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The so-called minimal models of unconventional superconductivity are lattice models of interacting elec-
trons derived from materials in which electron pairing arises from purely repulsive interactions. Showing
unambiguously that a minimal model actually can have a superconducting ground state remains a challenge
at nonperturbative interactions. We make a significant step in this direction by computing ground states of
the 2D U-V Hubbard model—the minimal model of the quasi-1D superconductors—by parallelized DMRG,
which allows for systematic control of any bias and that is sign-problem-free. Using distributed-memory
supercomputers and leveraging the advantages of the U-V model, we can treat unprecedented sizes of 2D strips
and extrapolate their spin gap both to zero approximation error and the thermodynamic limit. Our results for
the spin gap are shown to be compatible with a spin excitation spectrum that is either fully gapped or has zeros
only in discrete points, and conversely that a Fermi liquid or magnetically ordered ground state is incompatible
with them. Coupled with the enhancement to short-range correlations that we find exclusively in the d,, pairing
channel, this allows us to build an indirect case for the ground state of this model having superconducting order

in the full 2D limit, and ruling out the other main possible phases, magnetic orders, and Fermi liquids.
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I. INTRODUCTION

Understanding the impact of interparticle repulsions in
fermionic quantum systems remains one of the most chal-
lenging problems in physics. As was shown by Landau,
electron-electron repulsions in a solid may often be treated by
redefining excitations as quasiparticles. The resulting physics
is thus essentially of free particles (the so-called Landau
quasiparticles), with interactions mostly leading to a renor-
malization of some physical parameters such as the mass. This
Fermi liquid (FL) approach has seen very broad success and
allowed to understand the effects caused by perturbations on
top of the Fermi liquid, such as instabilities towards, e.g.,
a Bardeen-Cooper-Schrieffer (BCS) superconducting (SC)
state, a magnetically ordered (MO) state or a charge density
wave (CDW) state [1].

There are however situations where the FL approach breaks
down, leading to so-called ‘“non-Fermi liquid” behavior. At
high spatial dimensionality, this can happen if the interactions
are particularly strong, or if the filling of the systems is
commensurate with the lattice, with, e.g., one particle per site
leading to a Mott (MI) state. Reduced dimensionality of the
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system can further enhance the effect of interactions. In one
dimension in particular, the interactions always have drastic
effects and lead to physical properties very different from the
ones of a Fermi liquid. The FL is replaced by another set
of universal features, called the Tomonaga-Luttinger liquid
(TLL), where the elementary excitations are the collective
excitations of charge and spin in the system. Such systems
are critical and at zero temperature 7 = 0 possess various
competing quasi-long-range orders, ranging from antiferro-
magnetism to superconductivity [2].

Non-FLs have thus been prime candidates to search for
novel physical phases, in particular unconventionally su-
perconducting (USC) phases mediated by excitations other
than the electron-phonon one, of which the high-temperature
(high-7;) superconductors [3,4] are just one example. The
observed proximity between USC and MO phases has made
fluctuations around the MO state prominent candidates for
such pairing mechanisms. On the experimental side, many
systems ranging from heavy fermions [5,6], organic supercon-
ductors [7,8], high-T, superconductors, and pnictides [9-11]
show USC phases. Yet, obtaining any widely accepted theory
on the nature of such exotic pairing for any of these material-
groups has proven to be difficult; even the simplest physical
models, the so-called minimal models, which are abstracted
from the materials’ full physical structure are fundamentally
hard to solve: the 2D U-V model at half filling (organics),
and the weakly doped 2D Hubbard model (cuprates). So far,
any solution of these minimal models has almost always ne-
cessitated additional technical approximations that introduce
errors of unknown magnitude. It is thus difficult to determine
whether phases predicted for such models in the framework of
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a given approximation scheme are truly present or an artefact
of the approximation, or whether to explain the experiments,
different, more extended models are required, such as, e.g.,
in the three-band models of the high-T; cuprates [12], or in
those approaches that investigate the role of phonons in USC
materials [13].

Even when moving to the more tractable regime of weak
repulsion, SC and MO instabilities interfere at all orders of the
perturbative renormalization group (RG) treatments applied
so far [14-16], necessitating complex numerical methods [17]
or sophisticated, and still approximate, functional RG proce-
dures [18-22]. More uncertain yet is the situation in the most
important regime, actually relevant to the models’ underlying
materials: when repulsion becomes large and competes with
kinetic energy. For this regime, numerical methods are a route
of choice. However, in two or more spatial dimensions these
too are faced with steep challenges. Quantum Monte Carlo
(QMC) treatments suffer from the so-called sign problem for
fermions leading to an exponential degradation of the signal to
noise ratio as, e.g., the temperature is lowered [23]. And while
innovative techniques like diagrammatic QMC have delivered
intriguing insights into USC pairing for the 2D Hubbard
model, these are still constrained to intermediate interactions
at most and doping very far from unity [17].

Our numerical approach here is different, and rests on
two observations. (1) The fact that for the density matrix
renormalization group (DMRG) technique, and other tensor-
network methods such as PEPS, any possible bias can be
controlled against via extrapolation, and that these methods
are free of the sign problem [24,25]. (2) That the one minimal
2D model in which a USC ground state from strong electron
repulsions can unambiguously be shown to exist, is comprised
of quasi-1D electrons (doped 2-leg Hubbard ladders) weakly
coupled in parallel [26,27]. This minimal model however, as
yet, does not correspond to any extant material.

These two observations have led us to conclude that the
minimal 2D U-V model of the organic superconductors—
which has an analogous structure, of many 1D systems
coupled weakly in parallel to each other—offers an unique
opportunity for insight on the strongly interacting ground state
of a candidate model for USC pairing. This would be done
by swapping out the perturbative theory used on the Hubbard
ladders in the low-energy field-theory limit, which would not
be applicable to the U-V model setting, with quantitatively
reliable DMRG.

Yet, using DMRG in this particular setting comes with
issues to resolve first. While DMRG delivers highly accurate
results both for the statics and the dynamical correlations in
1D systems while using only modest computational resources,
the 2D setting of the U-V model is different. On such lattices,
DMRG is known tho require resources that increase quasi-
exponentially with lattice width when trying to maintain any
preset accuracy [25]. Tractable sizes for systems of itinerant
electrons so far usually have been on the order of about 100
sites, depending on the specific problem [23,28-32]—pushing
towards around 200 sites, while done, is generally challenging
and goes along with a decrease in accuracy. As the sum of the
evidence indicates that states with SC order are in close en-
ergetic competition with MO ones, even changes in geometry
(i.e., boundary effects) could easily result in different orders

winning out for lattices of such size. As a result, no unbiased
approach has so far been able to show unambiguously that a
ground state of either of the two minimal models may exhibit
USC order when repulsion is nonperturbatively large.

In the present work, we take a significant step in that
direction. We build on our development of the numerical par-
allelized density matrix renormalization group (pDMRG), a
distributed-memory version of one of the standard DMRG for-
mulations [24] capable of exploiting modern supercomputer
architectures. With this method we investigate the properties
of the 2D U-V Hamiltonian at half filling of the bands. We
consider an array of parallel chains of strongly correlated 1D
electrons, each described by such a U-V Hamiltonian and
weakly coupled to each other by transverse tunneling. In addi-
tion to being the model Hamiltonian for organic superconduc-
tors [33], and thus potentially containing the unconventionally
superconducting phase observed in this system, this Hamilto-
nian has two critical advantages for numerical study compared
to the doped 2D Hubbard model [23]: (1) it is trivial to main-
tain fixed ratios of electrons to lattice sites and thus to extrap-
olate to infinite system size here, since no doping is required.
The pDMRG then allows doing this with the accuracy re-
quired to extrapolate energies of large systems, such as to en-
able the reliable calculation of energy differences, as appear-
ing in, e.g., the most important observable we use, the spin
gap. Underlying this accuracy is that pPDMRG can exploit the
strong anisotropy of electron tunneling in the 2D U-V model
by spreading out a single ground-state calculation across
many supercomputer nodes. This anisotropy ties directly into
the U-V models’ second advantage: (2) the strip or cylinder
geometry, that DMRG is especially good at handling intrinsi-
cally, suits the U-V model naturally if aligned with the strong-
tunneling direction, as correlations across the strips’ width
will be naturally weak due to the small perpendicular tunnel-
ing, which is not the case for the doped 2D Hubbard model.

We show that in the thermodynamic limit this systems’
averaged spin gap A, is incompatible with either a FL or
an MO ground state, for strips of finite width. The behavior
of Ay as L — oo appears most compatible with A, > 0 at
infinite length, and being either nondecaying or even in-
creasing with the strips’ width, i.e., pointing towards a fully
gapped spin excitation spectrum. But we also consider the
alternate possibility that A, might ultimately scale to zero
beyond the system sizes we can access. However, we show
this alternative is still at most compatible with a spin exci-
tation spectrum with isolated zero-energy points, i.e., in line
with weak-coupling theories of USC systems. However, either
scenario is incompatible with either antiferromagnetic order
or Fermi liquid-like ground state. Together with the strong
enhancement exclusive to the d,, channel of correlations that
we find with increasing strip width, our results make the
case for SC singlet pairing with d,, order being the dominant
component in the ground state of the U-V model at half filling
when repulsion is competitive with kinetic energy.

The structure of the paper is as follows. In Sec. II, we
outline the U-V model and our approach to analyzing the
system and choosing the model parameters; in Sec. III, we
describe the key features of pPDMRG relevant to this work; in
Sec. IV, we detail our scaling procedure; in Sec. V, we analyze
the behavior of the spin gap and the correlation functions
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FIG. 1. (a) Overview of the 2D U-V model. Conduction elec-
trons tunnel along effective 1D chains with amplitude ¢, where elec-
trons are subject to strong on-site repulsion U and a weaker nearest-
neighbor repulsion V. Interchain tunneling ¢, is much weaker than 7.
(b) Schematic parameter space of the 2D U-V model at half filling,
for fixed U = 4¢. The only limit in which all possible ground states
and the transition between them is understood is the 1D limit, i.e.,
at t; = 0, when the chains decouple, and are either in a TLL or MI
phase, depending on whether V < V. or V > V... The red dots show
the parameters at which we work in this present paper.

as the width of the 2D U-V strips is increased, making the
case for a SC ground state with d,, order and against any
MO or FL competitor order; in Sec. VI, we discuss these
results and how they connect to experiment; in Appendix A,
we provide details for the used scaling procedure; and finally,
in Appendix B, we provide a broader technical overview on
pDMRG.

II. MODEL AND PHYSICAL OBSERVABLES

As depicted in Fig. 1(a), the U-V model in 2D is formed by
a parallel array of Ny, 1D chains of lattice electrons, each of
length L, with interchain tunneling. Its lattice Hamiltonian is

L—1 Na
H=-t Z Z Z (ézn,gém,n,a +H.c)
i=1 n=1o0=%,]
L Nch*l
—h Z Z Z (6In,céi,n+l,a + H.C)
i=1 n=1 o=1,|
L N L—1 Na

+U Z Z finpfin,, +V Z Z i i1 (1)

i=1 n=1 i=1 n=1

Here, el

ino (Ci.n,0) denotes the electron creation (annihilation)
operator on site i of chain n of spin ¢ =1, |, and 71, ., :=
617,”,”6,;,,,0, Nip = A n 4 + Ny n,), denote local electron density
for spin o and total electron density operators respectively.
The tunneling amplitude along the chains is given by ¢, while
in-between adjacent chains it is given by 7, and generally
t > t;. We point out that the 7, term above obeys open
boundary conditions, just as the ¢ term does. We have made
this choice because obtaining ground-state energies accurate
enough to compute reliable differences between them is an
indispensable requirement to extrapolate this systems spin
gaps in the limit L — oo. Cylindrical 2D lattices however are
well known to immediately suffer from lower accuracy, and

are thus avoided here. Finally, the onsite Coulomb repulsion
is given by U, while intrachain nearest-neighbor repulsion is
V, with V < U/2. The entire system is at half filling, i.e.,
Ny =N| = LN /4, and thus k| = k} = kg = 7 /4a, where
a is the lattice spacing.

This minimal model originally arose from the study of the
organic Bechgaard and Fabre salts (“the organics”), the first
materials discovered to support an USC phase [7,34]. These
compounds show a very rich phase diagram, and especially
a change in effective dimensionality with temperature—1D
TLL-like at high temperature, then 2D-like and finally 3D-
like at near zero—as quantum coherence can increasingly
be established along the three orthogonal and successively
weaker directions for electron tunneling. Their most striking
feature is the phase transition from a magnetically ordered to a
unconventionally superconducting phase at low temperature,
as the proximity, and thus the interchain tunneling ¢, , between
the strong-coupling chains of the U-V model is increased [35].
To understand this competition, and whether the minimal U-V
model (1) of the organics can actually capture it at least in a
weak-interaction scenario (which does not correspond to the
actual materials), perturbative RG has been repeatedly applied
[18-21]. While beset with the same technical limitations
this approach has for the doped 2D Hubbard-model of the
cuprates (cf. Sec. I), it does suggest that the minimal 2D U-V
model, might indeed support a USC phase transition from a
MO phase when extended with, e.g., a next-nearest-neighbor
tunneling perpendicular to the chains, and that pairing would
be in the d,»_y>-channel (gapless superconductivity would
be compatible with experiments on the organics [36,37]).
However, so far there has been no complementary method to
either validate these results, and especially no numerics that
could deal with the U-V model (1) for the experimentally
relevant case of strong interactions.

In order to be able to address the case 7, # 0, Ny, > 2 for
this Hamiltonian with reliable numerics, we have developed
pDMRG to exploit the distributed-memory architectures of
modern supercomputers. Based on the tensor-network formu-
lation widely used in modern DMRG, the code has major
advantages over other quantitative numerical approaches for
this problem: it inherits the lack of sign-problem and the
ability to use extrapolation in the known error to filter out
possible implicit bias towards any particular order (which
is inherent, e.g., to any wave-function Ansatz of variational
quantum Monte Carlo) from conventional DMRG. And fur-
ther, as described in Sec. III and Appendix B, the paral-
lelized nature of pPDMRG makes the necessary ground-state
calculations tractable in the first place, by distributing the
many nonlocal tunneling terms of the model across different
nodes of the supercomputer. As laid out in Sec. III, the large
number of such terms becomes unavoidable when keeping the
amount of bipartite entanglement at manageable levels, which
is performance-critical for any 2D model.

As detailed in Sec. IT A, the spin gap is the most important
observable for our study of this system, as its scaling as
L — oo allows the crucial elimination of possibilities for
ground-state ordering in the thermodynamic limit that has so
far proven elusive for any minimal model of USC systems.
This is because ground states with either MO order or in a
conventional FL state will show a linear vanishing of any spin
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gap. In contrast, standard analytical theories of USC systems
combine weak-coupling RG, for identifying the leading in-
stability and its symmetry, with mean-field descriptions of
the ordered phase. For these theories, the unavoidable zero
nodes of the order parameter result in sublinear scaling to zero
for a spin gap [36,38-42], while experiments on the actually
strongly coupled regime in USC materials have found finite
spin gaps (cf. Sec. VI). It is therefore vital that the known
maximal value of the approximation error of the DMRG
technique allows us to extrapolate the computed spin gaps to
zero truncation error for any given lattice size, as described in
Sec. IVB.

To outline our strategy of analysis, we now discuss in
Sec. ITA the concrete ground-state observables we consid-
ered, providing the road map for ruling out the main com-
petitor states to any superconducting ground states, the FL
and the MO states. In Sec. II B, we then discuss our choice of
parameters for Hamiltonian (1), and why these should reduce
the competition with charge-ordered ground states.

A. Observables

One of our key priorities is to establish whether any set
of parameters for Hamiltonian (1) could or could not result
in one of the main competitor orders to a USC ground state
in the 2D limit, a MO or FL state, being realized. One
quantity that would allow making these distinctions is the spin
susceptibility at zero temperature

X5 (L, Nen)
_ B8 = 9) + Egg™ (S = —s) — 2B55 (5. = 0)
(25)? ’
@)
where Eé’SNCh denotes the ground-state energy of (1)

at half filling, and S, =N; - N, is the difference
between spin populations. Here, s can be any spin
number, as long as it is negligible compared to a
macroscopic number of spins (proportional to L).
Typically, s is chosen so that other quantum numbers in
the system can be kept identical between s and s = 0. The
usual choice is s = 1, corresponding to the spin flip of a
single spin. However, as discussed in Sec. IV A, the choice
s = N has a crucial technical advantage for extrapolating to
infinite length L — oo.

When L — oo, x,(L,Nc) becomes the thermodynamic
spin susceptibility. In order to get a finite susceptibility, as
expected for a FL or a MO state, one would thus need the
quantity

A(L, Nen, 8) = EGi™ (S. = 8) + EGg"™ (S; = —)
—2Eg5 (S = 0) 3)
to scale as 1/L. Other scalings of this quantity thus directly
signal a non-FL, non-MO behavior for the spin susceptibility.
The simplest case is that the averaged spin gap
Egy™ (S. = New) — Egg™ (S = 0)

AL, Nep] = N
ch

“

remains finite when L — 00, where KS [L, Ncp] is the general-
ization of the standard spin gap

AS[L, Nl := EGM™ (S, = 1) — EZ(S. = 0), ()

Then the spin  susceptibility = would scale as
(LAS[L — oo, Nay]D)~L, leading to zero susceptibility in the
thermodynamic limit, as expected for fully gapped systems.
For SC systems with unconventional electron pairing, such
fully gapped spin excitations have been actually been found
experimentally (see Sec. VI).

More complex behavior can be expected if (3) has a
different scaling with the size of the system such as, e.g.,
1/L* with 0 < o < 1. The thermodynamic spin susceptibility
remains zero in this case, yet the systems’ spin excitations are
not fully gapped. In mean-field theories of USC systems, all
this stems from the line or point nodes of the SC gap [36,
38—42]. At finite temperatures, the scaling with L would be
converted into a nontrivial temperature dependence of the spin
susceptibility corresponding to a pseudogap behavior [43,44].

Establishing the L dependence of AL — 00, Nepl
through our numerical results therefore allows to differentiate
between three possibilities for the ground state of the two-
dimensional system in the 7 = 0 limit: FL/MO, fully spin
gapped USC, or mostly spin-gapped USC—to the extent that
we can extrapolate trends as N, is increased.

The use of pDMRG allows meaningful extrapolation of
Ay[L — 00, Ngy] in 1/L for the first time, enabling the calcu-
lation of ground states of multiple coupled, long U-V chains
(Moh < 8, L < 64) with quantitatively accurate numerics (cf.
Sec. III) [45]. As discussed in Sec. V A, this allows us to make
a strong case that for our choice of Hamiltonian parameters
any magnetic order or Fermi liquid behavior is suppressed
in the ground state of the 2D U-V model, due to the way
A[L, Nay] behaves with L — oo, and showing this bevior to
be robust as N, grows.

Our point of reference for this are 2D arrays of coupled
spin-chains, which demonstrate the opposite scenario, of the
spin gap decaying with Ngy. If infinitely many 1D Heisenberg-
chains were to be coupled in parallel, the result is a gapless
2D Heisenberg model—but when only two such chains are
coupled this system exhibits a finite spin gap [46,47]. Mul-
tiple techniques have since shown how these two extremes
are bridged: as the number of coupled Heisenberg chains
increases, the spin gap remains finite (for an even numbers
of chains) but continuously decreases as N, grows, scaling to
zero in the limit of infinitely many chains [48,49].

The information gained from spin gaps can be supple-
mented by studying the change in the short-range behavior
of certain correlation functions as N, is increased. When
magnetic orders can be ruled out, the functions of interest
here are those of the two other main competitor groups: SC
ordering on the one hand—with the possibility of pairing in
the dy>_y2-, d,,-, and extended s-wave channels—and CDW
ordering on the other hand. The corresponding correlation
functions considered for this are

— (D AT
deo_y(r) = ((DL/Z.NCh/Z,O,l - DL/Z,NCh/2+l,1,O)

% (Dpjot14rNm/2.0.1 — Drjpti4rna/241,1.0))s (6)
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FIG. 2. U-V parameter space. Green shaded area: single chain
enters MI regime. Red shaded area: two coupled chains can enter
MI regime [50]. To be certain we are outside the regime where this
counter-intuitive increase in parameter space for the MI insulator
takes place in the few-chain regime, we work within the blue-shaded
area of parameter space. For reference, the yellow shaded area shows
the parameter regime realized in the Bechgaard and Fabre salts.
Black lines show lines of constant K, for the single U-V chain (the
data and figure reprinted from Ref. [51]).

¥

diy(r), s(r) := ( Dy i1 Ngj2—11 :FDZ/2+1,NC}./2,1,1)
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@)

C(r) := (ALs2.Noy /2R L 247N 2) — (AL/2 N0 /2 ) (L 247 N 2)s
@

where D denotes the nearest-neighbor spin-singlet operators
Di,n,j,m = éi,n,Téi+j,n+n1,¢ — éi,n,iéi+j,rl+m,T~ As illustrated in
Fig. 8(b), we consider the SC correlation functions in the two
central chains Ng, /2, New/2 + 1, and C(r) on chain N, /2, in
each case at distance r from the middle of the chain(s). Based
on these correlation functions, we present further evidence in
Sec. V C beyond the behavior of the spin gap that for the U-V
model we study here, electrons do in fact pair, with a dominant
component in the dy, channel.

B. Choosing model parameters U = 4f and V/t = 0.5, 1

The basic results serving as background to any choice of
Hamiltonian parameters are summarized in Fig. 1(b). In the
limit #; = 0, the chains decouple and are described by TLL
theory for sufficiently small V. As long as U is fixed to any
value > 2t, there exists a value V. above which a charge gap
opens in the system, turning it into a Mott insulator (MI)
[51,52]. The phase boundary at 7, = 0 is shown as a green
line in Fig. 2. Now, in order to maximize the chance of
finding SC order, we attempt to target a parameter regime in
which the decoupled chains would be in the TLL phase at the

same time as the coupled chains (¢, > 0) would remain in a
delocalized regime. Ultimately, only the computational results
can indicate whether one succeeds with the latter condition.
However, given the limited supercomputing time at hand, we
try to maximize our chances for this to happen from the outset,
as described within the rest of this section.

A look at the minimal U-V model of the organic su-
perconductors (Bechgaard and Fabre salts) is instructive
here. Experimental probes of these show that here the 1D
chains of the U-V model have a Luttinger-liquid parameter
K, (which characterizes interactions and correlations of the
charge mode of an isolated chain) in the vicinity of 0.25
[33]. When K, = 0.25, theory predicts the single chain at
half filling to develop a charge gap and become a MI. In
terms of the microscopic parameters, this vicinity to K, =
0.25 for the single chain would correspond to U/t = 10 and
V/t = 2-3, cf. yellow area in Fig. 2. When the ratio 7, /¢
is small enough, experiments show the physics of the single
chain extending to the whole material, i.e., the system is an
MI as well, and magnetically ordered on top of it. Only as
t, /t grows and t; becomes competitive with the Mott gap of
the single chain is superconductivity found in experiments,
typically at ¢, /t =~ 0.1.

It may be tempting to try to straightforwardly replicating
this setting for our calculations. However, there has recently
been new insight on the two-chain limit by two co-authors
of the present work [50], which cautions against such an ap-
proach. Combining analytical RG treatment of the bosonized
chains with DMRG, we find that finite ¢, for two chains
increases the U-V parameter space in which the system de-
velops a Mott gap (red line in Fig. 2). While early exploratory
work indicates that this parameter space might shrink again
for Ny, = 4, it is beyond the scope of this work or of Ref. [50]
for definite statements how exactly the few-chain regime
evolves in this regard.

In the following, we therefore focus on a regime in which
these complications of few-chain physics are unlikely to ap-
ply, at U/t =4 and V/t = 0.5, 1, and with ¢, /t = 0.1 (blue
shaded region in Fig. 2). This regime realizes the essential
physics present in the superconductivity of the organics, i.e.,
a regime where interchain tunneling is not effectively sup-
pressed by a single-chain gap. A priori, this regime thus ap-
pears to offer the highest chance of finding a superconducting
ground state due to repulsively mediated pairing. We have
targeted two values of V/r to be certain our results will be
representative for a finite area of parameter space.

III. THE METHOD: PARALLEL DMRG

As stated in Sec. II, exploiting the physical structure of
the 2D U-V model is essential for being able to handle
the bipartite entanglement of this system when mapping the
physical lattice to the DMRG chain. Being comprised of
many strongly correlated 1D chains in parallel with weak
coupling in-between, it would seem intuitive that perform-
ing the mapping along the direction of strong tunneling [cf.
Fig. 3(a)] delivers lower overall bipartite entanglement in
the 1D DMRG chain. This argument is complemented by
theoretically estimating the performance of the alternate map-
ping along the ¢, direction that is used conventionally when
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FIG. 3. (a) Mapping the physical 2D lattice to the 1D DMRG
chain, along the ¢ direction. Many more long-range tunneling terms
appear than would be present when mapping along the ¢, direction.
(b) How the two different mappings perform: mapping along ¢ (blue)
rapidly converges to the exact solution, while 7, mapping is trapped
in a metastable state, even at y = 5000 and many sweeps. (c) The
primary parallelization layer of pPDMRG used for the present work,
using the left boundary L as an example. Each element L[b;] of L
is dispatched to a MPI process, and each such MPI process may
control a number of physical nodes. The process then locally handles
contractions of L[b;] with the wave-function tensors to be optimized,
requesting the results of other MPI processes for different b, as
necessary.

applying DMRG to what is effectively a long and narrow 2D
strip. The bond dimension, denoted as x in the following,
is the central quantity that controls the accuracy of DMRG.
It denotes the number of optimally chosen basis states in
which any bipartition of the system is represented. If Xchain
was required to represent a single U-V chain of a given length
with truncation error €, achieving the same accuracy for Ny
chains would require x = xé}/;:m—even in case Xchain = 10,
this scaling would be hopeless beyond N, = 2. A simple test
comparing the two mappings for a representative system of
free fermions, summarized in Fig. 3(b), confirms the total
disparity between the performance of these mappings. Shown
is the energy versus the number of DMRG iterations for L =
20, Nh =15, Ny =N, =50, 1/t =02, U=V =0, x =
5000, once with mapping along ¢ (blue line), once with map-
ping along ¢, (green line). The #-mapping converges quickly
to the exact ED solution, while the 7, mapping flounders even
for this small system.

The price paid for the 7-direction mapping, necessary to
have manageable y in the first place, is the very large number
of long-range tunneling terms. In the two-site DMRG, we use,
for every adjacent pair of sites (i, i + 1) on the DMRG chain
for which the tensors are jointly optimized, the Hamiltonian

is represented as a matrix product operator (MPO) [24]:

D
A= )" HAenlbi] ®hilby, bel ® higalbe, byl © Hiign b, ).
by,be,b,=1

&)
Here, each sum runs from 1 to D, the MPO bond-dimension,
which for the #-direction mapping scales as D ~ 4L. For the
range of system lengths we treat, L = 20 to 64, this amounts
to D ~ 80 to 256, implying an equal number of Hamiltonian
contributions Hie[b;] (ﬁrighl [b,]). These describe the action
of the Hamiltonian to the left (right) of the sites i, i+ 1,
while for every by, b. (be, by) hi[b, bel (hizi[be, b)) is a
purely local operator on site i (i + 1). Combined with the
fact that we utilize x = 10000 to 18 000, this large num-
ber of Hamiltonian contributions result in memory require-
ments on the order of several TB for any single ground-state
calculation and a commensurate amount of computational
effort.

Parallelized DMRG was developed to make calculations
of such magnitude tractable [53]. We provide a more compre-
hensive overview of its technical features in Appendix B, and
highlight here its first parallelization layer, which is the most
relevant to this work, shown schematically in Fig. 3(c): the
largest objects of DMRG are the boundary terms. These are
the expressions of Hiere[11, ﬁright[b,.] in the x optimal basis
states of the system to the left or right of sites i, i + 1, respec-
tively. Denoting these basis states as |«;), |«,) respectively,
the left boundary is LIb/] 1= 3=, o/ (o7 | Hherc byl o) e,
and the right boundary R is defined analogously using
I-Zight [b,] and |a,). The parallelization layer distributes each
of the D elements of both these vectors (each element being
a block-sparse matrix due to the use of conserved quantum
numbers to enhance performance), to nodes of a parallel
supercomputer. For this project, the computer cluster was the
“Piz Daint” system of the Swiss National Supercomputing
Center (CSCS). In this manner, we have spread the calcu-
lations out to up to many dozens of nodes (for the largest
lattices).

IV. SCALING ANALYSIS

As discussed in Sec. II, our indirect strategy for arguing
that a ground state of the 2D U-V model has SC order, by
eliminating competitor phases, relies on obtaining the correct
behavior of the systems spin gap as L — oo. In the following,
we discuss the two necessary steps required in service of this
goal: sharply reducing the oscillations of the spin gap as 1/L
decreases, and extrapolating ground states energy to zero error
in the DMRG approximation.

A. Removing oscillations of A [L]

The standard definition of the spin gap, Eq. (5), is based on
the difference between two ground-state energies. However,
due to the small value of ¢, /¢ in the regime of interest, one
encounters oscillations of A [L] with L, which presents a
complication for obtaining clean extrapolation of A [L] in
L, as shown in Fig. 4(a). That weak interchain coupling is
evidently the cause is demonstrated by studying the U-V
model in the noninteracting limit U =V = 0. While clearly
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FIG. 4. [(a) and (b)] Averaging eliminates oscillations in the spin
gap. (a) Comparing A[L, No, = 2] (blue line) against A,[L, Ny, =
2] (red line) for U/t =4, V/t =1, t, /t = 0.1. Using the averaged
version of the spin gap, A, nearly eliminates the oscillations, which
are a strong impediment to a clean extrapolation to 1/L — 0. (b) II-
lustrating the cause of oscillatory behavior in A; is straightforward
for U =V = 0. Plotting the single-particle bands for L = 60 (left)
and 64 (right) (N;, = 6—only four bands can be seen as two are
doubly degenerate each) around the Fermi level (red line), one sees
how the distance between highest occupied/lowest unoccupied levels
(pairs marked with blue ellipsis) shifts with L, actually increasing
here as L increases. The oscillations vanish almost completely with
the averaging over the Ny, bands (red boxes). [(c) and (d)] Scaling
ground-state energies to zero truncation error €y, for the example
of L =40, N4y =4, Ny =N, =40. (c) Plotting Egs against €pax,
computed for x = 12000, 14000, 16000, and 18 000. (d) Plotting
the resulting A,[40, 4] at 1/x = 0, and the corresponding values at
the four finite values of 1/.

Ay =0 for L — oo (at any Ng,) in this case, the N, bands
are only weakly split. Then, the shifting positions of both the
highest occupied as well as of the lowest unoccupied states in
each band with changing L [cf. Fig. 4(b)] will invariably cause
such oscillatory behavior in the definition (5).

Based on this analysis, clearly one should smooth this
finite-size effect by using a more general definition of the
spin gap. The natural generalization, given by Eq. (4), is
the one that averages over all the Ny, bands close to the
Fermi level in the noninteracting limit, and that applies
unchanged to the interacting regime. As depicted in Figs.
4(a) and 4(b), we find this definition removes the oscillatory
behavior to a large degree for all our data. As discussed
in Appendix A, this definition of the averaged spin gap
results in a linear polynomial in 1/L as the only consistent
method for extrapolating A[L, Nyl to L~! = 0; linear extrap-
olation can recover physically expected behavior correctly,
while the oscillatory remnant overwhelms any vestiges of
quadratic dependency in 1/L that might remain after the
averaging.

We further note that this procedure is similar to adding two
particles instead of one when computing the compressibility
of spinless particles, to avoid the unwanted oscillations pro-

voked by the breaking of k — —k symmetry that adding a
single particle would entail. Analogously, one usually adds
four particles to stay in the sector of total spin zero for spinful
systems.

B. Extrapolating in the DMRG truncation error

In DMRG, one attempts to compute the ground-state wave
function |Ygs) of a lattice Hamiltonian, by mapping the phys-
ical lattice to a 1D chain. At every bipartition of this DMRG
chain, the algorithm achieves the required reduction of the ex-
ponentially scaling full Hilbert space by approximating |{gs)
through two sets of x optimally chosen basis states, yielding
a wave function |y4s). A given x corresponds to a partic-
ular truncation error € := (8¢ |5v), |8¥) = |Ygs) — |1//és),
where € is known in principle in DMRG.

The controlled accuracy and known error € enables local
quantities, and thus energies, to be extrapolated to zero error
[54]. Specifically for energies, it is known that the approxima-
tion error in the energy, SE, is «e. As we obtain AL, Nep]
from the difference between the S, = N, and S, = 0 ground-
state energies, wherever we have at least two ground states
with different x we use this technique to extrapolate the
energy to zero € before computing A,. In this, we always
employ €n,x, the maximal truncation error committed in the
final sweep as a proxy for €. For V/t = 1 and N, = 4, we
have obtained multiple energies, by computing ground states
for x = 10000 and 18 000 independently, then obtained x =
12000, 14000, and 16 000 using the x = 18 000 ground state
as an initial state and applying two complete sweeps at the
lower x. An example is of this is shown in Fig. 4(c). As
illustrated in Fig. 4(d), the change in A[L = 00, Nap] relative
to values at finite x is typically small anyway, on the orders
of a few percent at most.

Outside these parameters, we have aimed to produce both
x = 10000 and 18000 ground states in independent sim-
ulations wherever possible, but particularly for V/t = 0.5
available computing resources proved ultimately insufficient.
Thus, many results for this parameter are based partly or fully
on a single x = 10000 ground state.

In order to obtain any particular value of A[L, N as the
basis for an extrapolation to L — oo at fixed N, we therefore
pursue two separate protocols.

Straight extrapolation. Here, we extrapolate both S, = 0
and S, = Ny, ground-state energies to Zero €n,x When pos-
sible. If scaling is only possible in one of the spin sectors,
we form A, from the two lowest-energy ground states with
comparable €.

Extrapolation plus estimates. Whenever a ground state is
available at x = 10000 exclusively, we estimate the correc-
tion heuristically. We have done this based on the following
observations, made on states where extrapolations were pos-
sible: (i) the fractions by which energies further decrease upon
extrapolation seem to roughly double going from one L to
the next, (ii) they also seem to, roughly double with every
increase of N, and (iii) for the same parameters, fractions
seem to be about 1.3 larger in the S, = N, sector compared
to the S; = 0 sector. We then assume an uncertainty of 25% in
these estimated correction fractions.
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FIG. 5. Scaling A4[L, No] to L — oo using the straight extrapolation protocol (cf. Sec. IV B). (a) Scaling at V/t = 0.5, for Ny, = 2 (blue,
crosses), 4 (red, squares), 6 (black, diamonds), and 8 (green, circles). (b) Scaling at V/t = 1, symbols and colors for N, = 2, 4, and 6 as
in (a). In both figures, A[L, Ng, = 1] has been inserted for comparison purposes (grey stars). The raw data are summarized in Table III of

Appendix A.

V. EXTRAPOLATED SPIN GAPS AND INFERRING SC
ORDER FROM CORRELATION FUNCTIONS

The exact behavior of A [L, Na] as 1 /L scales to zero
is critical to our approach. In Sec. V A, we take the data as
they appear to be, linearly increasing in 1/L, with only weak
remnants of the oscillatory behavior that A, was defined to
eliminate (cf. Appendix A for details). It then follows that the
spin gap is finite for the infinitely long strips, and nondecaying
or even increasing in Ng. In Sec. VB, we consider the
possibility that what appear to be remnants of oscillations
is actually the onset of a scaling of A[L, Nauy] to zero as
1/L decreases. In Sec. VC, we then analyze the corrollary
information that correlation functions offer.

A. The spin gap as a function of N,

Applying the two distinct protocols for computing
A[L, Nay] outlined in Sec. IV B, the behavior of the spin
gap under increasing Ny, emerges. In Figs. 5(a) and 5(b), we
show how we obtain spin gaps in the thermodynamic limit
L — oo through linear fits, for both V/r = 0.5 and V/t =1,
using the straight extrapolation protocol. Not shown are the
equivalent plots for the extrapolation plus estimates protocol.
There, we also employ linear fits, but now we obtain the
maximal range of possible outcomes of AL = 00, Nep] by
performing separate linear fits for every possible combination
of extremal values of the Z‘Y[L,Nch] at different L. The
resulting AL = 00, Napl, respectively the mean values and
maximal/minimal values, of both protocols are summarized
in Table I and shown in Figs. 6(a) and 6(b).

Using the straight extrapolation protocol, there seems to be
little room for doubt that A,[N.] is at least a nondecaying
function beyond N, =2 for V/t = 0.5, while it is unam-
biguously a monotonically increasing function at V/t = 1. At
this latter value of the nearest-neighbor repulsion, the extrap-
olation plus estimates protocol is benefitting from relatively

small uncertainty, as here we have a greater collection of
states that we could extrapolate to €,,x = 0, and thus heuristic
extrapolations were only necessary for a few states. With
these smaller uncertainties, this second protocol supports the
straight extrapolation protocol. While the nondecaying nature
of A[Nen] beyond N, = 6 cannot be guaranteed, a scenario
in which the spin gap suddenly reverses at larger N, and starts
decaying towards zero seems highly unlikely and we are not
aware of any mechanism that would support such a reversal.
We find further evidence for this view with the significant
enhancement of short-range dy, correlations as N, increases,
which we discuss further in Sec. V C.

For V/t = 0.5, the situation is possibly more uncertain
when comparing the AL — 00, Nap] resulting from the
two different extrapolation protocols. The deviations are

TABLE I. Summary of spin gaps at L — oo for different N,
assuming the 1/L scaling of A[L, N]we appear to observe continues
to hold beyond the strip lengths we computed. “Extr. 4 estimates” is
based on estimating ground-state energies at zero truncation error
(e =0) for cases where ground states cannot be systematically
extrapolated to € = 0, because converged simulations were only
available for a single x value (see text for details).

A[Nen] [r x 1077

Straight extrapolation Extr. + estimates

Na V/t =05 V/it=1 V/t =05 Vit =1
2 5.59 7.59 5.36 731

4 9.68 10.2 10.77(10)* 10.268(11)
6 9.37 11.4 4.3(1.4) 11.20(97)
8 9.45 7.6(1.3)°

#Only one ground-state energy of the finite-L ensemble used to obtain
this value via linear fit was estimated.

"Multiple finite-L ground-state energies were estimated.

¢All finite-L ground-state energies were estimated.
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FIG. 6. Plotting A [L — 00, Ngy] vs Ny, for (a) V/t = 0.5. Red
crosses denote outcomes of the straight extrapolation protocol, while
grey lines with uncertainty ranges show outcomes of the extrapola-
tion plus estimates protocol (cf. Sec. IV B and Table I). (b) V/r = 1.
Symbols as in (a).

noteworthy for N, = 6, but it is very easily possible for our
heuristic model of the corrections (described in Sec. IV B)
to be just off in this case. But we will observe that neither
protocol is compatible with a steady decrease of the spin
gap with increasing Ny,. And, as for V/t = 1, a significant
and consistent enhancement of short-range d, correlations
at Nop > 2 (see below) further supports this reading of the
spin gap behavior We thus can summarize that for V/r = 1
the extended U-V model is highly likely to have a finite spin
gap for N, — oo, while for V/t = 0.5 this likelihood, while
reduced, remains high.

B. Testing the alternative: could A{[L — oo, N,] scale to
zero with Ny,?

As discussed, the results for A,[L, Ng] summarized in
Figs. 5(a) and 5(b) appear to be most congruent with a linear
scaling in 1/L to a finite intersect at 1/L = 0, with weak
oscillations surviving the averaging inherent to definition (4)
(cf. also Appendix A).

Returning to the discussion of Sec Il A, the main follow-up
question then must be: could there be alternate fits that make
physical sense, associated with either nodal superconductivity,
or with a Fermi liquid, or a magnetically ordered state? The
first possibility would be marked by A[L, Na] scaling to zero
as A/L*, a < 1 in the large-N,, regime, while for the latter
two possibilities A,[L, Nauy] should also scale to zero in the
large-N, regime, but as B/L + C/L*. We allow for a quadratic
correction term to the ideal linear vanishing of AL, Nop]
expected for a FL or MO state (cf. Sec. Il A) because our
results from Sec. V A show that a purely linear scaling to zero
is impossible given our data.

Analyzing our data under these alternative scenarios re-
quires recognizing that at N, = 2 we start in a regime where
we are guaranteed a finite spin gap [2] (cf. also Appendix A).
That makes it extremely likely that some finite spin gap could
survive for at least some larger Nj—our linear-polynomial
Ansatz of the previous sections yields just that.

For this reason, one cannot just blindly fit the data in Ta-
ble III with these two alternate scaling Ansdtze; these Ansdtze
will always “fit” any data like in those tables, appearing linear
within the fitting region via parameter tuning, then bending
down to zero outside of it. They easily “fit” even the Ny, = 2
data, a nonsensical result considering these systems are known
to have a finite spin gap.
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FIG. 7. [(a) and (b)] Testing the viability of a MO/FL state in
the 2D limit as an alternative explanation of the spin gap data, by
evaluating the stability of the scaling Ansatz B[Ng,]/L + C[Ng,]/L?
with 1/Ny, for both V/t =1 (blue crosses) and V/t = 0.5 (red
crosses). The strong growth of C[N.] indicates the instability of
the quadratic term, making the MO/FL hypothesis an unsuitable
one, except potentially at V/t = 0.5 (cf. text for details). [(c) and
(d)] Testing the viability of a nodal USC state in the 2D limit as
an alternative explanation of the spin gap data, by evaluating the
stability of the scaling Ansatz A[Ny,]/L*™en! with 1/Ny, [symbols
matching (a) and (b)]. For V/t =1, there is a quick saturation
to seemingly stationary values, indicating that nodal USC cannot
definitely be ruled out as an alternative in the 2D limit (cf. text for
details).

Thus, the only meaningful question is whether or not these
fits converge on a physically consistent scenario as 1/N.
decreases. For this purpose, we plot the fitting parameters of
both Ansdtze to the raw data of Table III against 1/Ngy, in
Fig. 7. For the FL/MO-state Ansatz B[Ny]/L + C[Nch] /L?
in Figs. 7(a) and 7(b), neither coefficient shows discernable
convergence: B[N, ] drops monotonically, albeit slowly, while
C[N.h] increases monotonically, at a much faster rate. Thus,
within the range of accessible N,y values, the quadratic correc-
tion term appears unstable. Rather, the rapid growth of C[N.]
with growing N, coupled with the slow flattening of the
linear slope controlled by B[N.], is that of an Ansatz that in-
creasingly struggles to approximate a behavior of A[L, Ny,]
that is actually linear or near-linear in 1/L.

The linear-polynomial Amnsatz was already treated in
Sec. V A, yielding a finite spin gap. There is a motivated alter-
native however. A near-linear Ansatz A[Ne,]1/L¥™e] with e <1,
that scales to zero gap would be suggested by earlier theory in
contradiction to our result. These prior works were based on
analytical perturbative RG and mean-field theory; for our 2D
U-V model here, a d,>_,» order has been predicted [18-21].
Any order other than isotropic s-wave results in nodal lines
intersecting with the Fermi surface (cf. Fig. 9). The intersects
result in gap nodes, isolated points in the Brillouin zone where
the SC gap closes. At these nodes zero-energy quasiparticles
may thus be produced, according to the mean-field treatment
of these systems, and these theories thus predict an ungapped
spin excitation spectrum. This nodal structure results in the
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FIG. 8. (a) Correlation functions for Ny, = 8, V/t = 0.5, nor-
malized to their value at r = 1. Dash-dotted lines show relative decay
at first maximum within r < r, for d,,, (red), d,2_,> (green), s (blue),
and C (black). This behavior of the normalized correlation functions
in representative for all Ny > 4. (b) How correlation functions
d2_p, dyy and s(r), defined in Egs. (6)—(8), are evaluated on the
two central legs of the lattice.

spin susceptibility, Eq. (2), scaling as 1/L*, with o < 1 [36,
38-42].

The results of fitting A[Ng,]/L*™! to our spin-gap data,
depicted in Figs. 7(c) and 7(d), then show a difference be-
tween V/t = 0.5 and V/t = 1 as Ny, increases. In the latter
case, both coefficients saturate quickly to nearly stable values.

| Akya/7
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1 ™
1 —0.5 0 0.5 1

FIG. 9. Fermi surface of the noninteracting lattice electrons for
the 2D U-V model (solid black lines) and possible symmetry of
the order parameter, shown as a generic mixture between d,, and
&uy2—y2) (see text for details). This symmetry minimizes, but does
not eliminate intersections of nodal lines and Fermi surface (red
circles), where the gap of USC order would exhibit zero nodes in
standard mean-field treatments. From this, these theories predict a
nongapped spectrum for spin excitation, i.e., zero spin gap.

For a[Ng ], this is crucially well below 1. A ground state with
nodal USC in the 2D regime could not be completely ruled
out on this basis. To what extent this is an artefact of our data
being confined to smaller L values at larger N, must remain
as a key question to be answered in future work.

For V/t = 0.5 on the other hand, at Ny, > 4, we cannot
find saturation of the growing «/[N.,] within the accessible
Nen. Taken together with the linear polynomial fitting done
in Sec. VA and the behavior of C[Ng] in the FL/MO-
scaling Ansatz above [Fig. 7(b)], it may not be possible to
rule out that the V/f = 0.5 data could move towards a fully
linear scaling to zero in the large N, limit. Three conjoined
caveats apply however: firstly, N, is limited to <8 here, it is
clearly possible that «[N,,] stabilizes below 1 at larger Ngy.
Secondly, the behavior of «[N.] with Ny, could easily be
an artefact of the oscillatory remnant in 1/L that A[L, Ng]
retains despite the averaging, analogous to the discussion in
Appendix A for the case of a full second-order polynomial fit
to the raw data. Thirdly, the results of the straight extrapola-
tion protocol for the spin gap at L — oo [Table I, Fig. 6(a)]
would point in the opposite direction.

We thus conclude that our data most strongly support a
fully gapped spin spectrum. As laid out in Appendix A, the
averaged spin gap A[L, N.,] appears to result in a linear
structure in 1/L with a superimposed weak oscillatory rem-
nant, of unknown analytical form, with its amplitude slowly
decreasing with 1/L. It is those weak downwards oscillations
that the two alternate scaling Ansdtze we now studied are,
erroneously, susceptible to. A conservative reading of our
results would still mandate that at V/t = 1, we cannot com-
pletely rule out a spin excitation spectrum with nodal zeros,
which would be compatible with the nodal USC systems
described by mean-field theories. At the same time, within the
confines of the N, values that we have treated in this work,
there is no consistent scenario for a FL or MO state at V/t = 1
due to the apparent instability of the quadratic correction as
shown in Fig. 7(b).

For V/t = 0.5 the situation is less clear. The upward
growth of o[N,,] parametrizing the fit to a nodal USC regime,
combined with the instability of the quadratic correction term
C[Ncp] in the fit to the FL/MO regime opens up the possibility
that there may not be enough data to reliably exclude any
of the three regimes for this parameter, when viewed in con-
junction with the outcome of the extrapolation plus estimates
protocol for the linear-polynomial extrapolation [Fig. 6(a) and
Table I]. However, viewed together with the enhancement
exclusive to the d,, correlation channel discussed in the next
section, it turns out that either the nodal USC scenario or the
fully spin-gapped one should be favored for V/r = 0.5 as well.

C. Correlation functions: pairing in the d,, channel as likely
candidate order in the 2D limit

From the ground states, any desired correlation function
between site r; and site r, in the lattice can in principle be
computed. With the form factor of the lattices we consider,
strips of length L and width Ny, where L > N, generally
a crossover of behaviors is to be expected with growing
r := |r; — ry|. As Ny, increases, at short distances the physics
will become increasingly dominated by that of the 2D limit
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TABLE II. Decay of correlations at short range, r & r, = 4a, in the effective 2D regime [cf. main text and example shown in Fig. 8(a)].
The strong enhancement in the d,, channel compared to all other channels for Ny, 2> 4 is highlighted in red.

Ny =2 Ny =4 Ny =6 Ny =38
short-range decay V/it =0.5 Vit=1 V/it =0.5 Vit=1 V/it =0.5 Vit=1 V/it =0.5
e 0.17 0.15 1.08 0.55 0.67 0.79 1.05
. ‘i‘rﬁ;“z “ 0.09 0.08 0.08 0.09 0.09 0.07 0.09
oty i) 0.97 0.87 0.22 0.09 0.10 0.16 0.14
i T 0.06 0.07 0.06 0.06 0.06 0.06 0.06

(Nen — 00). Conversely, at sufficiently large distances, any
correlation function will exhibit the typical behavior of a 1D
system, i.e., it will decay algebraically as a function of r—as
long as no discrete symmetry breaks spontaneously [55]. This
behavior is generic to the ground state of any 1D quantum
system, even one of finite width [2]. The length scale at
which the cross-over between the two regimes takes place
will increase as N, is raised, with the 1D regime starting
at larger and larger distances, until it disappears completely
when Ny, — o0.

Even with pPDMRG we cannot access the full 2D regime for
the time being, but we can get new and valuable insight into
how the various potential channels for ordering of the U-V
model in the 2D limit respond to the systematic increase of
Neh- As we already evaluate the possibility of magnetic order
or a Fermi liquid based on the scaling of A[L, Nap], we limit
ourselves to the main competitor orders, the SC d_(7),
dyy(r), s(r), as well as the charge-density-wave channel. We
compute the correlation functions (6)—(8) connected to each
of these, as defined in Sec. IT A.

We then specifically study the dependency of the short-
range behavior, r < ry := 7 /kr = 4a of the above correlation
functions on N,. An example that is highly representative of
the general behavior for Ny, > 4 is shown in Fig. 8: when
each correlation function is normalized to its value at r = 1,
the first maximum within the short-distance quasi-2D regime
decays strongly in all channels except in the d,, channel.
Table II, which summarizes the short-range decay for all
studied N, values, confirms this short-range enhancement as
exclusive to the d,, channel. As is to be expected, once r
increases beyond the short-range regime, d.,(r), like all the
other correlation functions, behaves according to 1D physics,
i.e., it decays algebraically.

We do not take the above short-range behavior of these
systems at Ne, < 8 to constitute definite proof of dy, ordering
in the full 2D-limit. At the same time however, we observe
that it would align with a simple order-of-magnitude estimate,
namely that the diagonal singlet pairing of d,, order is ener-
getically advantageous at strong coupling—naive perturbative
analysis suggests that the gain in energy should be O(t7/V)
across a diagonal, while it is O(z2/U) for singlet pairing
across a rung in dxz,yz order. And of course, this would be
in line with the high likelihood for a finite spin gap and the
attendant elimination of competing MO or FL phases in these
systems that we discussed in Secs. VA and V B; the open
questions raised by a system having a finite spin gap jointly
with SC dy, order we will discuss now.

VI. DISCUSSION AND CONNECTIONS TO EXPERIMENT

Our results show a fully gapped spin excitation spectrum
for finite-width strips of the 2D U-V model at the given
parameters, as evidenced by the finite AL — 00, Ng] we
find.

We then show that the behavior of the gap with the strip
width is most consistent with a fully-gapped spin spectrum
also in the 2D limit when taking the apparent structure of
A[L, Ny as consisting of a linear part with a superimposed
weak oscillatory remnant into account (cf. Sec. VB and
Appendix A). At the same time, the behavior of the various
correlation functions at short range with increasing width,
indicative of the behavior of the 2D system, lends support
to pairing happening predominantly in the d,, channel, rather
than in the extended s or d,>_> channel.

Such a conclusion however is at variance with existing
analytical descriptions of USC systems, such as from com-
bining the results of perturbative functional RG with mean-
field descriptions. Besides these methods predicting d,>_
symmetry for the order parameter instead [18-21], the more
far-reaching difference to our findings lies in the effects these
theories predict from the nodal lines, which any plausible
order parameter will exhibit (these originate from the systems
attempt to minimize the Coulomb repulsion). Specifically,
they forecast that node lines’ intersections with the Fermi
surface will always create point nodes for gapless quasipar-
ticle excitations (cf. Fig. 9). In the mean-field theory, these
point nodes in turn necessitate an ungapped spin excitation
spectrum.

There are two ways to look at the apparent discrepancy
between this mean-field treatment and our findings of a fi-
nite spin gap in Sec. V A. We considered the first way in
Sec. V B, observing that disregarding the apparent structure of
A[L, Nap] (linear with oscillatory remnant, cf. Appendix A)
allows for sublinear scaling of A[L, N] to be a physically
consistent fit within the accessible N, range, at least for
V/t = 1. As explained there, this scaling of A, [L, No,] taken
together with the boost to the d,, correlations from Sec. VC
would be consistent with the prediction of nodal USC derived
from mean-field theory just the exact symmetry of the order
parameter would be different.

The second way is to consider the structure of the
KS [L, Nou] data as linear + weak oscillations. Then one has
to reconcile the finite spin gap in the 2D limit that ultimately
results from our numerics at strong coupling with the weak-
coupling analytical theory. Taking stock of the experimental
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situation allows just such a reconciliation. Firstly, we notice
that our result of dominant d,, correlations in the 2D regime
of the strips’ ground state would be in line with the general
argument that it is energetically advantageous for the system
to minimize the number of nodes, which d,, would achieve
better than a d,>_,» order given the Fermi-surface topology
(cf. Fig. 9). Secondly, measurements on actual USC materials,
which are certainly in the strongly interacting regime, provide
evidence for USC order with zero-gap point nodes, yet which
exhibit fully gapped spin excitations at the same time. This
has been demonstrated for LSCO [56] close to and away from
optimal doping, as well as YBCO [57] over a range of doping.
To our knowledge, this fundamental discrepancy between the
standard mean-field descriptions of USC models with zero-
gap nodes and actual measurements so far has neither been
theoretically explained nor even replicated. Thirdly, strongly
underdoped yet still superconducting LSCO has been shown
to have not just gapped spin excitations but to be fully gapped
overall [58]. The possibilities discussed for this observa-
tion are either another phase coexisting with USC order or
topological superconductivity of the chiral d>_> & id,, type,
which the authors show to fit the measured gap. Fourthly,
the loss of D, symmetry in the anisotropic 2D lattice results
in a mixing of orbitals, such as d,, and g,,.>_ (cf. Fig.
9) [59]. When viewed in light of the numerous proposals to
explain USC phases at low or zero temperature via mixing
of different order symmetries, it cannot be ruled out that
the remaining nodes resulting from a pure dyy + 0 gy 2—y2)
orbital, sketched in Fig. 9, are eliminated when admixed with
yet other orders, even without invoking the possibility of
topological superconductivity.

Given the available data we cannot currently distinguish
among these possibilities, but provide them to make it plain
that the most consistent interpretation of our results, a fully
spin-gapped USC order (with dominant d,, symmetry), has
clear precedents, the predictions of weak-coupling analytics
notwithstanding.

VII. CONCLUSION

We have performed large-scale calculations with parallel
DMRG to obtain ground states of the 2D U-V Hubbard
model, the presumed minimal model of unconventional su-
perconductivity in the organic Bechgaard and Fabre salts. The
use of parallel DMRG here allows to study large systems at
sufficient accuracies to reliably compute ground-state energy
differences between different quantum number sectors, i.e.,
the spin gap.

Considering strips of increasing width up to eight chains,
we have computed this models’ spin gap as a function of
strip length and width, averaged so as to strongly reduce
oscillations that would preclude extrapolations to infinite strip
length. After extrapolating the ground-state energies in the
discarded weight, we arrived at data consistent with a finite
spin gap at the thermodynamic limit (i.e., at infinite length).
Taking the apparent structure of the computed spin gaps as
a function of inverse length into account, we conclude that
the spin gap of the infinite strips is nondecreasing or even
increasing with the strips width. A finite spin gap in the
full 2D limit is therefore the most likely possibility, thus

TABLE III. Spin gaps AJ[L, N4l (in units of ¢ x 1073)
upon which extrapolations L — oo were performed in
Fig. 5 and for Fig. 7.

V/t=05
L Ny=2Ny=4Ny=6Ny=8Ngy=2Nay=4 Ny =6

Vit =1

20 95.953 96.945 96.956 97.023 87.977 89.311 89.516
32 66.272 65597 64.519 64.799 61.726 60.503 61.011
40 53981 53.943 54949 52908 51.298 50.607 51.774
48 45559 46421 45.634 43.520 45.186 42.838
56  39.519 41.736 39.809 37.810 37.049

60 37.113 35.515

64 35.024 35.634 33.508 34.508

72 31.646 30.193

80 29.213 27.619

96 24.326 24.061

120 19.618 19.231

160 14.991

making the case for singlet pairing. Disregarding key features
of the computed spin gaps (i.e., its decomposition into linear
and weak oscillatory remnant) still yields scaling results at
most consistent with nodal unconventional superconductivity,
where the spin excitation spectrum would touch zero in iso-
lated points. Even then however our results do not admit a
physically consistent scaling scaling solution in line with a
Fermi liquid or magnetically ordered states.

As we steer away from model parameters that could result
in charge density wave order of the ground state, the remain-
ing candidate by exclusion is unconventional (i.e., repulsively
mediated) superconducting order of singlet type. This reading
is further supported by the enhancement of short range corre-
lations (i.e., where the strips’ resemble a 2D system) with the
strips” width to take place only in the dy, channel.

These results suggest several lines for further inquiry. One
would be to test for the possibility of topological d>_» + id,,
superconductivity that is raised by the presence of the spin gap
at strong coupling. Another would be to move more closely to
the parameter regime of the Bechgaard and Fabre salts, i.e.,
to increase both U/t and V/¢ further yet. This will have to
entail a careful study of the enlarged parameter space for the
onset of the Mott-insulating state that we discussed in Sec. [ B
for the case N, = 2, and the behavior of which at N, > 2 is
currently unclear.
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FIG. 10. [(a) and (b)] Decomposing 'A[L, N4] into the linear part and oscillatory remnant, and ruling out a quadratic component to
the linear part in the noninteracting system (example for Ny, = 8). (a) A,[L, 8] at £, /t = 0.1 and half filling, split into a seemingly linear
component (blue crosses, linear fit as dash-dotted line) and weak oscillatory remnant (red crosses). (b) Confirming that the seemingly linear
component in (a) is actually linear by plotting the 1/L? coefficient of a second-order polynomial fitting as a function of the upper fitting
range L.x (see text for discussion). [(c) and (d)] Instability and stability of fitting procedures respectively for the interacting systems, for
example of A([L,4]atU/t =4, V/t =1, t, /t = 0.1 (magenta diamonds in both figures). (c) Fitting with a second-order polynomial for four
largest A,[L, 4] values (red dash-dotted line), five largest values (green dashed line), and all six values (blue line). (d) Fitting with a first-order

polynomial, line styles match the same fitting ranges as in (c).
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APPENDIX A: SPIN GAP DATA AT FINITE LENGTH AND
SCALING PROCEDURE TO L — o©

In this section, we provide background on the linear scaling
procedure we have used in Fig. 5 to obtain the infinite-sized
gaps summarized in Table I and shown in Fig. 6. We also
list all A [L, N] values that entered into performing those
scalings, in Table III.

There are three related reasons why we perform the fitting
of A[L, Nz,] in Sec. V A with a linear polynomial in 1/L:
(1) we find that in the noninteracting regime, U =V = 0, the
averaged spin gap A,[L, N.] shows behavior congruent with
purely linear scaling with weak superimposed oscillations,
while a fitting with a quadratic polynomial yields physically
nonsensical answers. (ii) Mirroring this effect for the inter-
acting systems, we find that the amplitude of the oscillatory
remnant that survives in the averaged spin gap seems to
decrease so slowly with 1/L that the oscillations swamp any
weak quadratic dependency, should there be any. For this
reason, fitting the limited number of available data points
with a quadratic polynomial yields unstable results, while a
linear fit works stably. (iii)) We know by comparing to the
existing theory of the N, = 2 ladders that a linear polynomial
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fit yields physically consistent results that will, at minimum,
provide correct trends for the behavior of AL = 00, Nap]
with N,. To take each of the points (i)—(iii) in turn. (i) Con-
sider the noninteracting version of our model Hamiltonian,
U =V =0, at half filling and 7, /t = 0.1. To take N, = 8
as an arbitrary example, analyzing the averaged spin gap
AL, 8] as a function of 1 /L reveals an universal pattern in
these tunneling-anisotropic systems: while much reduced over
the nonaveraged gap A,[L, 8], weak oscillations persist in ZS,
as shown for this example in Fig. 10(a). We find these data
to be naturally decomposing into a subset of points obeying
perfect linear scaling (blue crosses in Fig. 10(a), linear fit
superimposed as dash-dotted line), and the complementary
subset of points that is affected by the downwards oscillatory
deviations from this scaling [red crosses in Fig. 10(a)]. That
the seemingly linear subset of points is actually a linear one
becomes apparent if one tries to fit it with a second order
polynomial Cy + C;/L + C,/L?*. In Fig. 10(b), we plot the
resulting C, as a function of the maximal upper fitting range,
Limax. It is apparent that C, cannot be any underlying physical
property of the system like, e.g., a remnant of a band curvature
that survives the averaging, in which case it should converge
towards a constant value with increasing L,,x. Rather, C; con-
tinues to drop even at the large Ly,.x shown here, because that
is the only way a second-order polynomial fit can maintain
optimal approximation to a purely linear distribution of data
points as its fitting range grows. If any dependence on 1/L?
remains within A[L, Ne] in the noninteracting regime, the
oscillatory remnant clearly dominates it completely.

(i1) Just as for the noninteracting system, remnants of
oscillatory behavior remain visible as we compute A[L, Nep]
at U/t =4 and V/t = 0.5, 1. However, unlike the noninter-
acting regime, each data point now comes with substantial
computational cost. The limited number of available data
points compared to the noninteracting regime means that they
cannot be reliably divided into a purely linear subset and
an oscillatory remnant. As a consequence, the impact of the
weak oscillatory remnant on any scaling L — oo must be
considered, especially as the amplitude of oscillations appears
to decay only weakly with 1/L, as in the noninteracting case
(1). In Figs. 10(c) and 10(d), we contrast the instability of any
second-order polynomial fit depending on the fitting range
with the respective stability of a linear fit over the same fitting
ranges. This illustrates again, in a way different from (i), how
the oscillatory remnant overwhelms any quadratic component
in 1/L, if such were to exist in the interacting regime (as
opposed to the noninteracting one, where we can rule out its
existence within the linear subset).

(i) Complementing the argument of (i) and (ii) so far, that
A[L, Nep] is dominated by linear behavior in 1/L with weak
oscillatory remnants that overshadow a potential quadratic
contribution, is the physical consistency of linear extrapola-
tion. For this, we can turn to the N, = 2 case, the two-leg U-V
ladder. The bosonized field theory that describes this ladder at
low energy predicts that both its spin sectors are gapped [2]. It
also shows that both spin gaps must grow with both U /¢ and
V/t (Egs. (8.23), (8.24), and (8.26) in Ref. [2]). This effect
is clearly recovered by our linear extrapolation, as shown
in Table 1. This further supports that a linear extrapolation,
even one that necessarily averages over the weak oscillatory
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FIG. 11. Overview of pDMRG: (a) The physical system, e.g.,
a M-site 2D lattice, is mapped to the 1D DMRG chain. Every one
of the possible M + 1 bipartitions, carries left and right boundaries
L,, R, (cf. Sec. III), typically by far the largest objects in any
simulation that has sizable long-range terms in the Hamiltonian.
(b) For every bipartition, the Hamiltonian consists of the (small)
local MPOs W,, W,.; on sites to the left/right of the bipartition,
together with the boundaries L,_;, R,;i. (¢) The three layers of
parallelization our pDMRG offers. In layer 1, each element L,[b]
of L, is dispatched to a MPI group (each of which may be split into
G subgroups). Every L[b,] is a block-sparse matrix. In layer 2, every
one of the dense matrices making up L[b] is distributed round-robin
over the G split-off subgroups held by a global MPI group. In layer
3, the tiles making up a dense block can are distributed among the
physical compute nodes held by each split subgroup.

remnant, correctly captures the spin gaps behavior in the
thermodynamic limit and in particular its change with the
systems’ parameters.

APPENDIX B: HANDLING LARGE x AND LARGE MPO
BOND DIMENSION SIMULTANEOUSLY THROUGH
pDMRG

To make DMRG capable of handling simulations that
would exhaust the RAM of any single compute node, and
in order to bring the many CPU-cores of modern parallel
supercomputers to bear on such large-scale problems, the
groups of T. Giamarchi (U. Geneva) and M. Troyer (ETHZ)
have developed pPDMRG [53], with financial support from the
Swiss government under its’ HP2C initiative, with a focus
on easy extendability and optimizability. Key features are
(i) a clean tensor network framework for development of
new algorithms; (ii) use of a matrixlike data storage type for
direct use of BLAS/LAPACK routines; (iii) implementation
of an arbitrary number of Abelian symmetries, reducing the
matrix complexity by use of block-sparse matrices in models
with conserved quantum numbers; and (iv) bindings to the
ALPS library [60,61] for a generic model description. Paral-
lelization uses the Message Passing Interface (MPI) standard
for distributed memory and Intel® Cilk™ Plus tasks for
multithreading. The shared memory version of the code has
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been already published [62], and is used extensively in 1D
and 2D condensed matter physics [63—-67]. The resulting
parallelism of pDMRG is fully scalable and can be run on
anything from a single CPU core to hundreds of compute
nodes.

The stages of pPDMRG have been summarized in Fig. 11.
As in regular DMRG, the physical problem is exactly mapped
onto a 1D chain. In any realistic problem requiring the use
of pDMRG, there will be many long-range interaction and/or
tunneling terms along the chain. As a result, the left-/right-
boundary pairs L,, R, at the n =0, ..., M bipartitions of
the DMRG-chain will become objects requiring very large
amounts of memory for any problem with a substantial bond
dimension yx [Fig. 11(a)]. For every bipartition of the DMRG-
chain the DMRG-Hamiltonian will be a set of one left and
one right boundary, together with the (usually small) local
MPOs W,, W, for the sites n and n + 1 to the left/right
of the nth bipartition [cf. Fig. 11(b)]. The technical chal-
lenge for any DMRG implementation aiming to parallelize
the repeated application of any of these Hamiltonians to a
tensor-decomposed wave function, which is the linear-algebra
operation at the heart of any ground-state DMRG, is to
distribute the boundaries across the nodes of a parallel super-
computer. Our pPDMRG implementation offers three layers for
this, summarized in Fig. 11(c), making extensive use of the
Message Passing Interface (MPI), the de facto standard for
parallel supercomputing.

(i) Layer 1 exploits that the boundaries are effectively
vectors of block-sparse matrices [cf. Eq. (9) and following,
and Fig. 3(c)]. It distributes the D elements of both these
vectors, each element being a block-sparse matrix, in a size-
ordered, round-robin fashion within the global group of MPI
groups. Each of the MPI groups within the global group may
encompass several nodes of the compute cluster.

(i1) Inside each MPI group, layer 2 then may further dis-
tribute the dense matrices comprising each boundary element
among MPI subgroups into which the main group can be split.

(iii) As dense matrices can themselves become large, they
are always stored in tiled format. For layer 3, these tiles may
be distributed to different compute nodes within a subgroup.

In the Jacobi-Davidson eigensolver of pPDMRG, the tensor
contractions become dot products of vectors of matrices. For
this, MPI groups communicate via MPI_Allreduce. When
shifting to the next pair of sites, the number of boundaries
can change, which results in a redistribution of elements
among the MPI processes, using asynchronous point-to-point
transfers. On each node, operations are executed in two steps.
A dry run collects all linear algebra operations (mostly GEMM
and AXPY). In the second step, the directed acyclic operation
graph is executed in parallel on several threads. This abstract
approach optimizes performance, autonomously exploiting
hidden operational parallelism. The basic linear algebra op-
erations are then explicitly unrolled between tiles of the dense
matrix and dispatched to the underlying BLAS library.
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