped between the infinite
barriers.

The α = 1 case with the diagonal discretization given by
(14) is particularly interesting since the probability density
vanishes only at isolated points, not lines. Regions of relevant
weights are no longer separated by infinite barriers, and

therefore ergodicity is formally preserved. Evidence of this
is seen in the distribution of field configurations generated by
HMC, shown as red points. The HMC algorithm successfully
reached into nearby basins that would have been unreachable
in the case of the other discretization. The diagonal discretiza-
tion is clearly less restrictive in the α = 1 case, compared to
the exponential discretization.

The preceding example has only little bearing on a realistic
calculation due to the fact that it represents a single time slice
calculation. Before considering a larger Nt case, we point out
that we can mimic a finer time discretization by reducing
κ . This can also be viewed as taking the strong-coupling
U/κ � 1 limit. Figure 6 shows the contours in the case where
κ has been reduced by an order of magnitude compared to
Fig. 5. Note that all contours within their respective α bases
are nearly the same for both discretizations, giving credence
to our claim that the discretizations become equivalent in the
continuum limit. This is despite the fact that for α = 1 the
allowed values where det M[iφ] = 0 (black lines and dots of
bottom row) are topologically different.
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FIG. 6. Analogous contours to Fig. 5 but using κ = 0.1 to mimic approaching the continuum limit. The exponential and diagonal
discretizations now have very similar probability contours. For the α = 1 case, the black lines of zero weight of the exponential discretization
pinch and nearly close, while the zero-weight configurations remain isolated in the diagonal discretization.

We now consider Nt = 40 again with extreme U/κ = 10
and βκ = 6. In Fig. 7, we show the distribution of �x ≡∑

t φxt as in (31) from different HMC simulations using
the different bases and discretizations. We again use a high
precision integrator with acceptance rate >99%. The left
column represents the exponential discretization and the right
the diagonal one. The top row has α = 0, the bottom α = 1.
Histograms of �1 and �2 are also shown in the figures.
Recall that in the large U/κ limit, the hopping term be-
comes negligible compared to the on-site interaction and the
two-site problem factors into the product of two one-site
problems, as discussed in Sec. II E. One expects then that
the distributions of �x are given by (72) and (73), which
are shown as black lines in the marginal histograms. The
fact that our simulated distributions qualitatively agree with
these distributions is due to the fact that Uβ = 60 is in
the strong-coupling regime. For the α = 0 case, it is clear
that there is a multimodal distribution and HMC trajectories
are separated into these modes, even though there are no
configurations with det M = 0, which is similar to the one-
site case. HMC samplings are again grossly biased. For the
exponential α = 1 case (bottom left panel), trajectories are
also biased because of the separation of regions by det M = 0.
The sampling of fields for the diagonal α = 1 case (bottom

right) on the other hand is relatively symmetric and seemingly
unbiased.

For the two-site system, there are two linearly independent
correlators. If we label one site A, and the other B, then the
two correlators are

C±(τ ) = 1
2 (CAA(τ ) + CBB(τ ) ± [CAB(τ ) + CBA(τ )]), (80)

where Ci j (τ ) represents the correlator of a quasiparticle start-
ing at site i and propagating to site j and is estimated by
(75). In the strong-coupling limit, these two correlators ap-
proach the 1-site correlator solution of (74). In Fig. 8, we
show the corresponding calculated correlators from the field
distributions in Fig. 7, arranged and colored in the same way.
As expected, the correlators for the α = 0 case agree very
poorly with the exact result given by the black lines due to
the biased sampling of fields. In the exponential α = 1 case,
the red points sampled from the diagonal band in Fig. 7 show
only a small deviation from the exact result in regions with
small noise. If a different band is sampled however, deviations
can be larger as demonstrated by the blue points which show
a clear deviation from the black line. The impact of an
ergodicity problem on correlators depends on the contributing
states as demonstrated in the next section. On the other hand,
correlators calculated in the diagonal α = 1 case have better
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FIG. 7. HMC history of �x = ∑
t φxt for the two-site problem with 100 k trajectories with Uβ = 60, κβ = 6, and Nt = 40. Only every

100th trajectory of each ensemble is shown. Several HMC streams for each case were produced by starting in different modes in configuration
space as indicated by color. Only for α = 1, diagonal there is no difference, where the run is started, so only one stream is shown. The black
lines in the marginal distributions for �1 and �2 are the exact one-site distributions which are recovered in the strong-coupling limit. The
contours show the product of the one-site distributions and are not exact results for this case.

agreement with the exact results, particularly for early and late
times, due to a less biased sampling of fields.

These examples give further evidence of how the choice
of bases can impact the sampled fields, as discussed in the
previous section. In addition to this, however, is the fact that
different discretizations can also lead to disparate sampling
of fields, and ultimately impact the fidelity of observable
calculations. In Appendix D, we use these same ensembles
to calculate other observables and similarly find that the
exponential discretization can suffer from ergodicity problems
that are absent in the diagonal case.

D. The four-site problem

Up to this point only the exponential α = 1 discretizaton
has exhibited cases where det M is always real and can be
negative. With four and more sites, the exponential α = 0
discretization also exhibits det M < 0 cases, as was originally
pointed out in Ref. [40]. It would be interesting to understand
why the two site problem is protected from negative determi-
nants in the other cases.

Reference [40] argued that the initial starting point of the
HMC evolution can lead to drastically different results due to

the separation of det M < 0 and det M > 0 in the exponential
α = 0 case. The authors provide an explicit example of the
equal-site 〈Cii(τ )〉 correlator calculated on a 4×4 square lat-
tice, showing a clear dependence of the correlator determined
from HMC runs that originated from either a det M > 0 or a
det M < 0 configuration (Fig. 1 of Ref. [40]). Ergodicity is
clearly violated in these extreme cases. We reproduce these
results in Appendix B. However, we find that the diagonal
α = 1 seems not to suffer from this problem (see Fig. 17 of
Appendix B).

To substantiate our claim, we consider instead the 2×2
square lattice Hubbard model (four sites) and repeat the
exercise that was done for the 4×4 case of Ref. [40]. The
added benefit here is that we can compare directly to exact
solutions obtained via direct diagonalization. We do exactly
this by considering correlators in momentum space,

C±(k, τ ) = 1

2

∑
x

eik·xC±(x, τ ), (81)

where the sum is over unit cell locations (each unit cell
containing one A site and one B site) and C±(x, τ ) is given
by Eq. (80) but now with explicit unit cell location x in its
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FIG. 8. Correlators from Eq. (80) color coded to match the ensembles shown in Fig. 7. Points where C(τ ) � 0 are not shown because of
the logarithmic scale. The black lines show exact results from direct diagonalization of the two-site Hubbard model. For clarity, the figure
shows only C+, C− behaves in the same way.

argument. As there are two allowed momenta for this system,
ak = (0, 0) and (π/2, π/2), there are in principle a total of
four possible correlators. However, at ak = (π/2, π/2), one
has C+ = C−, and thus we have only three distinct correlators.

In Fig. 9, we show these three correlators for the
four different discretization schemes and bases. For
both α = 0 cases, we start the HMC evolution from a
det M[φ] < 0 configuration while for the α = 1, exponential
discretization the evolution starts at a configuration such that
0 > e−i�/2 det M[φ] ∈R in accordance with Eq. (51). For
the remaining diagonal α = 1 case, no such criterion can be
formulated since the determinant is complex and does not
factorize as in the exponential case. In all cases, we use a very
precise MD integrator. It is clear from the disagreement with
the exact result that the HMC trajectories are not properly
sampling all the important regions of configuration space. It is
worth noting that not all correlators are affected by the lack of
ergodicity in the same way. For the exponential α = 1 case,
the higher-energy correlators (green and blue) are very pre-
cise, only the ground-state correlator shows a strong deviation.

When we consider the histograms of the MC histories of
det M for the α = 0 and exponential α = 1 cases, as shown in
Fig. 10, we find that det M is confined to the negative region
only. Ergodicity is indeed violated. The lone exception is the
diagonal α = 1 case whose correlators agree very well with
the exact result (bottom right panel of Fig. 9). The corre-

sponding histogram of the MC history is shown in the bottom
right panel of Figure 10. In this case, since det M is complex,
the histogram is shown as a density on the complex plane. In
this case, the zero of det M can be easily circumnavigated and
there does not exist an ergodicity problem.

IV. OVERCOMING ERGODICITY ISSUES

Reference [40] already showed that one may avoid ergod-
icity issues by complexifying the auxilliary field (taking an
intermediate value of α). In this section, we will examine a
variety of other solutions.

A. Coarse molecular dynamics integration

When the molecular dynamics integrator is not very pre-
cise, the Markov chain can hop over the barriers that separate
neighboring basins in configuration space in the particle/hole
basis. This, for all practical purposes, avoids the ergodicity
issues as long as the integrator takes sufficiently coarse steps.
We have found that targeting an acceptance rate of around
70% allows the integrator to readily explore the areas in field
space that would be separated by an impenetrable barrier in
the case of a very precise integrator.

We emphasize that the numerical “errors” introduced by
using an imprecise molecular dynamics integrator do not
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FIG. 9. Dependence of correlators on initial HMC configuration. The red correlators are calculated at ak = (π/2, π/2) which for this case
means that C+ = C−. The green and blue correlators (lower, off center minima) are calculated at ak = (0, 0). For α = 0 the initial configuration
was chosen such that det M[φ] < 0. For α = 1, exponential discretization the starting configuration satisfies 0 > e−i�/2 det M[φ] ∈ R. For
α = 1, diagonal no particular starting criterion was set. All plots show data from 2400 trajectories. The starting criteria stayed fulfilled for all
of those configurations.

invalidate the stochastic algorithm. In other words, HMC with
a coarse integrator is still a valid proposal generator from the
perspective of the Metropolis-Hastings algorithm. As long as
the accept/reject step is maintained and the integration is re-
versible, the algorithm still faithfully samples the distribution
dictated by the action in the path integral.

In the spin basis, the basins of � for the one-site problem
grow farther apart when increasing Uβ. Between the two
modes the probability is never zero, but is nevertheless expo-
nentially small. Unless an extremely coarse integrator with a
long trajectory length is used, it seems unlikely that molecular
dynamics can cross such a wide exponentially small region.

With a fixed molecular dynamics time between trajectories,
there is a limit to how coarse the integration may be made.
With either a very or moderately coarse integrator combined
with a long molecular dynamics time between configurations,
we expect the acceptance rate to plummet. There thus may
be an in-practice problem of rejecting too frequently, not
evolving the configuration enough, or an explosion of com-
putational cost.

In Fig. 11, we see that coarse integration allows the α = 1
case to jump over the exact zeros, whereas the fine integration

was trapped in the initial mode, as seen in Fig. 4. In contrast,
we can see that coarse integration does not alleviate the in-
practice problem seen in the α = 0 case because the modes
are so widely separated.

A similar improvement can be observed in two-site prob-
lem when using a coarse integrator with ≈60% acceptance
rate. Figure 12 shows that configurations in this case are more
evenly distributed for α = 1, especially in the exponential
discretization; compare with Fig. 7. For α = 0, however, there
is no change compared to the fine integrator as expected.

The correlators in Fig. 13 show no significant improvement
over those in Fig. 8 for a fine integrator. It is however no longer
possible to construct an ensemble that is stuck in a specific
region of configuration space and leads to a systematically
biased correlator in the exponential α = 1 case, cf. Figs. 7
and 8. Noise in the systematically wrong medium τ range
has increased for α = 0, particularly strongly in the diagonal
discretization.

Once many sites are included, it may be infeasible to rely
on a coarse integrator for crossing zeros, so it is worthwhile
to consider additional techniques to aid ergodic exploration of
the configuration space [40,48].

075141-21



JAN-LUKAS WYNEN et al. PHYSICAL REVIEW B 100, 075141 (2019)

FIG. 10. Histograms of det M for the α = 0 basis (top row) and diagonal α = 1 case (bottom right), and e−i�/2 det M[φ] for the exponential
α = 1 case (bottom left) for the ensembles used for Fig. 9. Except for the diagonal α = 1 case, all quantities are real. In the diagonal α = 1
case, det M is complex and the domain of the histogram is the complex plane.

B. Symmetrization

For the one-site problem in the spin basis, the in-practice
ergodicity problem arises entirely because of the large sep-
aration of the modes in � in (72) and a possible solution
immediately presents itself. If the configuration φ corresponds
to �, the field configuration −φ corresponds to −�.

Then, we can perform Monte Carlo on equivalence classes
of φ—for each step in the Markov chain, we receive two
(entirely correlated) field configurations, φ and −φ, perform
measurements on both configurations and average the result.
Since their weights are exactly equal, we know they appear
equally often in the original method of simply sampling indi-
vidual field configurations—we simply ensure the different �

lobes are sampled equally without the need to cross over the
wide, exponentially small barrier.

This approach is not restricted to the one-site problem.
Recall that, as discussed in Sec. II D 1, W [φ] = W [−φ] in-
dependent of basis and α at half-filling on a bipartite lattice.

In Fig. 11, the α = 0 case has coarse HMC integration that
is trapped in one of the two modes. The purple correlator in
the top-right panel is the average of the correlation function
measured on φ and −φ for each configuration. The improve-
ment is obvious.

Looking at the basins and boundaries in the lower-left
panels of Figs. 5 and 7 makes it clear that this symmetrization

is not a complete solution for the exponential α = 1 case. For
example, if HMC winds up in a basin that does not include
φ = 0, no symmetrization will ever get it there. For the α = 0
cases in those figures, it is clear that this symmetrization still
fails to join different regions of nonzero probability.

Generalizing from just the charge conjugation operation
φ → −φ, we can also immediately symmetrize in terms of the
other operational symmetries discussed in Sec. II D: temporal
shifts, time reversal, and the spatial symmetries of the lattice.
Put another way, if observables are formulated that are invari-
ant under these operations, the ergodicity problem is reduced
from the full configuration space to only the configuration
space with these symmetries modded out.

This symmetrization may be performed stochastically,
as well. For example, one often finds that in lattice QCD
literature the chiral condensate is evaluated on stochastic
noise sources or that correlation functions are measured from
sources on different randomly chosen sites in the lattice for
each field configuration.

Unfortunately, this is not a cure-all. Since the determinant
is invariant under many of these symmetries, it cannot repair
the in-principle problem we might encounter in, for example,
the exponential α = 0 many-site problem where we know,
from (47), a formal problem that requires flipping the deter-
minant’s sign can arise.
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FIG. 11. Same as Fig. 4 but with coarser integration with an acceptance rate of about 60%. For α = 0, Monte Carlo evolution was started
in the right hand lobe and remained stuck there. Both ensembles consist of 50k thermalized configurations. The purple correlator is C�(φ) =
(C•(φ) + C•(−φ))/2, the result of the symmetrization discussed in Sec. IV B.

C. Large jumps

Rather than restricting Markov chain updates to HMC only,
one can use a mix of proposal generators followed by the
Metropolis accept/reject step. Those proposal machines must
be statistically balanced so that the first criterion discussed in
Sec. II A is fulfilled. In addition, selecting which proposer to
use based on the current field configuration is not allowed.
One approach is that of tempered transitions [53,54] which
have found recent application in, for example, the study of the
0 + 1-dimensional Thirring model [55].

Another approach is to interleave large mode jumps [56]
with normal HMC. By making a large change to the field
configuration that is not produced by integrating equations
of motion, the barriers that repel HMC trajectories, or the
uncrossable valleys separating modes, can be bypassed. How-
ever, as shown by the inefficacy of simple random updates, it
can be a challenge to make a proposal with a large change
to the field configuration such that the new configuration
contributes meaningfully to the partition function and the
proposal is thus likely to be accepted.

By taking advantage of some of the features of the problem,
we can propose large jumps to new regions in configuration
space where the weight of the new field configuration is non-
negligible. In the general case, it is hard to analytically extract
features of the probability weight function. In the previous
section, we saw that we could use symmetries to better cover
the configuration space.

In fact, the symmetries that emerge in the strong or
weak-coupling limits can also be used to generate proposals.

However, while a true symmetry operation is guaranteed to
produce an accepted configuration, these other operations
need not be accepted by the Metropolis step. The symmetries
that emerge in the strong and weak-coupling regime were
reviewed in Sec. II E.

It may be possible to craft proposals based on knowledge
of the probability distribution in the weak-coupling limit.
However, the failure of perturbation theory for problems of
interest suggests these proposals will hardly ever be accepted
in a calculation. We therefore leave the detailed description of
these proposals to other work and focus on the approximate
factorization of (55).

In the strong-coupling limit, we can flip the sign of φ on a
thread of spatial sites, temporally shift or time-reverse threads
individually, and arbitrarily permute the spatial threads rather
than remain restricted to symmetries of the lattice. Proposals
adjusting φ according to those manipulations are likeley to be
accepted if the system of interest is sufficiently close to the
appropriate limit.

1. Spin basis

As an example, in the strong-coupling limit we can take
advantage of our knowledge of the probability distribution
for the one-site field configurations. For convenience, we
reproduce (72) here:

W1[φ] = e− �2

2Uβ
− Uβ

4 cosh2
(

�
2

)
√

2πUβ cosh
(Uβ

4

) (α = 0), (82)

075141-23



JAN-LUKAS WYNEN et al. PHYSICAL REVIEW B 100, 075141 (2019)

FIG. 12. HMC history of �x for the two-site problem with 100 k trajectories and a coarse integrator. Only every 100th trajectory of each
ensemble is shown. The black lines in the marginal distributions for �1 and �2 are the exact one-site distributions which are recovered in the
strong-coupling limit. The contours show the product of the one-site distributions and are not exact results for this case.

where we attach a 1 subscript to emphasize it is for the one-
site problem.

The one-site probability distribution is symmetric under
� → −�. In the strong-coupling limit, the probability distri-
bution for a problem with Nx spatial sites is simply the product
of the one-site distribution for each site. The probability is
concentrated on the corners of an Nx-dimensional hypercube
whose 2Nx vertices have value �x � ±Uβ.

That distribution is invariant if we send � → −� indepen-
dently for each single spatial site across all time,

�x → signx�x, (83)

where �x = ∑
t φx,t , the auxiliary field summed across all

time but only on a single site, as in (31) (and so � = ∑
x �x).

We can pick any subset of the spatial lattice, and negate all the
auxiliary fields for all time for those sites.

For the one-site problem with α = 0 in the strong-coupling
limit, this operation allows us to propose a new configuration
with the same weight but in another mode that will always be
accepted. Away from strong coupling the guarantee of equal
weight no longer holds as the factorization of the path integral
fails. Assuming the probability weight does not deform too
much, we can visit all the modes with proposals of this type.

Regardless of Uβ, this eliminates the in-practice sampling
problem one might encounter due to widely separated modes,
but does not resolve the possible formal problems.

We demonstrate the success of this method in Figs. 14 and
15. They show results from a run using a coarse integrator
with an acceptance rate of ≈60% augmented by random sign
flips based on (83) every 100 trajectories. The sign is chosen
for each spatial lattice site separately and with equal probabil-
ity for either sign. Evidently, these jumps allow sampling the
far apart lobes for α = 0 which is not possible with just the
fine or coarse integrator (compare to Figs. 7 and 12).

The correlators in Fig. 15 are similar to those in Fig. 8. The
most notable difference is that for α = 0 the minimum is now
in the correct place whereas it was shifted to the right for the
fine integrator without sign flips. Another unknown systematic
remains however.

2. Particle-hole basis

For the one-site problem with α = 1 in the strong-coupling
limit, the sign-flipping operation in (83) yields a proposed
configuration in a different domain from where HMC might
be currently stuck. However, as mentioned in Sec. IV B, this
operation helps to symmetrize the distribution around zero,

075141-24



AVOIDING ERGODICITY PROBLEMS IN LATTICE … PHYSICAL REVIEW B 100, 075141 (2019)

FIG. 13. Correlators from Eq. (80) for the ensembles shown in Fig. 12. Points where C(τ ) � 0 are not shown because of the logarithmic
scale. The black lines show exact results from direct diagonalization of the two-site Hubbard model. For clarity, the figure shows only C+, C−
behaves in the same way.

but it does not allow us to access all the modes and thus does
not offer a complete solution.

We nonetheless use those sign flips in Figs. 14 and 15.
In this simple case this operation (paired with a coarse MD
integrator) is sufficient to sample the relevant region of con-
figuration space properly. This has no discernible impact on
the correlators however which is likely caused by the large
noise for medium τ .

When α = 1 the one-site result is (73)

W1[iφ] = e− �2

2Uβ
+ Uβ

4 cos2
(

�
2

)
√

2πUβ cosh
(Uβ

4

) (α = 1). (84)

The full probability distribution in the strong-coupling limit
is simply the product of this distribution for each site, and is
concentrated around the origin �x = 0.

In this case, we can also propose a new configuration by
increasing or decreasing all the auxiliary fields on a single
spatial thread by 2π/Nt ,

φx,t → φx,t ± 2π

Nt
δx,x0 (85)

which changes �x0 by 2π , putting it on the other side of an
exact zero and thus into a different mode. Such a proposed

update will be accepted according to the ratio of probabilities8

W
[
i
(
φx,t ± 2π

Nt
δx,x0

)]
W [iφ]

= (ratios of determinants that cancel at strong coupling)

× e− 2π
Uβ

(π±�x0 )
, (86)

meaning that if the proposal drives �x0 towards zero it will
always be accepted and will occasionally be accepted if it
drives �x0 away from zero. This update will allow us to access
all the modes of �x0 without encumbrance from exact zeros in
the probability distribution. In the strong-coupling limit, we
may make this proposed update to each thread of spatial sites
independently. Away from strong coupling, this proposal may
nevertheless prove beneficial, assuming the probability weight
doesn’t deform too much. In fact, the 2π change in �x0 need
not be evenly spread across all the time slices, at the cost of
reducing the likelihood according to a change in (70).

In a similar spirit, we can use the field-shift transformation
(27), shifting each time slice by its own θt , and as long as the
shifts sum to 0 modulo 2π , according to (30), we can make

8This identity holds in general and not only in the strong-coupling
limit.
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FIG. 14. HMC history of �x = ∑
t φxt for the two-site problem with 100 k trajectories and a sign flip every 100 trajectories according to

(83). Only every 100th trajectory of each ensemble is shown. The black lines in the marginal distributions for �1 and �2 are the exact one-site
distributions which are recovered in the strong-coupling limit. The contours show the product of the one-site distributions and are not exact
results for this case.

the cancellation of the determinant exact,

W [i(φx,t + θt )]

W [iφ]

= (ratios of determinants that exactly cancel)

× e− 1
2Ũ

∑
t 2φt θt +Nxθ

2
t . (87)

If we pick a constant θt = ±2π/Nt we can simplify further,

W [i(φx,t ± 2π/Nt )]

W [iφ]
= e− 2π

Uβ
(πNx±�)

. (88)

The average acceptance rate is analyzed in Appendix C. In
Fig. 3, such a coordinated jump is a jump in the diagonal �

direction, orthogonal to the lines of zero determinant.
Most generally, we know that when α = 1 the determinants

are 2π periodic in each field variable. For a ±2π change on
site x0 at time t0 the ratio of the weights is simply given by the
ratio of the Gaussian factors,

W [i(φx,t ± 2πδx,x0δt,t0 )]

W [iφ]

= (ratios of determinants that exactly cancel)

× e− 2π

Ũ
(π±φx0 ,t0 ). (89)

We can independently propose and accept or reject a change
by ±2π on each site, knowing the determinant will remain
invariant. Again, if this drives the auxiliary field on a site
towards zero it will be accepted and it will occasionally
be accepted when the field is driven away from zero. This
proposal is entirely local and extremely speedy, not requiring
an evaluation of the determinant. Moreover, in the exponential
α = 1 case, each accepted change hops over a zero manifold,
as can be seen from (53). This alleviates the formal ergodicity
problem arising from conjugate reciprocity. In the diagonal
α = 1 case, while there is no formal ergodicity problem,
interleaving such a proposal can help in practice, especially
as barriers are raised as one approaches the continuum limit.

Reconsidering Fig. 3, it is clear that an evenly distributed
change of � by 2π is more likely to be accepted than a
2π shift in either auxiliary field variable alone, because a
coordinated jump tends to keep you close to the middle of
the Gaussian. As discussed in Appendix C, the acceptance
rate of coordinated jumps remains finite in the continuum
limit, while the acceptance rate for jumps in individual field
components vanishes in the continuum limit. Whether such
coordinated changes are guaranteed to cross every ergodicity
barrier remains obscure to us, while it seems apparent that
independent changes provide such assurance.
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FIG. 15. Correlators from Eq. (80) from the ensembles with sign flips shown in Fig. 14. Points where C(τ ) � 0 are not shown because
of the logarithmic scale. The black lines show exact results from direct diagonalization of the one-site Hubbard model. For clarity, the figure
shows only C+, C− behaves in the same way.

In Fig. 16, we show an example run in the two site system
with the exponential discretization. The integrator is as fine
as in Figs. 7 and 8 but every 100 trajectories two jumps are
performed. First, Nt Nx single site jumps by 2π are performed

on random sites and each is accepted or rejected according
to (89). Then, all field variables are shifted by ±2π/Nt in
a coordinated jump and the change is accepted or rejected
according to (88). The result shows a similar improvement

FIG. 16. HMC trajectories and correlator for the exponential α = 1 case with the same parameters as Figs. 7 and 8, but large jumps as in
Eqs. (88) and (89) every 100 trajectories. Only every 100 th trajectory is shown in the left panel and the ensemble consists of 100k trajectories
in total.
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to the sign flips in Figs. 14 and 15. The histogram shows
marked improvement, showing no hint of trapping, and the
correlation function is no longer incompatible with the exact
result, especially visible around κτ ∼ 1.5 − 2.

V. CONCLUSION

The issue of ergodicity is of great significance for the
validity of any stochastic calculation which relies on an
MCMC process. Throughout this work, we have emphasized
that ergodicity (or the lack thereof) has a formal as well
as a practical meaning. In the former case, regions in the
configuration space exist which are formally disconnected
due to appearance of boundaries of codimension 1, at which
det M[φ] = 0. In the latter case, such boundaries do not exist,
yet MCMC cannot sample all relevant regions of configura-
tion space in a practical amount of computing time. In other
words, thermalization and decorrelation would be exponen-
tially slow. In such cases, we speak of an in practice ergodicity
issue. We have investigated both situations, in terms of the
Hubbard model in 2D. In particular, we have shown that the
exponential discretization in the particle-hole basis exhibits a
formal ergodicity problem arising from conjugate reciprocity,
while the diagonal discretization in the particle-hole basis
does not.9 Furthermore, for the case of α = 0 (spin basis) at
large Uβ, an in practice ergodicity problem also appears, as
the field distributions fragment into widely separated multi-
modal lobes. HMC algorithms become trapped in one of these
lobes and require an exponential simulation time to traverse
to any other lobe, despite there being no boundaries where the
fermion determinant changes sign.

We note that ergodicity issues have been encountered nu-
merous times in MCMC simulations of lattice gauge theories.
In cases where the problem is formal, it is often observed
that it is sufficient (at least for small systems) to reduce
the accuracy of the MD integrator so that the det M[φ] = 0
barriers can be traversed. We have observed such behavior for
the α = 1 exponential discretization which has det M[φ] = 0
boundaries, which nevertheless could be traversed with suf-
ficiently coarse MD integration. However, this comes at the
price of reducing the acceptance rate of the HMC algorithm,
and for cases where U and β are very large, ergodicity can
no longer be restored by such brute force methods. For the
α = 0 basis (both exponential and diagonal), the separation
of the field distributions into widely spaced lobes at large
Uβ presents a more serious challenge for HMC, despite it
being an in practice rather than formal issue. For such cases,
we have proposed a new algorithm which takes advantage
of the symmetries of the action and the fermion matrix M.
Effectively, we augment the standard HMC algorithm with
large, carefully crafted jumps between regions of large prob-
ability. The accept/reject step of the algorithm ensures that

9In Ref. [57], the authors use a fermion operator not considered
here, where transport in time alternates between a linearized hopping
operator and interaction through the auxiliary field. They claim
that the simulations are free from ergodicity problems because the
determinant is complex, in line with our detailed argument.

each region is sampled with the correct relative probability.
We have found that such jumps fix this particular type of
in practice ergodicity problem.

Our studies were concentrated on histograms of the HS
field and single particle correlators. We stress that this does
not present a full proof that the algorithm is ergodic. It is, of
course, still possible that there is a problem caused by a barrier
that has escaped notice. It is therefore useful to carefully
verify that observables match known results that might be
calculated. If the algorithm is ergodic one expects a faithful
ensemble and that every observable match its true value.

In the α = 0 basis, we have observed the appearance of
configurations with det M[φ] � 0 for lattices with 4 or more
sites, as was also found in Ref. [40] for the 16-site problem.
We observe that the frequency with which negative determi-
nants occur increases dramatically with system size, which
we have attributed to an accumulation of states with nearly
zero energy. This is highly detrimental to the HMC algorithm
and its evolution, as the frequency with which exceptional
configurations are encountered also increases.

Our studies show how the reduction of symmetries re-
moved formal ergodicity issues. Missing from this discussion
are the implications of reduced symmetry for observables.
The reduction of symmetries had little to no effect on the
two-point correlators we have concentrated on (which give
access to quasi-single-particle energies). We note that this is
by no means a general statement. Still, a similar behavior
for the spin-density wave (SDW) order parameter was found
in Ref. [40]. On the other hand, in Ref. [58] the diagonal
discretization led to chiral symmetry violations that impacted
the spin-density wave order parameter, which can only be
restored in the continuum limit. Thus the restoration of er-
godicity in this case made the calculation of the SDW order
parameter more difficult, and emphasizes the need for a robust
continuum limit extrapolation. For additional evidence that
the diagonal discretization compromises on exact symmetries
in favor of better ergodic properties, the reader is pointed to
Appendix D.

In the examples we have considered here, we have taken
values of U and β which are deliberately chosen to be
large (such as Uβ � 60), in order to ensure that ergodicity
issues are not unduly suppressed. However, we note that
the α = 1 diagonal discretization was found to suffer from
neither formal nor practical ergodicity issues, even for ex-
treme values of U and β. When comparisons with exact
results are feasible (such as for one-site, two-site, and four-
site square and hexagonal lattices), we have found that this
discretization performed equally well as the other ones (after
application of the remedies mentioned above). For cases with
large U and β, the diagonal α = 1 discretization was found
to be superior, as it requires no modification to the HMC
algorithm, nor monitoring for exceptional configurations. For
the 16-site calculation, we were able to reproduce published
results from the BSS algorithm and never encountered any
exceptional configurations. For these reasons, we conclude
that the diagonal discretization with α = 1 is optimal for
our purposes, even though it only recovers the exact chiral
symmetry of the exponential discretization in the continuum
limit.
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APPENDIX A: DETERMINANTS

1. Cyclic lower block bidiagonal matrices

In this section, we derive the central equations for the
determinants of the fermion matrices. We look at matrices of
the form

Mx′t ′,xt = Dx′,xδt ′,t − (Tt ′ )x′,xBt ′δt ′,t+1, (A1)

where

Bt ≡
{+1, 0 < t < Nt

−1, t = 0
(A2)

encodes antiperiodic boundary conditions in time and is
factored out to simplify representing M = Me or M = Md .
In time-major layout, M is a cyclic lower block bidiagonal
Nt×Nt matrix with blocks of size Nx×Nx. Written in matrix
form this is

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

D T0

−T1 D

−T2 D

. . .
. . .

−TNt −1 D

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A3)

We can compute the determinant of M by means of an LU
decomposition in terms of the matrices D and Tt . This decom-
position can be performed by hand thanks to the sparsity of
M. We use the following ansatz which is an adaptation of the
ansatz presented in Ref. [60]:

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

l0 1

l1
. . .

. . . 1

ln−3 1

ln−2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d0 v0

d1 v1

d2
...

. . . vn−3

dn−2 vn−2

dn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A4)

Multiplying out LU = M and solving the straightforward recursive equations gives

di = D for 0 � i < Nt − 1, (A5)

dNt −1 = D(1 + A), (A6)

vi = DA0,i, (A7)

li = −Ti+1D−1. (A8)

Here we have used

At,t ′ ≡ D−1Tt ′D−1Ti−1 · · · D−1Tt , (A9)

A ≡ A0,Nt −1. (A10)

The determinant can be computed from the determinants of the blocks on the diagonals using

det M = det L det U =
(

Nt −1∏
i=0

det 1

)(
Nt −1∏
i=0

det di

)

= (det D)Nt −1 det D(1 + A)

= (det D)Nt det
(
1 + D−1TNt −1D−1TNt −2 · · · D−1T1D−1T0

)
. (A11)

This result can alternatively be written as

det M = det
(
TNt −1TNt −2 · · · T0

)
det

(
1 + T −1

0 DT −1
1 D · · · T −1

Nt −2DT −1
Nt −1D

)
(A12)

= det
(
TNt −1TNt −2 · · · T0

)
det(1 + A−1), (A13)
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which can be beneficial depending on the forms of D and T . Expression (A12) can be obtained from (A11) by factoring in one
D and factoring out one T at a time.

2. Fermion determinants

The determinant of Me (12) can be calculated from (A11) by inserting

D �→ 1, Tt ′ �→ ehFt ′ , (A14)

with

Ft ′ [φ]x′,x ≡ eφx(t ′−1)δx′,x. (A15)

Thus

det Me[φ, h] = det
(
1 + ehFNt −1[φ]ehFNt −2[φ] · · · ehF1[φ]ehF0[φ]

)
(A16)

= det(1 + B[φ, h]). (A17)

We can proceed in a similar way for the matrix in the diagonal discretization Md (14). This time we insert the following into
the alternate form (A12):

D �→ 1 − h, Tt ′ �→ Ft ′ , (A18)

with the same F as before (A15). Thus

det Md [φ, h] = e� det
(
1 + F−1

0 [φ](1 − h)F−1
1 [φ](1 − h) · · · F−1

Nt −2[φ](1 − h)F−1
Nt −1[φ](1 − h)

)
(A19)

= e� det(1 + A−1[φ, h]). (A20)

At this point, a note on numerical stability is in order.
The calculation of determinants of dense Nx×Nx matrices
via a standard LU decomposition should not be a problem.
Especially so since we are ultimately interested in ln det M
which is more stable for large matrices. The spatial matrices
A and B are however constructed from a product of 2Nt

matrices. Such a product can incur large round-off errors when
the involved matrices have significantly different scales. Both
1 − h and eh have elements � 1 and present no problem.

For the spin basis, the matrices F ∼ eφ on the other
hand have elements of widely varying size which can be
significantly larger than one. We have observed instabilities
of the action and therefore HMC evolution as well as the
solver for systems of linear equations based on Eqs. (A16)
and (A19).

For the particle/hole basis, the problematic matrices are
replaced by F ∼ eiφ whose elements are on the unit circle.
All matrices that contribute to A and B are therefore of the
same order and floating point errors are greatly reduced. Our
tests show that both action and solver are precise to 12 or more
digits for lattices of size Nx ≈ 100 and greater.

We use algorithms based on (A16) and (A19) for α = 1.
For α = 0, we use dense LU based algorithms for the full
space-time matrices M. Other algorithms have been used to
solve this problem, including a stabilization of this algorithm
using singular value decompositions [61] and a different
solver based on Schur complements [62].

APPENDIX B: SIXTEEN-SITE PROBLEM

For completeness we reproduce Fig. 1 of Ref. [40] which
outlines the susceptibility of correlators to the starting config-
uration in case HMC is not ergodic. The correlators examined

in this case are the equal-site correlators,

C(τ ) = 1

Nx

∑
i

〈Cii(τ )〉,

where the sum is over all lattice sites. We show three different
HMC runs in Fig. 17 as well as the result obtained from
the Blankenbecler-Scalapino-Sugar method (BSS) taken from
Ref. [40]. The latter is claimed to be free of any ergodicity
problems and thus provides a benchmark for our HMC results.

One HMC run is in the exponential discretization in
the spin basis and starts with a configuration φ0 such that

FIG. 17. Comparison of correlators on a 4×4 square lattice. The
data points for BSS are taken from Ref. [40]. The exponential α = 0
HMC run has negative det M[φ] for all configurations. Started from
a positive determinant this case produces results consistent with BSS
and α = 1.

075141-30



AVOIDING ERGODICITY PROBLEMS IN LATTICE … PHYSICAL REVIEW B 100, 075141 (2019)

det M[φ0] < 0. The MD integrator is very fine (acceptance
rate >98%) in this particular example, to ensure no barriers
are accidentally jumped by coarse integration. This run clearly
deviates from the BSS result and matches the (green) correla-
tor shown in Fig. 1 of Ref. [40] (shown as black ×s in Fig. 17).
Because of the very fine MD integration, HMC gets trapped
in a part of the integration domain where the determinant is
negative. For a coarser integrator, HMC is able to traverse to
det M > 0 regions and in this case we find good agreement
with the BSS points, though we do not show these results here.

The second HMC run is again in the exponential dis-
cretization but in the particle-hole basis, again with a very
fine MD integration to ensure that the ergodicity barriers are
impenetrable. While matching the BSS results at early times,
in the middle of the temporal extent it differs markedly from
the BSS result.

The third HMC run is in the diagonal discretization in the
particle/hole basis. Since the determinant is complex in this
case, there is no particular starting criterion to be chosen and
we stress that we do not find any dependence on the initial
configuration. The correlator agrees well with the BSS result
at intermediate times; at early times there is a systematic
discrepancy; recall that different discretizations need only
agree in the continuum.

To emphasize this point, we also show a third HMC run in
the diagonal discretization in the particle/hole basis, but with
twice as many time slices. On each common time slice, the
finer discretization is closer to the BSS result than the coarser.

Also note that at early times the trend towards the BSS
result is upward, while at later time it is downward. Averaging
the correlator and its time-reversed partner results in a corre-
lator indistinguishable from the BSS result. In future work,
we will detail methods for reducing discretization artifacts of
correlator measurements. We emphasize that one still must
take a controlled continuum limit, even if results are formally
closer to the continuum.

APPENDIX C: JUMP ACCEPTANCE

In this section, we analyze the acceptance rate of the jumps
proposed in Sec. IV C that take advantage of the periodicity of
the determinant, a coordinated jump uniform across all sites

φx,t → φx,t + 2π

Nt
(C1)

and an individual jump

φx,t → φx,t + 2πδx,x0δt,t0 (C2)

in the field component on site (x0, t0).
For the coordinated proposal, the acceptance rate is given

by (88)

W [i(φx,t ± 2π/Nt )]

W [iφ]
= e− 2π

Uβ
(πNx±�)

. (C3)

To calculate the average acceptance rate, we should average
that weight change in such a way that � is generally represen-
tative of a field configuration. Were the action entirely con-
trolled by the Gaussian part, φ would be distributed normally
with mean 0 and variance σ 2 = Ũ . Then, summing NxNt such
random variables, we expect � to be drawn from a zero-mean

Gaussian with variance NxNtŨ = NxUβ. So, we find that the
acceptance rate is independent of Nt , but decreases markedly
with spatial volume.

When implementing the ergodicity jumps of individual
field components it is natural to ask: should each site’s jump
be accepted or rejected independently? Or should they be
amalgamated into one proposal and considered as a whole?
Here we will argue that it is better to consider each decision
independently.

The change in the weight (89) for a 2π shift on site at
location x0 and time t0 is given by

W
[
i
(
φxt ± 2πδx,x0δt,t0

)]
W [iφ]

= (ratios of determinants that exactly cancel)

× exp

(
−2π

Ũ

(
π ± φx0,t0

))
, (C4)

while if we did many 2π jumps, the change in the ac-
tion would be summed, so that the acceptance would be
controlled by

exp

(
−2π2

Ũ

∑
x

(
1 ±x

φ

π

))
, (C5)

where x summarizes the space and time coordinates and the
subscript on ±x is there to remind us that the sign choice is
x-dependent and can be zero for some sites.

To calculate the average acceptance rate we should again
average that weight change in such a way supposes we start in
a very likely configuration. As above, we assume each φ is a
normal, random variable with variance Ũ .

If, in a single proposal, each site is given a probability p
of undergoing a jump, on average we have to sum the action
changes from pNxNt jumps. We would like to find the best
possible p, deciding whether we should completely amalga-
mate the proposals into one, consider each individually, or
something in between. We can estimate

∑
x

(
1 ±x

φ

π

)
= pNxNt + ϕ

π
, (C6)

where ϕ is drawn from a zero-mean Gaussian with variance
pNxNtŨ . On average ϕ is 0 and we get an acceptance proba-
bility of

exp

(
− 2π2

Uβ/Nt
pNxNt

)
. (C7)

That is, the acceptance rate is reduced with increasing pNxNt .
The best choice is to set p = 1/NxNt —that is, to accept or
reject a jump in one auxiliary field at a time. Still, in that
case, the acceptance rate exponentially decreases with Nt ,
so that these jumps are much less important as one takes
the continuum limit, though they increase in importance with
Uβ. Moreover, when making proposals of jumps in individual
components, there is no suppression with the spatial volume
Nx, unlike the case of coordinated jumps.
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APPENDIX D: OTHER OBSERVABLES

In this Appendix, we consider other observables. In
particular, we consider correlations between local bilinear
operators.

Letting x denote a spatial index, we define the bilinear
operators

S0
x = 1

2
[axa†

x − bxb†
x + 1], S1

x = 1

2
(−1)x[b†

xa†
x + axbx],

S2
x = i

2
(−1)x[b†

xa†
x − axbx], S3

x = 1

2
[axa†

x + bxb†
x − 1],

(D1)

raising and lowering operators,

S±
x = S1

x ± iS2
x (D2)

and the charge-density operator ρ = 1 − 2S0 so that at half-
filling, the expectation value 〈ρ〉 vanishes. The correlation
functions

Ci j
xy(τ ) = 1

Nt

∑
t

〈
Si

x,t+τ S j
y,t

〉
(D3)

carry two spatial indices x and y which can be projected to
definite irreps of the lattice. The two irreps we will con-
sider here are the spatially uniform irrep and its doubler,
the alternating irrep. Let A and B be the two sublattices
and Â and B̂ be idempotent orthogonal projection operators
that sum to the identity. Denoting the uniform irrep + and
the alternating, staggered irrep −, projection to those irreps
requires performing the sums

+: Nx
−1/2

(∑
x∈A

+
∑
x∈B

)
= Nx

−1/2
∑

x

(Â + B̂), (D4)

−: Nx
−1/2

(∑
x∈A

−
∑
x∈B

)
= Nx

−1/2
∑

x

(Â − B̂), (D5)

where A and B indicate the set of sites belonging to the
two different sublattices. Once projected to definite irrep, the
correlation functions are diagonal. We denote irrep-projected
correlators with the + and − subscripts, rather than spatial
subscripts.

We can study these correlators themselves or boil them
down into order parameters. One possible charge density wave
(CDW) order parameter is given by10

CDW = V −1 lim
τ→0

Cρρ
−−(τ ), (D6)

where the ρ index indicates that we should use the charge
operator, rather than one of the spin operators,11 and we can
also define the (extensive) antiferromagnetic structure factor
[65]

SAF = lim
τ→0

C33
−−(τ ) (D7)

10At equal time this definition matches the definition in Ref. [38].
11This definition matches, for example, Eqs. (2) and (3) of

Ref. [63], which was also studied in Ref. [64].

and the antiferromagnetic susceptibility [65]

χAF = V −1 lim
τ→0

C+−
−− (τ ). (D8)

With this formalism we can also characterize spatially uni-
form order parameters, such as the mean squared magnetiza-
tion [49] 〈

m2
i

〉 = V −1 lim
τ→0

Cii
++(τ ). (D9)

The antiferromagnetic order parameters in Ref. [49] can
similarly be extracted from same-time information in the
correlators. There, the authors explain that the true indication
of a staggered order is a spin (or charge) separation between
the two sublattices, but that in a finite volume this order
parameter will exactly vanish unless a bias is introduced, sim-
ulated with, and ultimately taken to zero. Rather than simply
squaring this difference, which corresponds to considering
the above correlators projected to the alternating irrep on
both indices at vanishing temporal separation, they define ad-
ditional quadratic observables. The total-per-sublattice order
parameters 〈q2〉 and 〈S2

i 〉 in Ref. [49] are given by

〈q2〉 = V −1 lim
τ→0

(ÂCρρ Â + B̂Cρρ B̂)−−〈
S2

i

〉 = V −1 lim
τ→0

(ÂCiiÂ + B̂CiiB̂)−−, (D10)

which differ from those parameters defined above by the
absence of cross-terms ÂCB̂ and B̂CÂ. Note that the signs
these cross terms carry are what distinguish the + irrep from
the − irrep, in the sense that dropping them from the ++
correlators yields the same numerical data as dropping them
from the −− correlators,

(ÂCρρ Â + B̂Cρρ B̂)−− = (ÂCρρ Â + B̂Cρρ B̂)++, (D11)

for example. Hence, once the cross terms are dropped, the
distinction between staggered and uniform order is lost. In
order to distinguish a uniform order from a staggered order,
it makes physical sense to consider⎛

⎜⎜⎝ ∑
x ∈ A
y ∈ B

+
∑

x ∈ B
y ∈ A

⎞
⎟⎟⎠Cρρ

xy (τ ) or
∑
〈x,y〉

Cρρ
xy (τ ) (D12)

where the sum can be taken over x ∈ A and y ∈ B (and
vice versa) or, if contributions from wide spatial separations
contribute too much noise, over nearest neighbors 〈x, y〉. In
the two-site example considered below we simply do irrep
projection.

The uniform irreps yield correlations between the opera-
tors summed over space. These operators commute with the
Hamiltonian and are therefore conserved. Commuting with
the Hamiltonian also implies the time independence of the
spectral decomposition of the respective correlator. We may
still calculate the correlation function as a function of time
and average over time to get an estimator for the same-time
correlator,

〈ρ+ρ+〉 = 1

Nt

∑
τ

Cρρ
++(τ ), (D13)

for example.
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FIG. 18. A variety of correlation functions (shown in different colors) of local bilinear operators as a function of Euclidean time, for the
exponential and diagonal discretizations, projected to the uniform and staggered irreps on both spatial indices. Exact results are shown as thin
solid lines, while numerical results are shown as markerless error bars, and the respective equal-time order parameters are indicated in text,
though the volume factors are omitted for clarity. In the left panel, the dark and light results correspond to different ensembles, as described in
the text. For additional details and discussion, see the text.

1. Numerical results

In Fig. 18, we reuse the ensembles of field configurations
from the two-site problem of Sec. III C (in particular, the
α = 1 ensembles used in Figs. 7 and 8, produced with a very
fine molecular dynamics integration), measuring a variety of
correlation functions, which are shown in different colors. We
show the exponential and diagonal discretizations in the left
and right columns, respectively, and the uniform irrep and the
staggered irrep in the top and bottom rows, respectively. The
results from an exact diagonalization are shown as thin lines,
while the numerical results are shown as error bars without
markers. In the exponential case, we show two data sets—the
darker corresponds to the red ensemble of the mentioned
figures and the lighter to the blue ensemble. For visibility,
C11 and C33 are slightly offset horizontally, as are C−+
and C+−.

As mentioned, the uniform irrep has time-independent
correlators. The exact uniform charge-charge correlator is not
shown because it is approximately 5.8×10−12. The darker
exponential ensemble is clearly incompatible with this result,
while the lighter is entirely uncertain 0.007(10); the diagonal
ensemble is similarly uncertain, 0.001(5), except for the first
time slice, which is incompatible with the exact result.

Additionally, in the diagonal case we see that C−+ and C+−
are not time independent (we average them, shown as black
points). We expect this behavior to vanish in the continuum
limit, though we emphasize that according to (D13) the time
average is a good estimator of the true value. The reason
for this nonconstant behavior is presumably related to the
violations of chiral symmetry in the diagonal case. We see
the further effects of chiral symmetry breaking—C11 and C33

differ, as do C−+ and C+−, while those pairs are the same in
the exponential case, as in Ref. [58]. Further, in the uniform

irrep we see that the diagonal correlators are not perfectly
equal from time slice to time slice (the first time slice, in par-
ticular, differs markedly), in contrast to the exponential case.

This figure also emphasizes the need for a controlled
continuum limit, even in the exponential case where, remark-
ably, the SAF and χAF order parameters are very near to
their continuum values that come from direct diagonalization,
though the corresponding intermediate-time behaviors differ
from the exact result. Absent a continuum limit, a formal
demonstration that the equal-time correlator is improved is
needed to justify not performing a controlled limit. Inter-
estingly, the diagonal C33

++ correlator gets very close to the
continuum (though the C11

++ differs—it should converge to
the exact answer in the continuum limit). At intermediate
times, the diagonal discretization seems to give results closer
to the exact result; this observation is in line with what
was found in Appendix B. Nevertheless, we stress that in
either discretization a continuum limit is required for reliable,
systematically controlled results.

The CDW order parameter, which is known to be sus-
ceptible to ergodicity problems when using the exponential
discretization [49], can be seen to be incompatible with
the exact result using that discretization, even in this small
example—and the two different ensembles give different val-
ues, indicating a dependence on the ensemble, and therefore,
sensitivity to a violation of ergodicity. In contrast, the CDW
order parameter comes out correct for the diagonal discretiza-
tion, bolstering our claim that the diagonal discretization can
be advantageous for large-scale simulations. The exact Cρρ

−−
correlator falls extremely quickly for these values of Uβ and
κβ—and neither exponential ensemble gives much indication
of decay, while the diagonal discretization is statistically
compatible with zero after the third time slice.
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